
A Tale of One

Software Bypass of

Windows 8 Secure Boot

Yuriy Bulygin

Andrew Furtak

Oleksandr Bazhaniuk

Agenda

•UEFI and Bootkits

•Windows 8 Secure Boot

• Attacking Secure Boot

•Recommendations

UEFI and
Bootkits

Unified Extensible Firmware Interface (UEFI)

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

OS Kernel / Drivers

DXE

Driver

DXE

Driver

UEFI

OROM

UEFI

OROM

HDD

Unified Extensible Firmware Interface (UEFI)

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

OS Kernel / Drivers

DXE

Driver

DXE

Driver

UEFI

OROM

UEFI

OROM

HDD

Unified Extensible Firmware Interface (UEFI)

Industry Standard Interface Between Firmware & OS

Processor Architecture and OS Independent

C Development Environment (EDK2/UDK)

Rich GUI Pre-Boot Application Environment

Includes Modular Driver Model

UEFI Bootkits

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

DXE

Driver

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

DXE

Driver

UEFI

OROM

UEFI

OROM

OS Kernel / Drivers

HDD

Malware

UEFI Bootkits

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

OS Kernel / Drivers

Malware

DXE

Driver

DXE

Driver

UEFI

OROM

UEFI

OROM

HDD

UEFI Bootkits

Replacing Windows Boot Manager

EFI System Partition (ESP) on Fixed Drive

ESP\EFI\Microsoft\Boot\bootmgfw.efi

UEFI technology: say hello to the Windows 8 bootkit! by ITSEC

Replacing Fallback Boot Loader

ESP\EFI\Boot\bootx64.efi

UEFI and Dreamboot by Sébastien Kaczmarek, QUARKSLAB

Adding New Boot Loader (bootkit.efi)

Modified BootOrder / Boot#### EFI variables

http://www.saferbytes.it/2012/09/18/uefi-technology-say-hello-to-the-windows-8-bootkit/
http://www.saferbytes.it/2012/09/18/uefi-technology-say-hello-to-the-windows-8-bootkit/
http://www.saferbytes.it/2012/09/18/uefi-technology-say-hello-to-the-windows-8-bootkit/
http://www.quarkslab.com/dl/13-04-hitb-uefi-dreamboot.pdf

UEFI Bootkits

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

OS Kernel / Drivers

Malware

DXE

Driver

DXE

Driver

UEFI

OROM

UEFI

OROM

HDD

UEFI Bootkits

Adding/Replacing DXE Driver

Stored on Fixed Drive

Not embedded in Firmware Volume (FV) in ROM

Modified DriverOrder + Driver#### EFI variables

UEFI Bootkits

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

OS Kernel / Drivers

Malware

DXE

Driver

DXE

Driver

UEFI

OROM

UEFI

OROM

HDD

UEFI Bootkits

Patching UEFI “Option ROM”

UEFI DXE Driver in Add-On Card (Network, Storage..)

Non-Embedded in FV in ROM

Mac EFI Rootkits by @snare, Black Hat USA 2012

http://ho.ax/De_Mysteriis_Dom_Jobsivs_Black_Hat_Paper.pdf

UEFI Bootkits

Replacing OS Loaders (winload.efi, winresume.efi)

Patching GUID Partition Table (GPT)

UEFI Bootkits

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

OS Kernel / Drivers

Malware

DXE

Driver

DXE

Driver

UEFI

OROM

UEFI

OROM

HDD

UEFI OS Boot Is Trivially Subverted

Replacing legacy OS boot with UEFI boot will also

replace legacy M/VBR bootkits with UEFI bootkits.

So can bootkit problem be fixed?

Windows 8
Secure Boot

System Firmware and NVRAM Are in ROM

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

System Firmware (SEC/PEI)

UEFI Firmware Relies on Secure Update

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

System Firmware (SEC/PEI)

Signed

BIOS

Update

DXE Verifies Non-Embedded UEFI OROMs

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

System Firmware (SEC/PEI)

UEFI

OROM

Signed

BIOS

Update

UEFI

OROM

DXE Verifies Non-Embedded DXE Drivers

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

System Firmware (SEC/PEI)

UEFI

OROM

Signed

BIOS

Update

UEFI

OROM

DXE

Driver

DXE

Driver

DXE Core Verifies UEFI Applications

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

System Firmware (SEC/PEI)

UEFI

OROM

Signed

BIOS

Update

UEFI

OROM

UEFI

App

UEFI

App

DXE

Driver

DXE

Driver

DXE Core Verifies UEFI Boot Loader(s)

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

System Firmware (SEC/PEI)

