
Embedded Devices Security
and

Firmware Reverse Engineering

BH13US Workshop

Jonas Zaddach
∗

FIRMWARE.RE
jonas@firmware.re

Andrei Costin
†

FIRMWARE.RE
andrei@firmware.re

ABSTRACT
Embedded devices have become the usual presence in the
network of (m)any household(s), SOHO, enterprise or criti-
cal infrastructure.

The preached Internet of Things promises to gazillion-
uple their number and heterogeneity in the next few years.

However, embedded devices are becoming lately the usual
suspects in security breaches and security advisories and thus
become the Achilles’ heel of one’s overall infrastructure se-
curity.

An important aspect is that embedded devices run on
what’s commonly known as firmwares. To understand how
to secure embedded devices, one needs to understand their
firmware and how it works.

This workshop aims at presenting a quick-start at how to
inspect firmwares and a hands-on presentation with exercises
on real firmwares from a security analysis standpoint.

General Terms
Compuster System Security, Network and Distributed Sys-
tem Security, Embedded Devices, Firmware, Security, Re-
verse Engineering

∗PhD candidate on
”Development of novel binary analysis techniques for
security applications” at
EURECOM, Sophia-Antipolis, Biot, France,
jonas.zaddach@eurecom.fr

†PhD candidate on
”Software security in embedded systems” at
EURECOM, Sophia-Antipolis, Biot, France,
andrei.costin@eurecom.fr

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BH13US ’13 Las Vegas, USA
.

Keywords
embedded devices, firmware, security, reverse engineering,
exploitation, vulnerabilities, backdoors, static analysis, bi-
nary analysis, firmware unpacking, firmware analysis, firmware
modification

1. INTRODUCTION
In the world of ever increasing interconnection of com-

puting, mobile and embedded devices, their security has be-
come critical. The security of embedded devices and their
firmwares is the new differentiator in the embedded market.

The security requirements and expectations for computing
devices are being constantly raised as the world moves to-
wards the Internet of Things. This is especially true for em-
bedded devices and their software counterpart – firmwares
– which is also their weakest point as shown below.

On another hand, embedded devices still have much less to
offer in terms of firmware security at this point. We can see
almost daily security advisories related to embedded devices,
many of them related to critical computer or cyber-physical
systems. It’s not accidental that anecdotical evidence vehic-
ulate the term Embedded and Firmware Security - Back

to The 90s!. It both shows how easy it is to find vulnera-
bilities in embedded firmware, as well as how bad is the state
of affairs in the firmware world from a security view-point.

With this whitepaper and workshop, we aim at presenting
a quick-start at how to inspect and analyze firmwares, deliv-
ering hands-on presentation on real firmwares and compiling
exercises from a security analysis standpoint. This, on an-
other hand, should help speed-up the responsible disclosure
and fixing of those dormant vulnerabilities.

This paper is organized as follows: we start with presen-
tation of minimal required theory in Section 2; we continue
with survey on previous work and state of the art in Section
3; we present most commont firmware formats, their chal-
lenges and how to handle their unpacking end-to-end in Sec-
tion 4; we reinforce the presented knowledge with hands-on
exercises and solutions in Section 5; we conclude in Section
6.

1.1 Workshop Outline
The workshop which supports this whitepaper, is orga-

nized according to the following outline:

• what are the embedded systems

http://www.eurecom.fr/en/people/zaddach-jonas
http://www.eurecom.fr/en/people/zaddach-jonas
http://www.eurecom.fr
mailto:jonas.zaddach@eurecom.fr
http://www.eurecom.fr/en/people/costin-andrei
http://www.eurecom.fr
mailto:andrei.costin@eurecom.fr

• what are the firmwares

• what are the challenges with firmwares

• how to overcome those challenges

• typical firmware formats and contents

• what’s firmware packing

• how to tackle unpacking problems elegantly

• typical firmware analysis process

• introduction to firmware analysis process automation

• introduction to firmware emulation

• challenges and ideas to overcome those

• some use case studies on real-world vulnerability find-
ings

• hands-on exercises

2. LITTLE BIT OF THEORY

2.1 Definition of firmware
The term ”firmware” has been coined by Ascher Opler in

in a 1967 Datamation article. His definition of firmware
as a glue microcode layer between the CPU instruction set
and the actual hardware has since been superseded, and the
IEEE Standard Glossary of Software Engineering Terminol-
ogy, Std 610.12-1990, defines firmware today as follows:

The combination of a hardware device and com-
puter instructions and data that reside as read-
only software on that device.
Notes: (1) This term is sometimes used to refer
only to the hardware device or only to the com-
puter instructions or data, but these meanings
are deprecated.
Notes: (2) The confusion surrounding this term
has led some to suggest that it be avoided alto-
gether.

For the sake of simplicity we will deviate from this defini-
tion in that we call the set of all code running on the hard-
ware’s processor (machine code and virtual machine code)
the firmware of this device.

2.2 Device Classes
Firmware-driven devices can be found virtually everywhere

- Nowadays our cars are controlled by hundreds microcon-
trollers, washing machines are programmable, and of course
industrial control is automated and can be controlled from
a central console. Here is a non-exhaustive list of all the
domains that use firmware-driven devices:

• Networking – Routers, Switches, NAS, VoIP phones

• Surveillance – Alarms, Cameras, CCTV, DVRs, NVRs

• Industry Automation – PLCs, Power Plants, Industrial
Process Monitoring and Automation

• Home Automation – Sensoring, Smart Homes, Z-Waves,
Philips Hue

• Whiteware – Washing Machine, Fridge, Dryer

• Entertainment gear – TV, DVRs, Receiver, Stereo,
Game Console, MP3 Player, Camera, Mobile Phone,
Toys

• Other Devices - Hard Drives, Printers

• Cars

• Medical Devices

2.3 Embedded devices hardware architectures
This section highlights the different architecture elements

of an embedded system, ranging from the processor archi-
tecture to memories, and connections between peripherals of
the embedded device as well as connections to other systems.

