
Hot Knives Through Butter

Hot Knives through Butter:
Evading File-based Sandboxes

Abhishek Singh, Zheng Bu

EXECUTIVE SUMMARY
Under a tsunami of cyber attacks, file-based sandboxes have become a popular tool for quickly

capturing the behavior of file. These file-based sandboxes provide isolated, virtual environments

that monitor the actual behavior of the files.

Unfortunately, file-based sandboxes are proving equally oblivious to the latest malware.

Attackers are using a variety of techniques to slip under the radar of many sandboxes, leaving

systems just a vulnerable as they were before.

We have characterized the methods for evading file-based sandboxes into the following

categories:

 Human interaction — mouse clicks and dialog boxes

 Configuration-specific— sleep calls, time triggers, execution path, and process hiding

 Environment-specific— version, embedded iframes, and DLL loaders

 Classic VMware-specific— system-service lists, unique files, and the VMX port

This paper explains these techniques in detail to better prepare security professionals to analyze

these evolving threats.

INTRODUCTION
Modern malware is dynamic and polymorphic, exploiting unknown vulnerabilities to attack

multiple vectors in multiple stages. But attackers have evolved, too. The key for malware

authors is determining whether the code is running in a virtual environment or on a real target

machine. To that end, malware authors have a developed a variety of techniques.

HUMAN INTERACTION
File-based sandboxes emulate physical systems, but without a human user. Attackers use this

key difference to their advantage, creating malware that lies dormant until it detects signs of a

human user: a mouse click, intelligent responses to dialog boxes, and the like. This section

describes these checks in more detail.

Hot Knives Through Butter

Mouse clicks
Trojan UpClicker, uses mouse clicks to detect human activity1. To fool file based sandboxe,

UpClicker establishes communication with malicious CnC servers only after detecting a click of

the left mouse button. Figure 1 shows a snippet of the UpClicker code,which calls the function

SetWinodwsHookExA using 0Eh as a parameter value. This setting installs the Windows hook

procedure WH_MOUSE_LL, used to monitor low-level mouse inputs2.

Figure 1: Malware code showing hook to mouse (pointer fn highlighted)

The pointer fn highlighted in Figure 1 refers to the hook procedure circled in Figure 2.

Figure 2: Code pointed by pointer fn, highlighting the action for a mouse click up.

This code watches for a left-click on the mouse —more specifcally, an up-click, which is where

the Trojan gets its name. When an up-click occurs, the code calls function

UnhookWindowsHookEx () to stop monitoring the mouse and then calls the function

sub_401170 () to execute the malicious code.

1
 FireEye. “Don’t Click the Left Mouse Button: Introducing Trojan UpClicker.” December 2012.

2
 Microsoft. “SetWindowsHookEx function.” June 2013.

Hot Knives Through Butter

Another APT-related malware file called BaneChant, which surfaced six months after UpClicker,

further refined the concept3. It activates only after three mouse clicks.

Dialog boxes
Another way of detecting a live target is displaying a dialog box that requires the user to

respond. . Malware have seen making use of MessageBox() and MessageBoxEx() API to create

dialog boxes in EXE and DLL. The malware activates only after the user clicks

In the same way, malware can use JavaScript to open a dialog box within Adobe Acrobat PDF

files using the app.alert() method documented in the JavaScript for Acrobat API. Figure 3 shows

code that uses app.alert() API to open a dialog box. When the user clicks OK, the code uses the

app.launchURL() method to open a malicious URL.

Figure 3: Javascript code opening a dialog box. (References to specific websites blurred)

CONFIGURATION
As much as sandboxes try to mimic the physical computers they are protecting, these virtual

environments are configured to a defined set of parameters. Cyber attackers, aware of these

configurations, have learned to sidestep them.

Sleep calls
With a multitude of file samples to examine, file-based sandboxes typically monitor files for a

few minutes and, in the absence of any suspicious behavior, move on to the next file.

That provides malware makers a simple evasion strategy: wait out the sandbox. By adding

extended sleep calls, the malware refrains from any suspicious behavior throughout the

monitoring process.

Trojan Nap, takes this approach.Figure 4 shows a a snippet of code from Trojan Nap. When

executed, the malware sends an HTTP request for the file “newbos2.exe” from the

“wowrizep.ru” domain, which is known to be malicious.