UEFI

OROM

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

Signed

BIOS

Update

UEFI

OROM

UEFI

App

UEFI

App

DXE

Driver

DXE

Driver

UEFI Secure Boot

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

System Firmware (SEC/PEI)

UEFI

OROM

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

Signed

BIOS

Update

UEFI

OROM

UEFI

App

UEFI

App

DXE

Driver

DXE

Driver UEFI

Secure

Boot

UEFI Boot Loader Verifies OS Loader

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders (winload.efi, winresume.efi)

System Firmware (SEC/PEI)

UEFI

OROM

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

Signed

BIOS

Update

UEFI

OROM

UEFI

App

UEFI

App

DXE

Driver

DXE

Driver UEFI

Secure

Boot

OS Loader Verifies OS Kernel

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders (winload.efi, winresume.efi)

System Firmware (SEC/PEI)

UEFI

OROM

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

Signed

BIOS

Update

UEFI

OROM

UEFI

App

UEFI

App

DXE

Driver

DXE

Driver

OS Kernel / Early Launch Anti-Malware (ELAM)

UEFI

Secure

Boot

OS Kernel Verifies OS Device Drivers

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders (winload.efi, winresume.efi)

System Firmware (SEC/PEI)

UEFI

OROM

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

Signed

BIOS

Update

UEFI

OROM

UEFI

App

UEFI

App

DXE

Driver

DXE

Driver

OS Kernel / Early Launch Anti-Malware (ELAM)

OS Driver OS Driver

UEFI

Secure

Boot

Windows 8 Secure Boot

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders (winload.efi, winresume.efi)

System Firmware (SEC/PEI)

UEFI

OROM

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

Signed

BIOS

Update

UEFI

OROM

UEFI

App

UEFI

App

DXE

Driver

DXE

Driver

OS Kernel / Early Launch Anti-Malware (ELAM)

UEFI

Secure

Boot

OS Driver OS Driver

Windows 8

Secure

Boot

Secure Boot Keys

Platform Key (PK)

– Verifies KEKs

– Platform Vendor’s Cert

Key Exchange Keys (KEKs)

– Verify db and dbx

– Earlier rev’s: verifies image signatures

Authorized Database (db)

Forbidden Database (dbx)

– X509 Certificates, image SHA1/SHA256 hashes of
allowed and revoked images

– Earlier rev’s: RSA-2048 public keys, PKCS#7 Signatures

Secure Boot Key Protections

Non-Volatile (NV)

– Stored in SPI Flash based NVRAM

Boot Service (BS)

– Accessible to DXE drivers / Boot Loaders at boot time

Run-Time (RT)

– Accessible to the OS through run-time UEFI
SetVariable/GetVariable API

Time-Based Authenticated Write Access

– Signed with time-stamp (anti-replay)

– PK cert verifies PK/KEK update

– KEK verifies db/dbx update

– certdb verifies general authenticated EFI variable updates

PK (openssl x509 -in PK.pem –text)

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number:

 53:41:e0:15:c4:3a:f8:a8:48:36:b9:a5:ff:69:14:88

 Signature Algorithm: sha256WithRSAEncryption

 Issuer: CN=ASUSTeK MotherBoard PK Certificate
 Validity

 Not Before: Dec 26 23:34:50 2011 GMT

 Not After : Dec 26 23:34:49 2031 GMT

 Subject: CN=ASUSTeK MotherBoard PK Certificate

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 Public-Key: (2048 bit)

 Modulus:

 00:d9:84:15:36:c5:d4:ce:8a:a1:56:16:a0:e8:74:

...

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 2.5.29.1:

?=.../0-1+0)..U..."ASUSTeK MotherBoard PK

Certificate..SA...:..H6...i..

 Signature Algorithm: sha256WithRSAEncryption

 73:27:1a:32:88:0e:db:13:8d:f5:7e:fc:94:f2:1a:27:6b:c2:

...

-----BEGIN CERTIFICATE-----

MIIDRjCCAi6gAwIBAgIQU0HgFcQ6+KhINrml/2kUiDANBgkqhkiG9w0BAQsFADAt

...

-----END CERTIFICATE-----

Secure Boot Configuration

SecureBoot

• Enables/disables image signature checks

SetupMode

• PK is installed (USER_MODE) or not (SETUP_MODE)

• SETUP_MODE allows updating KEK/db(x), self-signed PK

CustomMode

• Modifiable by physically present user

• Allows updating KEK/db/dbx/PK even when PK is installed

SecureBootEnable

• Global non-volatile Secure Boot Enable

• Modifiable by physically present user

Dependencies (AutenticatedVariableService)

PK variable exists in NVRAM?