Processor Architectures.
Contrary to the relative uniformity of the PC market, em-

bedded device’s architectures are very diverse. In middle to
upper-class market segments of processors offering features
like memory virtualization and high clock rates, ARM pro-
cessors are wide-spread, and Intel is trying to catch up with
its ATOM line. MIPS processors can be found, too. In the
lower-class market processor architectures like Atmel AVR,
Intel 8051 and Motorola 6800/68000 power microcontrollers
with small memories and lower clock frequencies. Apart
from that, more exotic architectures like Ambarella, Axis
CRIS and others can be found in some devices.

On-board buses.
The processor cores communicate with other design blocks

or chips around them through a variety of interfaces: Most
commonly, SPI (Serial Peripheral Interface), I2C (Inter-IC),
Dallas 1-Wire and UART serial buses can be found, but
more complex systems also use buses more common in PC
architectures like PCI and PCI Express. Finally, ARM cores
can be connected to peripheral IP blocks through the AMBA
(Advanced Microcontroller Bus Architecture) interface.

Common communication lines.
The above-mentioned buses are mainly used as commu-

nication interface on the same board. For communications
with Computers or other systems, additional interfaces might
be used:

• Ethernet - RJ45

• RS485

• CAN/FlexRay

• Bluetooth

• WIFI

• Infrared

• Zigbee

• Other radios (ISM-Band, etc)

• GPRS/UMTS

• USB

Memory.
Different types of memory can be mapped directly into

the address space of the embedded system:

• DRAM is a volatile memory that can be accessed read/write.
Though it is quite fast, some processor cycles might
be needed to access content, which is why caching is
employed in some architectures to speed up DRAM
access. The DRAM controller needs to be set up with
the memory’s timings before this type of memory can
actually be used, which normally happens at very early
stages in the bootloader.

• SRAM is a volatile memory that can be accessed read/write.
It is very fast and can be read or written without or
much less delay than DRAM, but it is quite expensive,
which is why you fill find only small quantities of this
memory (typically < 1Mb) in a device.

• ROM is a non-volatile memory that can only be read.
Typically it is programmed in factory and contains
startup code that is absolutely needed, for example
a mask ROM bootloader.

• Memory-Mapped NOR Flash is a non-volatile memory
that can be accessed read/write. Contrary to previous
memories, reads can happen for any offset, but writes
need to take place for a whole block, which is why they
are mainly used to store bootcode.

Common Storage.
While the above-mentioned memories, with the exception

of NOR flash, serve only as volatile storage, other options
exist for permanent data storage:

• NAND Flash is typically connected through a bus like
SPI to the CPU and behaves similar to NOR flash:
Any byte offset can be read, but writes and deletes
need to happen for a whole erase block. Since each
block may only be written so often before it breaks,
special file systems exist that try to balance the wear
between cells.

• SD Card or any other common storage card (MMC,
...) can directly be used as a block device in Linux.
The connection of the controller to the main system
varies (USB, integrated, SPI, ...).

• Hard Drive can be connected via SATA, SCSI or PATA
to the system. Like for SD Cards, the actual connec-
tion of the controller to the system can be realized over
other buses.

Common Operating Systems.
Embedded systems are powered by firmwares of varying

complexities. More complex ones usually use a full-blown
operating system like Linux or Windows NT. Less complex
devices use operating systems like VxWorks or Windows CE,
and lots of special purpose operating systems can be found,
too. Here is a non-exhaustive list of operating systems that
can be encountered in firmware analysis:

• Linux is by far the most popular operating system for
more complex embedded devices.

• VxWorks is a popular proprietary real-time operating
system.

• Cisco IOS

• Windows CE/NT

• L4

• eCos

• DOS

• Symbian

• JunOS

• Ambarella

• etc.

Common Bootloaders.
The bootloader is the first piece of software that is exe-

cuted after a possible mask ROM bootloader. Its purpose is
to load parts of the operating system into memory and bring
the system in a defined state for the kernel (though this re-
quirement is fluid, the Linux kernel takes over some of the
former duties of a bootloader, like setting up the Pin Mux).
It can be organized in one or two stages. In a two-stage set-
ting, the first stage only knows how to load the second stage,
while the second stage provides support for file systems etc.

• U-Boot is probably the most popular bootloader

• RedBoot

• BareBox

• Ubicom bootloader

Common Libraries and Dev Envs.
Today, there are several prepackaged toolchains available.

These consist of build tools for the specific processor (com-
piler, assembler, etc). In most cases you will also get the
standard library compiled for your target, and for some even
a wide range of open-source packages, like openembedded’s
toolchain with its recipes.

• busybox + uClibc is probably the most used combina-
tion.

• buildroot

• openembedded

• crosstool

• crossdev

3. RELATED WORK AND STATE OF THE
ART

In [7] the assessment of the security of current embedded
management interfaces was conducted. Vulnerabilities were
found in all 21 devices from 16 different brands, representing
8 different categories, including network switches, cameras,
photo frames, and lights-out management modules. Along
these, a new class of vulnerabilities was discovered, namely
cross-channel scripting (XCS) [8]. XCS vulnerabilities are
not particular to embedded devices, however it is indicated
that embedded devices is the most affected population.

