
July 31, 2013

Shattering Illusions in Lock-Free Worlds
Compiler and Hardware behaviors in OSes and VMs

Marc Blanchou

1 / 37

Shattering Illusions in Lock-Free Worlds

July 31, 2013 BH USA 2013

iSEC Partners

Introduction

Developer:

“Compiler/hardware, that’s not the code I wrote for my driver?!"

Compiler/hardware:

“But your code is correctly synchronized right? So you should not
care – you do not want to actually execute this horror you just
wrote – trust us”

Definitions 2 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• What is it about?
• Race conditions introduced by the compiler or the

hardware in lock-free sections (in OSes and VMs
among others)

• Why should you care?
• You don’t realize how messy lock-free code can be

• You want to find these bugs more easily

• You want to know more about the different layers
involved in these types of race conditions

Introduction

Definitions 3 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• Definitions
• Lock-free programming

• Memory models

• Optimizations

• Compiler, hardware and races
• Reordering issues

• Double-fetch (TOCTTOU) issues

• Other issues

• How to find these bugs?

• Solutions?

Agenda

Definitions 4 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• Locks were initially created because of the difficulty of
writing correct multi-threaded code

• They more or less allow developers (and researchers) to
not care too much about memory models and various
compiler and hardware optimizations

Locks?

A multiprocessing system on a single computer involves problems
similar to those of a distributed system because of the
unpredictable order in which certain events can occur. … We have
found that problems often arise because people are not fully aware
of this fact and its implications.

— Leslie Lamport 1978

Definitions 5 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• What is it?
• Threads never waiting on each others

• No more deadlocks
• No livelocks or theorical scheduling issues

• Usually cheaper and scale better than locks
• Always completes operations in time (critical)
• Usually only used for a few sections of applications
• Way harder to get right than using locks

• What for?
• Various OSes and VM operations
• Multimedia and financial apps, some databases etc.

Lock-free programming

Definitions 7 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• What a compiler/hardware knows
• Memory operations within the thread

• What a compiler/hardware does not know
• Shared memory locations

• Solution
• Let the compiler/hardware know

• Appropriate memory barriers and atomic operations

• BUT you can’t make assumptions about memory models
anymore

• Be careful with compiler/hardware specific code

• Can break on newer or different hardware/compilers

The (very) obvious

Definitions 8 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• Cache coherence

• No data lost or written before being transferred
from the cache to the target memory

• Sequential Consistency (or illusion of)

• Order of memory operations specified by a program

• No memory reordering should be visible

• People usually write code that needs SC

• This is language and hardware dependent

Cache and Sequential Consistency

Definitions 9 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• If not told otherwise, the compiler can do any
optimization it wants to, as long the compiled code acts
as if it would run on a single threaded machine.

• What about Profile Guided Optimization (PGO) or
code obfuscation?

Compiler Optimizations

Definitions 10 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

Memory models

Software
memory model

Hardware memory model

Weak Strong
(closer to SC)

ARM

PowerPC

IA-64 (Itanium) X86 - 64

Definitions 11 / 37

Shattering Illusions in Lock-Free Worlds

July 31, 2013 BH USA 2013

iSEC Partners

What can go wrong?

Developer:

“Compiler/harware, but I swear to synchronize properly!”

Compiler/hardware:

“Fine… We’ll do our best so that you can’t tell we modified the
program you wrote.”

Definitions 12 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

I’ll synchronize, I promise

• Definitions

• Compilers, hardware and races
• Reordering issues

• Double-fetch (TOCTTOU) issues

• Other issues

• How to find these bugs?

• Solutions

13 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• Reordering can happen at compile time as well as at
runtime (hardware).

• We did not need to care with locks before

• What does it mean for the developer?

• Atomic operations

• Appropriate memory barriers

Lock-free and reordering

Definitions 14 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• C/C++ operations are NOT presumed atomic

• But some native types can be if they are aligned

• C++11: atomic<>

• RMW (read-modify-write) operations

• CAS (compare-and-swap)

Atomicity

Non-atomic

g_value++; // g_value = g_value + 1;

int* rValue = (int*)([aligned_ptr] + 3);
*rValue = 42; // not aligned

Atomic

InterlockedIncrement(&g_value);

Definitions 15 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• G++ 4.8 with no optimization flags

• G++ 4.8 with -O3

Compiler reordering

Definitions 16 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• G++ 4.8 and –O3

Compiler reordering

Definitions 17 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

Compiler barriers

Definitions

Prevent compiler reordering*

*note: this does not act as a hardware barrier

18 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• Compiler barriers
• VC++ specific

• Interlocked operations
• Volatile – not atomic, VC++ specific implementation (/volatile:ms)

• ReadWriteBarrier() – but better use atomic<>
• Use the /kernel flag!