3
 FireEye. “Trojan.APT.BaneChant: In-Memory Trojan That Observes for Multiple Mouse Clicks.” April 2013.

Hot Knives Through Butter

Figure 4: Malicious domain and the downloadable executable

Then as shown in Figure 5, the code calls the SleepEx() method with a timeout paremeter value

of 0x0927C0 (600,000 milliseconds, or 10 minutes). Also, the “alterable” field attribute is set to

false to ensure that the programming function does not return until that 10 minutes has elapsed

—longer than most sandboxes execute a file sample.

Figure 5: Nap Trojan code calling the SleepEx method

The code also calls the undocumented API method NtDelayExecution() as an additional measure

to delay any suspicious actions.

Malicious PDF files can use a similar method in the JavaScript for Acrobat API called

app.setTimeout(). Figure 6 shows code from a malicious PDF file that uses this method to wait

100,000,000 milliseconds, or about 16 minutes, before calling a malicious function named

mystr().

Hot Knives Through Butter

Figure 6: JavaScript for Acrobat code waiting for 1,000,000 milliseconds using the app.setTimeout() method before
calling the malicious mystr() function.

Time triggers
Sometimes, sleep API calls are used with time triggers to execute malware only after a given

date and time; sandboxes monitoring the file before that time detect nothing unusual.

Case in point: Trojan Hastati uses the GetLocalTime() API method, which imports a pointer to

Windows’ SystemTime structure to determine the current local date and time.

As shown in Figure 7, the SystemTime structure returned the following values (in memory, the

hexadecimal pairs are stored in reverse order):

 07 DD (wYear) — 2013

 00 06 (wMonth) — corresponds to June

 00 01 (wDayofWeek) — corresponds to Monday

 00 11 (wDay) — 17

Figure 7: A snippet of Hastati code, highlighting a call to the GetLocalTime() method to determine the current time.

Hot Knives Through Butter

In this case, the malicious code executes because the current time (Monday, June 17, 2013) has

passed the detonation trigger (March 20, 2013 at 2:00 P.M.). But if the current time has not

reached the detonation trigger, the malware calls a sleep function with the value 0EA60 (60,000

miliseconds), as shown in Figure 8. After that wait, the code checks the time again. If the current

time still has not reached the detonation trigger, it calls the sleep function again, and so on,

repeating the loop until it is time to detonate.

Figure 8: Malware making use of Sleep call if trigger condition is not met

Execution path
Another giveaway that code is executing in a virtual machine is its location within the file

structure. Many sandboxes copy file samples to the root directory and execute them there. On

real-world computers, most files are opened from the user’s download folder, Windows’

“Temporary Internet Files” folder or a user-selected location — rarely the root directory.

At least two methods in the Windows API allow code to determine whether it is running in the

root directory: mmioOpen() and GetCommadLineA().

mmioOpen()

In normal use, the mmioOpen() function is used for multimedia files for the following:

 Opening files for unbuffered or buffered I/O

 Creating files

 Deleting files

 Indicating whether files exist

Files opened with the mmioOpen() function use to the MMIINFO structure to convey the status

of files opened. The adwInfo member of this structure contains the state information

maintained by the I/O procedure.

Hot Knives Through Butter

Figure 9 shows an example of malware code that uses this feature to determine whether it is in

the root folder.

Figure 9: Malware making use of mmioOpen function for checking command path

The code works in the following sequence:

1. The file attempts to open itself using the mmiOpenA function with “..” (up one level of the

folder directory) as the szFilename parameter.

2. If the file is the root directory, going up one level is not possible, creating an

“ACCESS_DENIED” error condition. Windows populates the MMIINFO structure with the

error condition (condition 5).

3. The malware file checks the value returned by the mmioOpenA with the instruction “CMP

DWORD PTR SS:[LOCAL.5] , 0 ”.

4. If the return value of the function mmiOpenA is not NULL (that is, if an error has occurred),

the wErrorRet member of the MMIOINFO structure contains the error values.

5. The code calls the Windows KERNEL32.GetLastError function to get the error value. If the

error value is 5 (ACCESS_DENIED)—a sign that the code is running from the root directory

and, therefore, in a virtual machine —the malware remains dormant

GetCommadLineA()

Another method for checking whether malware is running in the root directory is using the

GetCommadLineA() API method. This method retrieves the command-line string for the current

process. If the malware is running in the root directory — and presumably, a sandbox — only

one backslash character (“/”) appears in the string. Example: “C:/filename.exe.”

Figure 10 shows code that uses this API method. If only one backslash appears in the command-

line string, the malware terminates to avoid detection.