Results from [7] were subsequently used in [18]. Researchers
address the challenge of building secure embedded web in-
terfaces by proposing WebDroid, the first framework specif-
ically dedicated to this purpose. To that end, they demon-
strate and evaluate the efficiency of their framework in terms
of performance and security.

In [9] RevNIC is presented. RevNIC is a tool for re-
verse engineering network drivers. The work presents a tech-
nique that helps automate the reverse engineering of device
drivers. It takes a closed-source binary driver, automatically
reverse engineers the driver’s logic, and synthesizes new de-
vice driver code that implements the exact same hardware
protocol as the original driver. This code can be targeted
at the same or a different OS. No vendor documentation or
source code is required.

Continuing in direction of [9], the works of [15–17] present
on multiple aspects of firmware reversing and backdooring
on the network cards.

[21] presents a time-of-check-to-time-of-use (TOCTTOU)
attack via externally attached mass-storage devices. The at-
tack is based on emulating a mass-storage device to observe
and alter file access from the consumer device. The TOCT-
TOU attack was executed by providing different file content
to the check and installation code of the target device, re-
spectively. The presented attack shown to be effective to
bypasses the file content inspection, resulting in the execu-
tion of rogue code on the device.

[13] presents the results of the study of a vulnerability as-

sessment of embedded network devices within the worldâĂŹs
largest ISPs and civilian networks, spanning North America,
Europe and Asia. The observed data confirmed the intuition
that these devices are indeed vulnerable to trivial attacks
and that such devices can be found throughout the world in
large numbers. This study was subsequently extended with
works of [14] with a quantitative lower bound estimation on
the number of vulnerable embedded device on a global scale.

Work of [11] presented the reverse-engineering of firmware
images for multiple Xerox devices. This allowed discovery
of lower-level APIs from the PostScript high-level document
language. The attacks were delivered to the printers via
standard printed documents, as previously demonstrated
in [10]. Multiple attacks were presented, including mem-
ory dumping/scraping leading to password theft and pas-
sive network topology discovery, as well as outbound socket
sending arbitrary data.

There were recent advances in firmware modification at-
tacks by [5, 6, 12]. [6] addressed the network card based
on Broadcom BCM4325 & BCM4329 chipsets and demon-
strated how to put these cards in monitor mode. [12] pre-
sented a case study of the HP-RFU (Remote Firmware Up-
date) LaserJet printer firmware modification vulnerability,

which allows arbitrary injection of malware into the print-
erś firmware. While [10] demonstrated the proof-of-concept
sending arbitrary or custom command to any printer via
standard printed documents, including MS Office Word. Adobe
PostScript and Java Applets-generated, [12] used the same
attack vector to deliver a modified firmware. [5] examines
the vulnerability of PLCs to intentional firmware modifica-
tions in order to obtain a better understanding of the threats
posed by PLC firmware modification attacks and the feasi-
bility of these attacks. A general firmware analysis method-
ology is presented, and a proof-of-concept experiment is used
to demonstrate how legitimate firmware can be updated and
uploaded to an Allen-Bradley ControlLogix L61 PLC.

On the deffensive side, however, there is slightly less pre-
vious work available.

In [19] addresses the important challenge of verifying the
integrity of peripherals’ firmware. Authors propose software-
only attestation protocols to verify the integrity of periph-
erals’ firmware, and show that they can detect all known
software-based attacks. Authors also implement their scheme
using a Netgear GA620 network adapter in an x86 PC, and
evaluate theirs system with known attacks.

[20] presents a tool developed specifically for the SCADA
environment to verify PLC firmware. The tool does not re-
quire any modifications to the SCADA system and can be
implemented on a variety of systems and platforms. The tool
captures serial data during firmware uploads and then veri-
fies them against a known good firmware baseline. Attempts
to inject modified and/or malicious firmware are identified
by the tool.

3.1 Community Efforts and Tools
There are many community efforts dedicated to reverse

engineering of firmwares and embedded devices. Each of
these efforts have a specific goal and thus the tools produces
by those efforts are influenced by their main goals.

We try to summarize in a comprehensive list the most
used and visible efforts to date.

• binwalk – Binwalk is a firmware analysis tool designed
to assist in the analysis, extraction, and reverse en-
gineering of firmware images and other binary blobs.
It is simple to use, fully scriptable, and can be easily
extended via custom signatures, extraction rules, and
plugin modules.

• firmware-mod-kit – This kit is a collection of scripts
and utilities to extract and rebuild linux based firmware
images. This kit allows for easy deconstruction and re-
construction of firmware images for various embedded
devices.

• FRAK: Firmware Reverse Analysis Konsole – Unfortu-
nately, after an year since BH12US and notes of FOSS
license in [12], FRAK tool and it’s source code re-
mained unreleased as the site welcomes with the same
message for an year: SVN Repository: Coming soon!

Please subscribe to mailing list for release date.
As of time of this writing, it was not possible to evalu-
ate the tool, hence it was not possible to conclude over
the state of this project.

• ERESI framework – The ERESI Reverse Engineering
Software Interface is a multi-architecture binary analy-

https://code.google.com/p/binwalk/
https://code.google.com/p/firmware-mod-kit/
http://frak.redballoonsecurity.com/
http://www.eresi-project.org/

sis framework with a domain-specific language tailored
to reverse engineering and program manipulation.