• GCC
• asm volatile ("" : : : "memory")
• Use specific memory barriers defines depending on the kernel

• C++11 atomic types
• Avoid relaxed atomic!

• Volatile
• Java: Full barrier (CPU+compiler) (!= C/C++ volatile)
• Avoid volatile in C/C++ for synchronization

• Implied
• CPU fences
• Some function calls (containing barriers or “unknown” functions) but they can be inlined

• Use __declspec(noinline) for VC++ or __attribute__((noinline)) for gcc

Preventing compile-time reordering

Definitions 19 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• Only visible on multicore or multiprocessor

• ONE CPU guarantees

• Dependent memory accesses are in order

• Overlapping load and store will appear ordered

Real-time reordering

Definitions 20 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• ONE CPU does NOT Guarantee
• Overlapping memory accesses are not merged or discarded

• Independent load and store are issued in the order given

• Even on x86-64 (strong memory model)

• An independent load (read) can be reordered with older stores

• Non-SC load and store instruction: mov

• SC load instruction: mov

• SC store instruction: xchg (or mfence + mov)

Real-time reordering

Definitions 21 / 37

Store

Load

Can be reordered
by the CPU

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• C++11 atomic<> types (apart from relaxed atomic)

• GCC: volatile(“[instruction]” ::: “memory”)

• And the various defines (mb(), rmb(), wmb() etc.)

• VC++

• MemoryBarrier() (full memory barrier, compiler+CPU)

• Interlocked operations

• Volatile in Java (!= C/C++ volatile)

Hardware barriers

Definitions 22 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• Lots of different types of barriers depending on the CPU

Reordering at runtime

http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

Definitions 23 / 37

http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• Speculative register promotion

• Write condition write

• Adjacent field overwrites

• Branch predictions

• Merging loops or inverting nested loops

• ABA problem?

• Conditional “locks”

• etc.

Other potential issues

Definitions 24 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

Example

Thread 1

g_value = …;
gl_done = true;

Thread 2

while (!gl_done) {
 [...]
}
local_data = g_value;

Definitions 25 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• Register promotion and reordering

Example

Thread 1

g_value = …;
gl_done = true;

Thread 2

while (!gl_done) {
 [...]
}
local_data = g_value;

register int tmp = gl_done;
while (!tmp) {
 [...]
}
local_data = g_value;

Potential CPU and
compiler reordering

Potential compiler optimization

Definitions 26 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• Classic issue that can lead to privilege escalation
• Kernel (local privilege escalation, userland->kernel)

• Hypervisor (guest->host, VM breakout?)

• Example
• Two memory reads in kernel space from a user-writable address

• Kernel fetches the location once, verifies and validates the data

• -> Attacker modifies the memory in user space

• Kernel fetches the attacker-controlled value a second time and uses it

Classic double-fetch or TOCTTOU

Definitions 27 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

Classic double-fetch or TOCTTOU

void called_by_user(void* pUserSpaceMemory, […]) { // kernel mode
 [...]
 try {
 [...]
 data_struct* p_data_struct =
 (data_struct*) pUserSpaceMemory; // attacker controlled
 [...]

 ProbeForWrite(p_data_struct->buffer,
 p_data_struct->len,
 sizeof(UCHAR));
 […]
 RtlCopyMemory(p_data_struct->buffer,
 p_DATA,
 p_data_struct->len);
 [...]

Captured twice

An attacker can
change the address of
the buffer after the check

Definitions 28 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

More secure?

void called_by_user(void* pUserSpaceMemory, […]) { // kernel mode
 [...]
 try {
 [...]
 captured_user_data = *(data_struct*) pUserSpaceMemory;
 [...]

 ProbeForWrite(captured_user_data.buffer,
 captured_user_data.len,
 sizeof(UCHAR));
 [...]
 RtlCopyMemory(captured_user_data.buffer,
 p_DATA,
 captured_user_data.len);
 [...]

Captured only once?

Definitions 29 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

Potential compiler optimization?

void called_by_user(void* pUserSpaceMemory, […]) { // kernel mode
 [...]
 try {
 [...]
 captured_user_data = *(data_struct*) pUserSpaceMemory;
 [...]

