Truncating TLS Connections to Violate Beliefs in Web Applications

Ben Smyth & Alfredo Pironti

27 July – 1 Aug 2013

http://www.bensmyth.com
http://alfredo.pironti.eu/research/
Contribution

Attacks which truncate TLS connections to exploit logical web application flaws, enabling:

- Cast votes [on behalf of honest voters] in Helios elections
- Full control of Microsoft Live accounts
- Temporary access to Google accounts

We suspect our insights will lead to the discovery of further attacks.
TLS security

Security:

- Server (and client) authentication
- Confidentiality
- Integrity: messages received as sent
 - Single connection

Termination modes:

- Graceful closure
 - all messages received as sent
- Fatal closure (e.g., after a corrupt message)
 - a prefix of messages received as sent
Truncating TLS connections

“failure to properly close a connection no longer requires that a session not be resumed [...] to conform with widespread implementation practice” – TLS specification

Consider a wire transfer to “Charlie's Angels”:

POST /wire_transfer.php HTTP/1.1
Host: mybank.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 40
amount=1000&recipient=Charlie%27s_Angels

Suppose the request is fragmented by TLS
1) POST [...] recipient=Charlie
2) %27s_Angels

Attack: Drop the 2nd fragment to transfer money to Charlie.
Truncating TLS connections

“failure to properly close a connection no longer requires that a session not be resumed [...] to conform with widespread implementation practice” – TLS specification

Consider a wire transfer to “Charlie's Angels”:

POST /wire_transfer.php HTTP/1.1
Host: mybank.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 40
amount=1000&recipient=Charlie%27s_Angels

Suppose the request is fragmented by TLS
1)POST [...] recipient=Charlie
2)%27s_Angels

Attack: Drop the 2nd fragment to transfer money to Charlie.

Server ignores:
- termination mode
- Content-Length field

Fix:
- wire transfers upon graceful closure only
- check lengths

Attack works against Apache

Henceforth, we consider truncation attacks which drop messages, rather than fragments
Challenges for web applications

Web applications:
- **Browsers maintain multiple connections** (to load content in parallel, for example)

TLS provides:
- **No integrity guarantees across multiple connections**
 - hence, ordering issues between connections
Challenges for web applications

Web applications:
- **Browsers maintain multiple connections** (to load content in parallel, for example)

TLS provides:
- **No integrity guarantees across multiple connections**
 - hence, ordering issues between connections

Adversary model (standard):
- **Adversary has full control of the network**
 - i.e., read, delete, and inject messages
Helios electronic voting system

A cryptographically verifiable electronic voting system

Verifiability enables us to use untrusted DREs and check afterwards that the claimed result is valid
Helios: Ballot casting

1) REQUESTS https://vote.heliosvoting.org/helios/elections/<<id>>/cast_done
 Response: 200 - OK; HTML payload:
 ...
 <p>For your safety, we have logged you out.</p>
 <iframe border="0" src="/auth/logout" frameborder="0" height="0" width="0">
 </iframe>
 ...

2) REQUESTS https://vote.heliosvoting.org/auth/logout
 Response: 302 - Moved Temporarily
 Location[http://vote.heliosvoting.org/]

Notification of sign-out before DRE makes the request!

3) Truncate sign-out request
4) Use the DRE to cast a new vote

No TLS protection: sign-out request (2) and adversary (4) use different connections. However, attack is detected, because Helios is verifiable.

Fix: (1) & (2) atomic.

A video demonstrating this attack will be available online.
Microsoft Live accounts

Setting:
• *Shared computer* (e.g., public library, work place, ...)
 – Trusted computer, i.e., not tampered with
 – Adversary accesses computer *after* honest user has finished

Video Demo

(Live demos are too stressful!)

The video will be available online.
Microsoft Live accounts

Setting:

- **Shared computer** (e.g., public library, work place, ...)
 - Trusted computer, i.e., not tampered with
 - Adversary accesses computer after honest user has finished

Notification of sign-out *before* server receives request (client's belief ≠ server's belief)!

- Truncate sign-out
- Access account on another connection

Fixes:

- *Centralise authentication*; or
- *Chain sign-out requests*

The video will be available online.
Google accounts

Setting: *Shared computer* (e.g., public library, work place, ...)

 Response: 302 - Moved Temporarily,
 Location[http://www.google.com/accounts/Logout2?
 ilo=1&ils=mail,s.FR&ilc=0&continue=https://www.google.com/webhp?zx=1388193849]

2) GET http://www.google.com/accounts/Logout2?ilo=1&ils=mail,s.FR&ilc=0
 &continue=https://www.google.com/webhp?zx=1388193849
 Response: 200 - OK; HTML payload:
 <body onload="doRedirect()">
 <script type="text/javascript">
 function doRedirect() {
 location.replace("http://www.google.fr/accounts/Logout2?ilo=1&ils=s.FR&
 ilc=1&continue=https://www.google.com/webhp?zx=1076119961");
 }
 </script>
 <img width="0" height="0" alt="Sign Out"
 src="https://mail.google.com/mail?logout=img&zx=-2531125006460954395">
 </body>

3) GET https://mail.google.com/mail?logout=img&zx=-2531125006460954395
 Response: 200 - OK; a one pixel gif.

4)...
Google accounts: Attack

Notification of sign-out before server receives request!
- Truncate Gmail sign-out with TCP reset
 - (TCP drop hangs the browser)
- Fatal connection closure ignored
- Access Gmail on another connection
 - House-keeping terminates (~5mins)

Fixes:
- Handle fatal connection closure; or
- Centralise auth. or chain sign-outs

A video demonstrating this attack will be available online.
Summary

• We exploit flaws in sign-out procedures to prevent termination of sessions, whilst notifying the user of success.
 – Attacks against Helios, Google & Microsoft

• Consequently, even *trusted* shared computers offer no security!

• Fixes proposed, therefore trusted shared computers offer security.

• All vulnerabilities have been disclosed; but none have been fixed.

• Further attacks? (Vendors, let's discuss your products; Hackers, let's discuss their products.)
Questions?

Tariff

- Industry: beer*
- Academics: citations
- Journalists: compliments

* Exceptions might be made for future clients/employers...

http://www.bensmyth.com
http://alfredo.pironti.eu/research/