• signsrch – Tool for searching signatures inside files, ex-
tremely useful as help in reversing jobs like figuring or
having an initial idea of what encryption/compression
algorithm is used for a proprietary protocol or file. It
can recognize tons of compression, multimedia and en-
cryption algorithms and many other things like known
strings and anti-debugging code which can be also man-
ually added since it’s all based on a text signature file
read at runtime and easy to modify.

• offzip – A very useful tool to unpack the zip (zlib, gzip,
deflate, etc.) data contained in any type of file in-
cluded raw files, packets, zip archives, executables and
everything else. It’s needed only to specify the offset
where the zip data starts or using the useful -S search
options able to find any possible zip block contained
in the provided file. There are also other options for
extracting all the zip blocks which have been found or
dumping them as in their original compressed form.

• TrID – TrID is an utility designed to identify file types
from their binary signatures. While there are similar
utilities with hard coded logic, TrID has no fixed rules.
Instead, it’s extensible and can be trained to recognize
new formats in a fast and automatic way.

• gpltool/bat – BAT, previously GPLtool, makes it eas-
ier and cheaper to look inside binary code, find com-
pliance issues, and reduce uncertainty when deploying
Free and Open Source Software.

• PFS – PFS archive file format (file system?) is used in
images of routers like Benq ESG 103, NDC NWH8018,
and probably many others.

• CNU fpu – CNU fpu is a pack/unpack utility for Cisco
IP Phones firmware files (7941, 7961, 7911-12 and oth-
ers based on CNU File Archive 3.0 format) Written by
kbdfck at virtualab.ru

• ardrone-tool – Aims to develop tools for A.R. Drone,
for example to create and flash custom linux kernels.

• UnYAFFS – Unyaffs is a program to extract files from
a yaffs file system image. Now it can only extract
images created by mkyaffs2image.

• squash-tools – SquashFS

• UbiFS – UbiFS

4. FIRMWARE FORMATS AND UNPACK-
ING EXPLAINED END-TO-END

In this section, we are going to look at the various archive
and filesystem image formats that can be encountered when
inspecting a packed firmware image. Depending on the firmware
complexity, you will find different levels of packing and dif-
ferent objects inside the archives. We classify the firmware
complexity according to this categories:

• Full-blown (full-OS/kernel + bootloader + libs + apps)
- This is typically a Linux or Windows firmware that
carries a complete file system. The driving applica-
tion will most likely run in User mode, though custom
kernel modules/drivers might be used.

• Integrated (apps + OS-as-a-lib) - This is firmware with
a small proprietary operating system or none at all -
the application will typically run with the same privi-
leges as the kernel.

• Partial updates (apps or libs or resources or support)
The firmware image will not contain all files that form
the complete system, but just an update for concerned
files.

In a firmware of the first category, you will typicallyl find
the following objects while you unpack the firmware:

• Bootloader (1st/2nd stage)

• Kernel

• File-system images

• User-land binaries

• Resources and support files

• Web-server/web-interface

Those objects can be grouped and packed in any of the
following archives or filesystem images (non-exhaustive list):

• Pure archives (CPIO/Ar/Tar/GZip/BZip/LZxxx/RPM)

• Pure filesystems (YAFFS, JFFS2, extNfs)

• Pure binary formats (SREC, iHEX, ELF)

• Hybrids (any breed of above)

In this following paragraph, we list unpacking tools for
each archive format:

Firmware Formats – Flavors.

• Ar - The ar tool is part of all Linux/FreeBSD distri-
butions. Use ”ar x <file>” to extract.

• YAFFS2 - There are tools in the yaffs2utils project to
extract this filesystem [?].

• JFFS2 - BAT uses a python wrapper around the jffs2dump
utility that is part of mtdtools.

• SquashFS - You can find unpacking tools at [?]

• CramFS - The firmware-mod-kit provides a tool called
”uncramfs” to extract files [?].

• ROMFS - Harald Welte has developed a tool called
”romfschk” that can extract files [?].

• UbiFS - Unfortunately no easy way to extract - see [?].

• xFAT - Mount as loopback device in Linux.

• NTFS - Mount as loopback device in Linux.

• ext2fs/ext3fs/ext4fs - Mount as loopback device in Linux

• iHEX - Convert to elf or binary by doing

objcopy -I ihex -O elf32-little <input> <output>
objcopy -I ihex-O binary <input> <output>

• SREC/S19 - Convert to elf or binary by doing

http://aluigi.altervista.org/mytoolz.htm
http://aluigi.altervista.org/mytoolz.htm
http://mark0.net/soft-trid-e.html
http://www.binary-analysis.com/
http://cba.si/pfs/
http://virtualab.ru/project/cnu-fpu
http://code.google.com/p/ardrone-tool/
https://github.com/ehlers/unyaffs
https://github.com/wereHamster/squashfs/tree/master/squashfs-tools
http://www.linux-mtd.infradead.org/faq/ubifs.html

objcopy -I srec -O elf32-little <input> <output>
objcopy -I srec-O binary <input> <output>

• PJL

• CPIO/Ar/Tar/GZip/BZip/LZxxx/RPM - Your favorite
Linux distribution should provide tools to handle these
archive formats.

5. EXERCISES AND SOLUTIONS

5.1 Reversing a Seagate HDD’s firmware file
format

In this excercise, we want to inspect a firmware for an
embedded system that does not have a known operating
system, nor a known firmware file format.

The first step is to obtain the firmware for the MooseDT
MX1A-3D4D-DMax22 from the Seagate website [4]. Then,
the obtained file needs to be unpacked until the actual firmware
file is found within.