 ProbeForWrite(captured_user_data.buffer,
 captured_user_data.len,
 sizeof(UCHAR));
 ProbeForWrite(((data_struct*)pUserSpaceMemory)->buffer,
 ((data_struct*)pUserSpaceMemory)->len,
 sizeof(UCHAR));
 [...]
 RtlCopyMemory(captured_user_data.buffer,
 p_SOME_DATA,
 captured_user_data.len);
 RtlCopyMemory(((data_struct*)pUserSpaceMemory)->buffer),
 p_DATA,
 ((data_struct*)pUserSpaceMemory)->len));

Definitions

Still captured
twice?

The compiler may not
see why you need the
local storage (which
just adds instructions)
and could optimize
away

30 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

Potential compiler bug?

void called_by_user(void* pUserSpaceMemory, […]) { // kernel mode
 [...]
 try {
 [...]
 captured_user_data = *(volatile data_struct*) pUserSpaceMemory;
 [...]

 ProbeForWrite(captured_user_data.buffer,
 captured_user_data.len,
 sizeof(UCHAR));
 ProbeForWrite(((data_struct*)pUserSpaceMemory)->buffer,
 ((data_struct*)pUserSpaceMemory)->len,
 sizeof(UCHAR));
 [...]
 RtlCopyMemory(captured_user_data.buffer,
 p_SOME_DATA,
 captured_user_data.len);
 RtlCopyMemory(((data_struct*)pUserSpaceMemory)->buffer),
 p_DATA,
 ((data_struct*)pUserSpaceMemory)->len));

Still captured
twice?

Definitions

Force volatile semantic,
force capture (legal)
(/volatile:ms)

Use copy_from_user(…)
on Linux

31 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• Especially with lock-free code

• These bugs are more frequent than you may think, and can
impact a lot of code – that may never be recompiled

• Compilers may not always follow the standard

Compilers and CPUs can have issues

Definitions 32 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• Blackbox

• Determine which compiler was used
• Any type of bug known to be introduced by the compiler?

• Look for specific instructions (hardware barriers) and see
what it is supposed to protect (in weak memory models:
is the right instruction used?)

• ThreadSanitizer (TSAN)
• Linux/Mac based on Valgrind, based on PIN for Windows

• Memory access pattern analysis?
• See Bochspwn (M. Jurczyk and G. Coldwin)

How to find these bugs

Definitions 33 / 37

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• Thoroughly review code that:
• Should not be optimized in any way

• Where shared memory is accessed/written

• Test cases and fuzzing
• You are not only testing your code but the compiler/CPU too

• Using ThreadSanitizer (TSAN) or Helgrind

• Disabling optimizations has limits

• Compare an test against CPUs with weaker memory models

• Equivalence checking
• Using different compilers (could be very difficult, though)

• Temporary mitigation for the user: sandbox with one CPU

Whitebox and solutions

Definitions 34 / 37

Lock-free programming is hard

• It can create lots of issues that easily go unnoticed

• And even with valid code due to compiler/CPU issues

“The fences in the current [C++] standard may be the most
experts-only construct we have in the language“
— Hans Boehm

“It's easy to write lock-free code that appears to work, but it's
very difficult to write lock-free code that is correct and
performs well. Even good magazines and refereed journals
have published a substantial amount of lock-free code that was
actually broken in subtle ways and needed correction.”
— Herb Sutter

July 31, 2013

Shattering Illusions in Lock-Free Worlds

• Marc Blanchou
• Principal Security Consultant at iSEC Partners

• marc@isecpartners.com

• References
• Papers/articles from:

• Hans Bohem, Leslie Lamport, Herb Sutter, Vance Morrison, Jeff
Preshing, David Howells, Paul E McKenney, Intel Corporation,
Andrei Alexandrescu, Linus Torvalds, Petru Marginean, Tian Tian

Thank You

Definitions 36 / 37

mailto:marc@isecpartners.com

July 31, 2013

UK Offices
Manchester - Head Office
Cheltenham
Edinburgh
Leatherhead
London
Thame

North American Offices
San Francisco
Atlanta
New York
Seattle

Australian Offices
Sydney

European Offices
Amsterdam - Netherlands
Munich – Germany
Zurich - Switzerland

Shattering Illusions in Lock-Free Worlds

BH USA 2013 37 / 37