• Yes. Set SetupMode to USER_MODE

• No. Set SetupMode to SETUP_MODE

SecureBootEnable variable exists in NVRAM?

• Yes

– SecureBootEnable is SECURE_BOOT_ENABLE and

SetupMode is USER_MODE? Set SecureBoot to ENABLE

– Else? Set SecureBoot to DISABLE

• No

– SetupMode is USER_MODE? Set SecureBoot to ENABLE

– SetupMode is SETUP_MODE? Set SecureBoot to DISABLE

DxeImageVerificationLib defines policies applied to

different types of images and on security violation

IMAGE_FROM_FV (ALWAYS_EXECUTE), IMAGE_FROM_FIXED_MEDIA,

IMAGE_FROM_REMOVABLE_MEDIA, IMAGE_FROM_OPTION_ROM

ALWAYS_EXECUTE, NEVER_EXECUTE,

ALLOW_EXECUTE_ON_SECURITY_VIOLATION

DEFER_EXECUTE_ON_SECURITY_VIOLATION

DENY_EXECUTE_ON_SECURITY_VIOLATION

QUERY_USER_ON_SECURITY_VIOLATION

Image Verification Policies

Let’s have a look at the Secure Boot image

verification process

SecurityPkg\Library\DxeImageVerificationLib
http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=SecurityPkg

http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=SecurityPkg

Image Verification (Policies)

Image Verification

Policy?

• (IMAGE_FROM_FV)

ALWAYS_EXECUTE?

EFI_SUCCESS

• NEVER_EXECUTE?

EFI_ACCESS_DENIED

Image Verification (Configuration)

• SecureBoot EFI variable doesn’t exist or equals to

SECURE_BOOT_MODE_DISABLE? EFI_SUCCESS

• File is not valid PE/COFF image? EFI_ACCESS_DENIED

• SecureBootEnable NV EFI variable doesn’t exist or

equals to SECURE_BOOT_DISABLE? EFI_SUCCESS

• SetupMode NV EFI variable doesn’t exist or equals to

SETUP_MODE? EFI_SUCCESS

Image Verification (Crypto)

Image signed?

• No

– Image SHA256 hash in dbx? EFI_ACCESS_DENIED

– Image SHA256 hash in db? EFI_SUCCESS

• Yes

 For each signature in PE file:

– Signature verified by root/intermediate cert in dbx?

EFI_ACCESS_DENIED

– Image hash in dbx? EFI_ACCESS_DENIED

 For each signature in PE file:

– Signature verified by root/intermediate cert in db?

EFI_SUCCESS

– Image hash in db? EFI_SUCCESS

• EFI_ACCESS_DENIED

Secure Boot in Action

Windows 8/UEFI Secure Boot is pretty important

protection from boot malware!

Attacking
Windows 8

Secure Boot

Just turn it off in the BIOS setup screen ;)

Just to be clear, the issues are in the implementation of

Secure Boot and required UEFI firmware protections on

certain platforms

Windows 8
Secure Boot

(Microsoft)

We think Windows 8 Secure

Boot looks like this
Or more like this

Windows 8
Secure Boot

UEFI
Secure
Boot

(UEFI)

BIOS
Vendor 1
Secure
Boot

BIOS
Vendor 3
Secure
Boot

BIOS
Vendor 2
Secure
Boot

How exciting! … But still not close

The Reality Is Much More Exciting

Platform
Vendor1

Platform
Vendor3

Platform
Vendor2

Platform
Vendor4

Platform
Vendor5

Platform
Vendor

N

Windows 8 Secure Boot is only secure when

ALL platform/BIOS vendors do a couple of things

correctly

• Allow signed UEFI firmware updates only

• Protect UEFI firmware in SPI flash from direct modification

• Protect firmware update components (inside SMM or DXE on reboot)

• Program SPI controller and flash descriptor securely

• Protect SecureBootEnable/CustomMode/PK/KEK/db(x) in NVRAM

• Implement VariableAuthenticated in SMM and physical presence checks

• Protect SetVariable runtime API

• Securely disable Compatibility Support Module (CSM), unsigned legacy
Option ROMs and MBR boot loaders

• Configure secure image verification policies (no ALLOW_EXECUTE)

• Build platform firmware using latest UEFI/EDK sources

• Correctly implement signature verification and crypto functionality

• And don’t introduce a single bug in all of this…

System.Fundamentals.Firmware.UEFISecureBoot

3 When Secure Boot is Enabled, CSM must NOT be loaded

7 Secure Boot must be rooted in a protected or ROM-based Public

Key

8 Secure firmware update process

9 Signed Firmware Code Integrity Check

14 No in-line mechanism is provided whereby a user can bypass

Secure Boot failures and boot anyway

…

 Windows 8 Secure Boot Requirements

What If UEFI BIOS Updates Are Not Signed?