Unpacking the firmware.
A quite stupid and boring mechanic task:

$ 7z x MooseDT-MX1A-3D4D-DMax22.iso -oimage
$ cd image
$ ls
[BOOT] DriveDetect.exe FreeDOS README.txt
$ cd \[BOOT\]/
$ ls
Bootable_1.44M.img
$ file Bootable_1.44M.img
Bootable_1.44M.img: DOS floppy 1440k,
x86 hard disk boot sector
$ mount -o loop Bootable_1.44M.img /mnt
$ mkdir disk
$ cp -r /mnt/* disk/
$ cd disk
$ ls
AUTOEXEC.BAT COMMAND.COM CONFIG.SYS HIMEM.EXE
KERNEL.SYS MX1A3D4D.ZIP RDISK.EXE TDSK.EXE
unzip.exe
$ mkdir archive
$ cd archive
$ unzip ../MX1A3D4D.ZIP
$ ls
6_8hmx1a.txs CHOICE.EXE FDAPM.COM fdl464.exe
flash.bat LIST.COM MX1A4d.lod README.TXT
seaenum.exe
$ file *
6_8hmx1a.txs: ASCII text, with CRLF line terminators
CHOICE.EXE: MS-DOS executable, MZ for MS-DOS
FDAPM.COM: FREE-DOS executable (COM), UPX compressed
fdl464.exe: MS-DOS executable, COFF for MS-DOS,

DJGPP go32 DOS extender, UPX compressed
flash.bat: DOS batch file, ASCII text, with CRLF

line terminators
LIST.COM: DOS executable (COM)
MX1A4d.lod: data
README.TXT: ASCII English text, with CRLF line

terminators
seaenum.exe: MS-DOS executable, COFF for MS-DOS,

DJGPP go32 DOS extender, UPX compressed
$ less flash.bat
set exe=fdl464.exe
set family=Moose
set model1=MAXTOR STM3750330AS
set model2=MAXTOR STM31000340AS
rem set model3=
rem set firmware=MX1A4d.lodd

set cfgfile=6_8hmx1a.txs
set options=-s -x -b -v -a 20
...
:SEAFLASH1
%exe% -m %family% %options% -h %cfgfile%
if errorlevel 2 goto WRONGMODEL1
if errorlevel 1 goto ERROR
goto DONE

Unpacking the firmware (Summary).

• We have unpacked the various wrappers, layers, archives
and filesystems of the firmware

– ISO → DOS IMG → ZIP → LOD

• The firmware is flashed on the HDD in a DOS envi-
ronment (FreeDOS)

• The update is run by executing a DOS batch file (flash.bat)

• There are

– a firmware flash tool (fdl464.exe)

– a configuration for that tool (6 8hmx1a.txs, en-
crypted or obfuscated/encoded)

– the actual firmware (MX1A4d.lod)

• The firmware file is not in a binary format known to
file and magic tools

→ Let’s have a look at the firmware file!

Inspecting the firmware file: hexdump.
$ hexdump -C MX1A4d.lod
00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 07 00 |................|
00000010 80 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000020 00 00 00 00 00 22 00 00 00 00 00 00 00 00 00 00 |....."..........|
00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 79 dc |..............y.|
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*
000001c0 0e 10 14 13 02 00 03 10 00 00 00 00 ff 10 41 00 |..............A.|
000001d0 00 20 00 00 ad 03 2d 00 13 11 15 16 11 13 07 20 |.-........ |
000001e0 00 00 00 00 40 20 00 00 00 00 00 00 00 00 00 00 |....@|
000001f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3f 1d |..............?.|
00000200 00 c0 49 00 00 00 2d 00 10 b5 27 48 40 68 41 42 |..I...-...’H@hAB|
00000210 26 48 00 f0 78 ee 10 bd 10 b5 04 1c ff f7 f4 ff |&H..x...........|
00000220 a0 42 03 d2 22 49 40 18 00 1b 10 bd 00 1b 10 bd |.B.."I@.........|
00000230 1d 48 40 68 40 42 70 47 10 b5 01 1c ff f7 f8 ff |.H@h@BpG........|
00000240 41 1a 0f 20 00 f0 5e ee 10 bd 7c b5 04 1c 20 1c |A.. ..^...|... .|
00000250 00 21 00 90 17 a0 01 91 0c c8 00 98 00 f0 f2 ed |.!..............|
00000260 01 da 00 f0 ed ff ff f7 cf ff 05 1c 28 1c ff f7 |............(...|
00000270 d3 ff a0 42 fa d3 7c bd 7c b5 04 1c 20 01 00 1b |...B..|.|... ...|
00000280 00 21 00 90 0b a0 01 91 0c c8 00 98 00 f0 da ed |.!..............|
...

→ The header did not look familiar to me :(

Inspecting the firmware file: strings.
$ strings MX1A4d.lod
...
XlatePhySec, h[Sec],[NumSecs]
XlatePhySec, p[Sec],[NumSecs]
XlatePlpChs, d[Cyl],[Hd],[Sec],[NumSecs]
XlatePlpChw, f[Cyl],[Hd],[Wdg],[NumWdgs]
XlateSfi, D[PhyCyl],[Hd],[Sfi],[NumSfis]
XlateWedge, t[Wdg],[NumWdgs]
ChannelTemperatureAdj, U[TweakTemperature],[Partition],[Hd],[Zone],[Opts]
WrChs, W[Sec],[NumSecs],,[PhyOpt],[Opts]
EnableDisableWrFault, u[Op]
WrLba, W[Lba],[NumLbas],,[Opts]
WrLongOrSystemChs, w[LongSec],[LongSecsOrSysSec],[SysSecs],[LongPhySecOpt],,[SysOpts]
RwPowerAsicReg, V[RegAddr],[RegValue],[WrOpt]
WrPeripheralReg, s[OpType],[RegAddr],[RegValue],[RegMask],[RegPagAddr]
WrPeripheralReg, t[OpType],[RegAddr],[RegValue],[RegMask],[RegPagAddr]
...