Hot Knives Through Butter

Figure 10: Malware making use of GetCommadLineA() to get the path

Hiding processes
File-based sandboxes spot suspicious malware activity by monitoring all of the processes

occurring in the operating system. Many are configured to do this using a Microsoft-provided

kernel routine called PsSetCreateProcessNotifyRoutine. This routine allows hardware drivers to

create or modify lists of software routines to be called when a Windows process is created or

terminated. File-based sandboxes can use this information to track system activity and protect

critical resources.

Windows maintains an array of internal callback objects with the starting address of

PsSetCreateProcessNotifyRoutine. Up to eight callbacks may be registered on Windows XP SP2.

Unfortunately for non-Microsoft developers, the internal pointer of the initial routine is not

exported, and no publicly disclosed method allows third-party applications to easily register for

these notifications.

Pushdo accesses PsCreateProcessNotifyRoutine to remove all registered callbacks — including

those of any security software. Once it has removed the callbacks, it can create and terminate

processes without raising any red flags.

For malware authors, the key is finding the internal pointer of PsSetCreateProcessNotifyRoutine.

Figure 11 shows code extracted from the Windows kernel image (ntoskrnl.exe) using

disassembly tool IDA. The code reveals that the pointer offset is contained in x86 assembly of

this routine.

Hot Knives Through Butter

Figure 11: PsSetCreateProcessNotifyRoutine for ntoskrnl.exe

With this information, Pushdo easily cancels process notifications to security software. The

Pushdo code shown in Figure 12 works as follows:

1. The malware determines the Windows build number using the NtBuildNumber function. For

Windows XP, the build numbers are 2600 (32-bit) and 3790 (64-bit).

2. The malware gets the runtime address for PsSetCreateProcessNotifyRoutine. The

jmp_PsSetCreateProcessNotifyRoutine assembly code fragment, shown in Figure 13,

contains a jmp to the external PsSetCreateProcessNotifyRoutine routine. The jmp op-code is

2 bytes long. Therefore, runtime address of PsSetCreateProcessNotifyRoutine (in memory) is

jmp__PsSetCreateProcessNotifyRoutine + 2.

3. The malware linearly scans the assembly code for 0xBF followed 5 bytes later by 0x57. The

value immediately after the 0xBF is the internal PspCreateProcessNotifyRoutine address.

4. From there, the malware simply walks the PsCreateProcessNotifyRoutine pointer and NULLs

out all callback objects. For Windows XP, the operation code 0xBF is “mov edi,” and 0x57 is

“push edi.”

Hot Knives Through Butter

Figure 12: Retrieval of the PsCreateProcessNotifyRoutine

Figure 13: jmp__PsSetCreateProcessNotifyRoutine

ENVIRONMENT
In theory, code executed in a virtual environment should run the same way it does on a physical

computer. In reality, most sandboxes have telltale features, enabling attackers to include

sandbox-checking features into their malware. This section explains some of those checks in

detail.

Version checks
Many malicious files are set to execute only in certain version of applications or operating

systems. These self-imposed limitations are not always attempts to evade sandboxes

specifically; many seek to exploit a flaw present only in a specific version of an application, for

example.

But the effect is often the same. All sandboxes have predefined configurations. If a given

configuration lacks a particular combination of operating system and applications, some

malware will not execute, evading detection.

Hot Knives Through Butter

Flash

Figure 14 shows ActionScript code for malicious Flash downloader. The version number of the

Flash player installed on the system is an input (variable v) to the getUrl() function. The code

makes a GET request to a high-risk domain to download a malicious file, f.swf, to exploit a flaw

in a specific version of Flash.

Figure 14: Malicious Flash downloader with version check

If the sandbox does not have the targeted version installed, the malicious flash file is not

downloaded, and the sandbox detects no malicious activity.

PDF

In a similar manner, the JavaScript code shown in Figure 15 uses the API method

app.viewerVersion() to determine the version of the Acrobat Reader installed. The code

executes only on systems that have the targeted version — in this case, version 6.0 or later —

bypassing sandboxes that do not have a matching version in place.

Figure 15: Malicious Acrobat JavaScripts code with a version check

Embedded iframes in GIF and Flash files
 A common approach is hiding iframe HTML elements in otherwise non-executable file, such as

GIF picture or Acrobat Flash. By themselves, these files are not executed and therefore exhibit

no suspicious behavior in the sandbox.

Hot Knives Through Butter

GIF

GIF graphic files consist of the following elements:

 Header

 Image data

 Optional metadata

 Footer (also called the trailer)

The footer is a single-field block indicating the end of the GIF data stream. It normally has a fixed

value 0x3B. In many malicious GIF files, an iframe tag is added after the footer (see Figure 16).