When UEFI Firmware Updates Are Not Signed

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

DXE

Driver

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

Signed

BIOS

Update

DXE

Driver

OS Kernel

OS Driver OS Driver

No luck

UEFI firmware update capsules are signed

RSA-PSS 2048 / SHA-256 / e=F4

Wait, let’s check one little thing…

Can We Write to UEFI Firmware in ROM?

So UEFI firmware updates are signed but firmware is

directly writeable in SPI flash? So is NVRAM with

EFI variables. Hmm… What could go wrong?

Hint: Malware could patch DXE Image Verification driver

in ROM or it could change persistent Secure Boot

keys/configuration in NVRAM

When Firmware Is Not Protected in ROM

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

DXE

Driver

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

Signed

BIOS

Update

DXE

Driver

OS Kernel

OS Driver OS Exploit

Malware Modifies UEFI Firmware in ROM

(directly programming SPI controller)

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

DXE

Driver

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

Signed

BIOS

Update

DXE

Driver

OS Kernel

OS Driver OS Exploit

Modify Secure

Boot FW or

config in ROM

Then Installs UEFI Bootkit

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

DXE

Driver

UEFI

Bootkit

Signed

BIOS

Update

DXE

Driver

OS Kernel

OS Driver OS Exploit

Install

UEFI

Bootkit

Firmware Doesn’t Enforce Secure Boot

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

DXE

Driver

UEFI

Bootkit

Signed

BIOS

Update

DXE

Driver

OS Kernel

OS Driver OS Exploit

UEFI Bootkit Now Patches OS

Loaders/Kernel

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

DXE

Driver

UEFI

Bootkit

Signed

BIOS

Update

DXE

Driver

OS Kernel

OS Driver OS Exploit

Exploit Strategies

Patch DXE ImageVerificationLib driver code

– Differ from one platform/vendor to another

– Different versions of EDK and BIOS Cores

Replace/add hash or Cert in db

– Bootkit hash is now allowed

– Generic exploit, independent of the platform/vendor

– Can be found by inspecting “db” in ROM

Replace/add RootCert in KEK or PK with your own

– Bootkit signature is now valid

Exploit Strategies

Clear SecureBootEnable variable

– Despite UEFI defines “SecureBootEnable” EFI variable

platform vendors store Secure Boot Enable in platform

specific places

– Format of EFI NVRAM and EFI variable in ROM is

platform/vendor specific

– May require modification in multiple places in NVRAM

parsing of platform specific NVRAM format

– Replacing entire NVRAM or even entire BIOS region to

SB=off state is simpler but takes a while

Parsing Proprietary EFI NVRAM

Exploit Strategies

Corrupt Platform Key EFI variable in NVRAM

– Name (“PK”) or Vendor GUID (8BE4DF61-93CA-11D2-

AA0D-00E098032B8C)

– Recall that AutenticatedVariableService DXE driver
enters Secure Boot SETUP_MODE when correct “PK” EFI

variable cannot be located in EFI NVRAM

– Main volatile SecureBoot variable is then set to DISABLE

– ImageVerificationLib then assumes Secure Boot is off

and skips Secure Boot checks

– Generic exploit, independent of the platform/vendor

– 1 bit modification!

Corrupting Platform Key in ROM

Windows 8 HW Certification Requires Platforms to

Protect UEFI Firmware and NVRAM with Secure

Boot keys!

Secure Boot Is Enabled

Corrupting Platform Key in NVRAM

Platform Key Is De-Installed

Для загрузки необходим номер вашей

кредитной карты на securecreditсardz.ru

Back to Setup Mode Secure Boot Is Off

Demo 1
Attacking Windows 8 Secure Boot on

ASUS VivoBook Q200E

When UEFI firmware is not adequately protected

(in ROM or during update), subverting UEFI Secure

Boot is not the only thing to worry about!