→ Strings are visible, meaning the program is neither en-
crypted nor compressed
→ We actually know these strings ... they are from the
diagnostic menu’s help!

Figure 1: Bin2bmp output for the firmware file

Inspecting the firmware file: binwalk.
$ binwalk MX1A4d.lod

DECIMAL HEX DESCRIPTION

499792 0x7A050 Zip archive data, compressed size: 48028,

uncompressed size: 785886, name: ""

$ dd if=MX1A4d.lod of=/tmp/bla.bin bs=1 skip=499792
$ unzip -l /tmp/bla.bin
Archive: /tmp/bla.bin

End-of-central-directory signature not found. Either this file is not
a zipfile, or it constitutes one disk of a multi-part archive. In the
latter case the central directory and zipfile comment will be found on
the last disk(s) of this archive.

unzip: cannot find zipfile directory in one of /tmp/bla.bin or
/tmp/bla.bin.zip, and cannot find /tmp/bla.bin.ZIP, period.

→ binwalk does not know this firmware, the contained archive
was apparently a false positive.

Inspecting the firmware file: Visualization.
To spot different sections in a binary file, a visual repre-

sentation can be helpful.

• HexWorkshop is a commercial program for Windows.
Most complete featureset (Hex editor, visualisation,
...) [3]

• Binvis is a project on google code for different binary
visualisation methods. Visualisation is ok, but the pro-
gram seems unfinished. [2].

• Bin2bmp is a very simple python script that computes
a bitmap from your binary [1].

You can see the output of bin2bmp in figure 5.1. The out-
put of the other tools is very similar to this plot. You can see
that there are some clearly separate sections in the file, for
example the shorter section in the beginning, separated by
a sequence of 0xFF-bytes (white) from the next huge block,
then another short separation and another block that shows
a more regular pattern at its end. Finally there are three
sections of different sizes in the end of the file, separated by
0x00-bytes (black).

Identifying the CPU instruction set.

• ARM: Look out for bytes in the form of 0xeX that
occur every 4th byte. The highest nibble of the in-
struction word in ARM is the condition field, whose

value 0xe means AL, execute this instruction uncondi-
tionally. The instruction space is populated sparsely,
so a disassembly will quickly end in an invalid instruc-
tion or lots of conditional instructions.

• Thumb: Look out for words with the pattern 0xF000F000
(bl/blx), 0xB500BD00 (”pop XXX, pc” followed by
”push XXX, lr”), 0x4770 (bx lr). The Thumb instruc-
tion set is much denser than the ARM instruction set,
so a disassembly will go for a long time before hitting
an invalid instruction.

In general, you should either know the processor already
from the reconnaissance phase, or you try to disassemble
parts of the file with a disassembler for the processor you
suspect the code was compiled for. In the visual represen-
tation, executable code should be mostly colorful (dense in-
struction sets) or display patterns (sparse instruction sets).

In our firmware, searching for ”e?” in the hexdump leads
us to:

00002420 04 e0 4e e2 00 40 2d e9 00 e0 4f e1 00 50 2d e9 |..N..@-...O..P-.|
00002430 db f0 21 e3 8f 5f 2d e9 18 10 9f e5 00 00 91 e5 |..!.._-.........|
00002440 30 ff 2f e1 8f 5f bd e8 d1 f0 21 e3 00 50 bd e8 |0./.._....!..P..|
00002450 0e f0 69 e1 00 80 fd e8 44 00 00 00 08 20 fe 01 |..i.....D.... ..|
00002460 94 00 00 00 00 30 a0 e1 0c ce 9f e5 01 00 a0 e1 |.....0..........|
00002470 10 40 2d e9 14 10 93 e5 be c3 dc e1 d0 10 d1 e1 |.@-.............|
00002480 08 e0 93 e5 02 20 8c e0 92 01 01 e0 20 c0 e0 e3 |.....|
00002490 81 22 61 e0 01 25 62 e0 42 29 a0 e1 82 0c 62 e1 |."a..%b.B)....b.|
000024a0 d8 cd 9f e5 82 11 81 e0 c6 20 51 e2 42 20 81 42 |......... Q.B .B|
000024b0 81 10 8c e0 f0 10 d1 e1 82 20 8c e0 04 c0 93 e5 |.........|
000024c0 f0 20 d2 e1 ac 01 2c e1 8e c2 2c e1 00 c0 83 e5 |.,...,.....|
000024d0 ac cd 9f e5 fc c9 dc e1 00 00 5c e3 10 40 bd a8 |..........\..@..|
000024e0 8e 1a 04 aa 10 80 bd e8 f0 41 2d e9 94 7d 9f e5 |.........A-..}..|
000024f0 80 40 a0 e1 07 00 54 e3 00 50 a0 e1 f7 6f 47 e2 |.@....T..P...oG.|

Let’s verify that this is indeed ARM code ...