Figure 16: Malicious iframe Tag in a GIF

Flash

Similar to GIF files, Flash file can also hide iframe links to malicious websites. Figure 17 shows

Flash file code with a malicious iframe element.

Flash is not an HTML rendering engine, so the hidden iframe does nothing when the Flash file is

opened in the sandbox. So again, the sandbox detects no malicious behavior.

Hot Knives Through Butter

Figure 17: Malicious iframe tag in a Flash file

DLL loader checks
Usually, running a dynamic-link library (DLL) file involves using run32dll.exe or loading the DLL in

a process that executes it. Some malware uses a different process, requiring specific loaders to

execute the DLL. If the required loader is not present, the DLL does not execute and remains

undetected by the sandbox.

Figure 18 shows malware code that computes the hash of the loader to determine whether it is

the required loader.

Figure 18: Malware computing the hash of the loader

CLASSIC VMWARE EVASION TECHNIQUES
The sandbox-evasion techniques outlined so far in this paper have been observered present in

of advanced malware and APTs. But based on our telemetry data, several classic evasion

techniques continue to prove useful to malware writers4. VMware, a popular virtual-machine

tool, is particularly easy to detect because of its distinctive configuration.

4
 Abhishek Singh. “Techniques for Evading Automated Analysis.”, Virus Bulletin February 2013.

Hot Knives Through Butter

System-service lists
To detect the presence of a VMware-created sandbox, some malware checks for services unique

to VMware, including vmicheatbeat, vmci, vmdebug, vmmouse, vmscis, VMTools, vmware,

vmx86, vmhgfs, and vmxnet.

The code shown in Figure 19 uses the function RegOpenKeyExA() to check services used by

VMware virtual machines. If the function RegOpenKeyExA() succeeds, the return value is a

nonzero error code.

Figure 19: Malware using the function RegOpenKeyExA() to check for VMware tools

Unique files
Another giveaway that the malware code is running in a VMware-created sandbox is the

presence of VMware-specific files. Figure 19 shows malware code that uses the

GetFileAttributeA() function to check for a VMware mouse driver.

Figure 20: Malware using GetFileAttributeA() to determine the presence of VMware mouse driver

The GetFileAttributeA() function retrieves the system attributes for the specified file or

directory. After the function call, the code cmp eax, 0FFFFFFFh checks whether the value

returned is –1. That value means that the function is unable to retrieve the attributes of the file

vmmouse.sys — and therefore, that the code is not executing in a VMware environment.

Hot Knives Through Butter

VMX communication port
Another obvious indicator is the VMX port that VMware uses to communicate with its virtual

machines. If the port exists, the malware remains dormant to avoid detection. Figure 21 shows

malware code that checks for the port.

Figure 21: Malware using IO ports to detect VMware

The code works as follows:

1. The instruction move eax, ‘VMXh’ loads the value 0x564D5868 into the EAX register.

2. EBX is loaded with any value.

3. ECX is set to 0Ah, which retrieves the VMware version.

4. Register DX is set to the port VX, which enables interfacing with the VMware.

5. The code calls the instruction in eax, dx to read from the port into EAX. If the code is

running in a VMware environment, the call succeeds. The malware refrains from executing

to avoid detection.

Hot Knives Through Butter

COMPARING PUBLICLY AVAILABLE SANDBOXES
Table 1 compares three popular online malware-analysis services that use file-based sandboxes.

To varying degrees of success, the services caught some malware that used sandbox-evading

techniques. But none of them recognized all of the techniques — all three missed malware that

employed version checks and embedded iframes.

Table 1: Sandbox comparison

 CONCLUSION-
In today’s threat landscape, file-based sandboxes are no silver bullet against sophisticated

attackers. Malware can easily detect whether it is running in an off-the-shelf virtual

environment and constrains its behavior accordingly. File based sandboxes provide activity

report and not the classification of malware. They can definitely be used a good research tool,

however they will require lot more to go as a malware detection engine. Detecting these threats

requires a more comprehensive approach. Advanced attacks are stateful; understanding the

context of the attack via multi-flow analysis can help to fill in the gap. VM environments must be

more sophisticated than mere sandboxes. Advanced correlation between set of events is

required to capture the behavior of the advanced threat.

 Execution
Path

Human
Interaction

Embedded
Iframe in

Flash /JPG
files

Sleep
Calls

Version
Checks

Processes
Specific to
VMWare

Checking for
Communication

Ports

Sandbox 1 No No No Yes No Yes Yes

SandBox2

Yes No No Yes No Yes Yes

Sandbox 3 Got Stuck Yes No Yes No Yes Yes