This issue does not affect platform vendors correctly protecting

their UEFI BIOS in ROM and during BIOS Update but

S-CRTM and TPM based Measured Boot including

Full-Disk Encryption solutions relying on the TPM

can also be subverted

Evil Maid Just Got Angrier

BIOS Chronomancy by John Butterworth, Corey Kallenberg, Xeno Kovah

http://cansecwest.com/slides/2013/Evil Maid Just Got Angrier.pdf
http://www.nosuchcon.org/talks/D2_01_Butterworth_BIOS_Chronomancy.pdf
http://www.nosuchcon.org/talks/D2_01_Butterworth_BIOS_Chronomancy.pdf

Or you can get infected with UEFI BIOS or SMM

malware

a.k.a. “extremely persistent malware” © .gov

Persistent BIOS Infection by Anibal Sacco, Alfredo Ortega

Hardware Backdooring is Practical by Jonathan Brossard

The Real SMM Rootkit by core collapse

SMM Rootkits by Shawn Embleton, Sherri Sparks, Cliff Zou

http://www.coresecurity.com/files/attachments/Persistent_BIOS_Infection_CanSecWest09.pdf
http://www.coresecurity.com/files/attachments/Persistent_BIOS_Infection_CanSecWest09.pdf
http://www.coresecurity.com/files/attachments/Persistent_BIOS_Infection_CanSecWest09.pdf
https://media.blackhat.com/bh-us-12/Briefings/Brossard/BH_US_12_Brossard_Backdoor_Hacking_Slides.pdf
https://media.blackhat.com/bh-us-12/Briefings/Brossard/BH_US_12_Brossard_Backdoor_Hacking_Slides.pdf
https://media.blackhat.com/bh-us-12/Briefings/Brossard/BH_US_12_Brossard_Backdoor_Hacking_Slides.pdf
https://media.blackhat.com/bh-us-12/Briefings/Brossard/BH_US_12_Brossard_Backdoor_Hacking_Slides.pdf
http://www.phrack.com/issues.html?issue=66&id=11
http://www.phrack.com/issues.html?issue=66&id=11
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf

Huh! It requires kernel exploit?

Why Not Just Directly Modify Secure Boot Keys from

the OS? There’s an API for that

chipsec_util.py uefi writevar PK 8BE4DF61-

93CA-11D2-AA0D-00E098032B8C PK_forged.bin

SetFirmwareEnvironmentVariable failed

[Error 5] Access is Denied.

Secure Boot Variables

Remember Secure Boot Key variables are

“Authenticated Write Access”

You have to sign EFI variable and have corresponding

X509 Cert in NVRAM (PK/KEK/certdb)

Secure Boot Variables

Is it possible to bypass Windows 8 Secure Boot and

install UEFI bootkit by remote user mode exploit?

Coordinated disclosure of multiple vulnerabilities to

affected BIOS and platform vendors is ongoing but we

can offer a demo

Demo 2
Attacking Windows 8 Secure Boot from user-mode

Now what?

Recommendations (Platform Vendors)

Only signed updates should be allowed

– Signed UEFI Capsule based update via S3/reset

– Run-time update from within SMM only

Protect UEFI firmware in ROM

– Use BIOS Control to enable write protection of the entire BIOS

region in SPI flash

– Use Protected Range registers to write-protect ranges of SPI flash

Protect EFI variable store (NVRAM) in ROM

– NVRAM contains Secure Boot keys and NV configuration

Measuring Secure Boot configuration into PCR[7] may

prevent or complicate certain exploits

– Facilitates detection via remote attestation

– Windows BitLocker may seal encryption keys to PCR[7]

– Microsoft Hardware Certification Requirements

Recommendations

• Make sure platform has Windows 8 Logo

– Such platform has to adhere to the security requirements in

System.Fundamentals.Firmware.UEFISecureBoot

• Check if UEFI firmware updates are signed

– Corrupt firmware update binary and feed it to the BIOS update

utility

• Ask if and how platform adheres to the BIOS

Protection Guidelines (NIST SP 800-147)

http://csrc.nist.gov/publications/nistpubs/800-147/NIST-SP800-147-April2011.pdf
http://csrc.nist.gov/publications/nistpubs/800-147/NIST-SP800-147-April2011.pdf

Acknowledgements

Black Hat organizers and review committee

Bruce Monroe, John Loucaides, Ben Parmeter, Paul

Alappat; Microsoft’s MSRC and Secure Boot team for

coordinating vendor disclosures

Nicholas Adams, Kirk Brannock, doughty, Dhinesh

Manoharan, Brian Payne, Mickey Shkatov, Vincent

Zimmer, Monty Wiseman for help & support of this work

Greetz to Misha, @j4istal, @apebit, @drraid, sharkey,

secoeites, @tobyhush, @matrosov

Don’t Miss These Talks!

• BIOS SECURITY by John Butterworth, Corey

Kallenberg and Xeno Kovah

• UART THOU MAD? by Toby Kohlenberg and Mickey

Shkatov

• ANDROID: ONE ROOT TO OWN THEM ALL by Jeff

Forristal

Thank You!

@c7zero

@Abazhanyuk

andrew.furtak@gmail.com