$ dd if=MX1A4d.lod bs=1 skip=$((0x2420)) > /tmp/bla.bin
$ arm-none-eabi-objdump -b binary -m arm -D /tmp/bla.bin

/tmp/bla.bin: file format binary

Disassembly of section .data:

00000000 <.data>:
0: e24ee004 sub lr, lr, #4
4: e92d4000 stmfd sp!, lr
8: e14fe000 mrs lr, SPSR
c: e92d5000 push ip, lr
10: e321f0db msr CPSR_c, #219 ; 0xdb
14: e92d5f8f push r0, r1, r2, r3, r7, r8, r9, sl, fp, ip, lr
18: e59f1018 ldr r1, [pc, #24] ; 0x38
1c: e5910000 ldr r0, [r1]
20: e12fff30 blx r0
24: e8bd5f8f pop r0, r1, r2, r3, r7, r8, r9, sl, fp, ip, lr
28: e321f0d1 msr CPSR_c, #209 ; 0xd1
2c: e8bd5000 pop ip, lr
30: e169f00e msr SPSR_fc, lr
34: e8fd8000 ldm sp!, pc^
38: 00000044 andeq r0, r0, r4, asr #32
3c: 01fe2008 mvnseq r2, r8
40: 00000094 muleq r0, r4, r0
44: e1a03000 mov r3, r0
48: e59fce0c ldr ip, [pc, #3596] ; 0xe5c

→ Looks good!

Navigating the firmware.
In this paragraph, we look at several starting points for

a more in-depth analysis of the firmware contained in the
firmware file. The first method is to look for the stack setup
that has to happen for each ARM processor mode before a
system can actually call functions. This typically happens
in a sequence of ”msr CPSR c, XXX” instructions, which
switch the CPU mode, and assignments to the stack pointer.
The msr instruction exists only in ARM mode (not true for
Thumb2 any more ... :() Very close you should also find
some coprocessor initializations (mrc/mcr).

18a2c: e3a000d7 mov r0, #215 ; 0xd7
18a30: e121f000 msr CPSR_c, r0
18a34: e59fd0cc ldr sp, [pc, #204] ; 0x18b08

18a38: e3a000d3 mov r0, #211 ; 0xd3
18a3c: e121f000 msr CPSR_c, r0
18a40: e59fd0c4 ldr sp, [pc, #196] ; 0x18b0c
18a44: ee071f9a mcr 15, 0, r1, cr7, cr10, 4
18a48: e3a00806 mov r0, #393216 ; 0x60000
18a4c: ee3f1f11 mrc 15, 1, r1, cr15, cr1, 0
18a50: e1801001 orr r1, r0, r1
18a54: ee2f1f11 mcr 15, 1, r1, cr15, cr1, 0

A second method is to find the exception handler table
that contains the branches to the actual exception handlers.
This piece of firmware is important as it reveals informa-
tion about the address spaces from where code is run. In
the ARMv5 architecture, exceptions are handled by ARM
instructions in a table at address 0. Normally these have
the form ”ldr pc, XXX” and load the program counter with
a value stored relative to the current program counter (i.e.
in a table from address 0x20 on).
→ The exception vectors give an idea of which addresses

are used by the firmware.

arm-none-eabi-objdump -b binary -m arm -D MX1A4d.lod \
| grep -E ’ldr\s+pc’ | less

→We get the following output from arm-none-eabi-objdump

220e4: e59ff018 ldr pc, [pc, #24] ; 0x22104
220e8: e59ff018 ldr pc, [pc, #24] ; 0x22108
220ec: e59ff018 ldr pc, [pc, #24] ; 0x2210c
220f0: e59ff018 ldr pc, [pc, #24] ; 0x22110
220f4: e59ff018 ldr pc, [pc, #24] ; 0x22114
220f8: e1a00000 nop ; (mov r0, r0)
220fc: e59ff018 ldr pc, [pc, #24] ; 0x2211c
22100: e59ff018 ldr pc, [pc, #24] ; 0x22120
22104: 0000a824 andeq sl, r0, r4, lsr #16
22108: 0000a8a4 andeq sl, r0, r4, lsr #17
2210c: 0000a828 andeq sl, r0, r8, lsr #16
22110: 0000a7ec andeq sl, r0, ip, ror #15
22114: 0000a44c andeq sl, r0, ip, asr #8
22118: 00000000 andeq r0, r0, r0
2211c: 0000a6ac andeq sl, r0, ip, lsr #13
22120: 00000058 andeq r0, r0, r8, asr r0

5.2 Exploring the Firmware of Vicon IPCAM
960 series

Downloading and Unpacking.

• Getting 51110.2.1800.96.bin

• Unpacking 51110.2.1800.96.bin

– $VICON_JFFS2 is the unpacked JFFS2 image in-
side 51110.2.1800.96.bin

• Exploring 51110.2.1800.96.bin web-interface

– $VICON_JFFS2/etc/lighttpd/lighttpd.conf

– $VICON_JFFS2/mnt/www.nf

Reconnaissance.
Web-interface of 51110.2.1800.96.bin

• first, quick-explore the web-interface

• lighttpd-based

– sudo apt-get install lighttpd php5-cgi

– sudo lighty-enable-mod fastcgi

– sudo lighty-enable-mod fastcgi-php

– sudo service lighttpd force-reload

• then, we want to emulate the web-interface on a PC

– requires tweaking $VICON_JFFS2/etc/lighttpd/lighttpd.conf

– requires some minor development and fixes

Tweaking.
Tweaking $VICON JFFS2/etc/lighttpd/lighttpd.conf

• correct document-root

• replace /mnt/www.nf with $VICON_JFFS2/mnt/www.nf

• set port to 1337

• set errorlog and accesslog

• create plain basic-auth password file

• set auth.backend.plain.userfile

• replace all .fcgi files with a generic action.bottle.fcgi.py

• enable .py as FastCGI in $VICON_JFFS2/etc/lighttpd/lighttpd.conf

Developing.
Writing a stub action.bottle.fcgi.py

• sudo apt-get install python-pip python-setuptools

• sudo pip install bottle

Fuzz/pentest/debug.
Running and debugging web-interface of 51110.2.1800.96.bin

• iterative-fixing approach

• sudo lighttpd -D -f $VICON_JFFS2/etc/lighttpd/lighttpd.conf

• check lighttpd logs for startup errors

• check Firefox web-developer console for client/server
errors

– console shows we need to define INFO_SWVER in-
side info.js

– start from above by restarting lighttpd

6. CONCLUSIONS
We have presented on embedded devices and their under-

lying firmware from a security point of view. We surveyed
the related work and existing state of the art. Along the way,
we introduced most commong firmware formats, challenges
they bring to the game, as well as the tools and techniques
to unpack and analyze them. We also introduce on the topic
of firmware emulation for easier and faster vulnerability dis-
covery. We finish the presentation with hands-on workshop
exercises and solutions to help the audience to better under-
stand the presented material.

We conclude with the following:

• though firmware reverse engineering is becoming eas-
ier, there are still many challenges related to their un-
packing and full-blown analysis

• firmware images rely on security by obscurity, rather
than security in-depth

• many trivial and non-trivial security vulnerabilites can
be found just by using existing tools and frameworks

http://

7. REFERENCES
[1] Bin2bmp on sourceforge.

http://sourceforge.net/projects/bin2bmp/.

[2] Binvis on google project.
http://code.google.com/p/binvis/.

[3] Hexworkshop website.
http://www.hexworkshop.com/.

[4] Seagate moosedt mx1a-3d4d dmax22 firmware
download. http://www.seagate.com/staticfiles/
support/downloads/firmware/

MooseDT-MX1A-3D4D-DMax22.iso.

[5] Z. Basnight, J. Butts, J. Lopez Jr, and T. Dube.
Firmware modification attacks on programmable logic
controllers. International Journal of Critical
Infrastructure Protection, 2013.

[6] A. Blanco and M. Eissler. One firmware to monitor’em
all. 2012.

[7] H. Bojinov and E. Bursztein. Embedded management
interfaces emerging massive insecurity. In BlackHat
USA 2009(BlackHat USA 09), July 2009.

[8] H. Bojinov, E. Bursztein, and D. Boneh. Xcs cross
channel scripting and its impact on web applications.
In Computer and Communications Security (CCS),
November 2009.

[9] V. Chipounov and G. Candea. Reverse engineering of
binary device drivers with revnic. In Proceedings of the
5th European conference on Computer systems, pages
167–180. ACM, 2010.

[10] A. Costin. Hacking printers for fun and profit, 2010 –
2011.

[11] A. Costin. Postscript(um): You’ve been hacked, 2012.

[12] A. Cui, M. Costello, and S. J. Stolfo. When firmware
modifications attack: A case study of embedded
exploitation. In Proceedings of the Symposium on
Network and Distributed System Security (NDSS),
2013.

[13] A. Cui, Y. Song, P. V. Prabhu, and S. J. Stolfo. Brave
new world: Pervasive insecurity of embedded network
devices. In Recent Advances in Intrusion Detection,
pages 378–380. Springer, 2009.

[14] A. Cui and S. J. Stolfo. A quantitative analysis of the
insecurity of embedded network devices: results of a
wide-area scan. In Proceedings of the 26th Annual
Computer Security Applications Conference, pages
97–106. ACM, 2010.

[15] G. Delugré. Closer to metal: reverse-engineering the
broadcom netextreme’s firmware. Hack. lu, pages
27–29, 2010.

[16] L. Duflot, Y.-A. Perez, and B. Morin. Run-time
firmware integrity verification: what if you can’t trust
your network card, 2011.

[17] L. Duflot, Y.-A. Perez, and B. Morin. What if you

canâĂŹt trust your network card? In Recent Advances
in Intrusion Detection, pages 378–397. Springer, 2011.

[18] B. Gourdin, C. Soman, H. Bojinov, and E. Bursztein.
Towards secure embedded web interfaces. In Usenix
Security(Usenix Security), August 2011.

[19] Y. Li, J. M. McCune, and A. Perrig. Viper: verifying
the integrity of peripherals’ firmware. In Proceedings
of the 18th ACM conference on Computer and
Communications Security, pages 3–16. ACM, 2011.

[20] L. R. McMinn. External verification of scada system
embedded controller firmware. Technical report, DTIC
Document, 2012.

[21] C. Mulliner and B. Michéle. Read it twice! a
mass-storage-based tocttou attack. In Proceedings of
the 6th USENIX conference on Offensive Technologies,
pages 11–11. USENIX Association, 2012.

http://sourceforge.net/projects/bin2bmp/
http://code.google.com/p/binvis/
http://www.hexworkshop.com/
http://www.seagate.com/staticfiles/support/downloads/firmware/MooseDT-MX1A-3D4D-DMax22.iso
http://www.seagate.com/staticfiles/support/downloads/firmware/MooseDT-MX1A-3D4D-DMax22.iso
http://www.seagate.com/staticfiles/support/downloads/firmware/MooseDT-MX1A-3D4D-DMax22.iso

	Introduction
	Workshop Outline

	Little Bit of Theory
	Definition of firmware
	Device Classes
	Embedded devices hardware architectures

	Related Work and State of The Art
	Community Efforts and Tools

	Firmware Formats and Unpacking Explained End-to-End
	Exercises and Solutions
	Reversing a Seagate HDD's firmware file format
	Exploring the Firmware of Vicon IPCAM 960 series

	Conclusions
	References

