Funderbolt
Adventures in Thunderbolt DMA Attacks

Russ Sevinsky
Background

- Thunderbolt
 - Apple and Intel collaboration
 - Expansion port
 - PCI Express (PCIe) and DisplayPort using the same port
- DMA
 - Direct Memory Access
 - Processor becomes bottleneck for high-speed transfers
 - Lets devices read and write directly to RAM
Why external buses matter for security experts?

- Digital Forensics
 - Getting data to solve a mystery
- User protection
 - So RAM contents can be safe
- Sneaky DRM
 - Bus encryption
Background

• Current DMA research
 • I/O Attacks in Intel-PC Architectures and Countermeasures\(^1\)
 • Understanding DMA Malware\(^2\)

• Current Thunderbolt attacks?
 • Daisy chaining Thunderbolt and Firewire\(^3\)
 • Inception\(^4\)
 • De Mysteriis Dom Jobsivs (Mac EFI Rootkits)\(^5\)
Background

• Mitigations?
 • Epoxy (really?)
 • Input/Output Memory Management Units (IOMMUs)
 • Maps physical memory addresses to logical addresses
 • Think “VM for DMA”
 • Prevents devices from requesting physical addresses directly
 • Currently not implemented on Apple hardware
 • Secure Configurations6
 • Prevents attacks when computer is locked
 • Boot attacks and social engineering still possible
I can has bypass
A Trip Down Memory Lanes
A Trip Down Memory Lanes

- PCI Express (PCIe)
 - High-speed serial bus
 - Data sent via “lanes”
 - A lane is made up of differential wire pairs
 - One + and one – wire
 - Helps to reduce noise
 - One lane (x1) is made up of two differential pairs
 - Transmit pair (PET)
 - Receive pair (PER)
A Trip Down Memory Lanes

- PCIe (cont)
 - Four lanes (x4) has eight wires, etc...
 - All lanes CAN use another differential pair for clock
 - REFCLK
 - Not required (could use a XTAL)
 - So per spec, x1 only needs 4 wires for data communication!
 - PET and PER
 - Typical x1 setups use a REFCLK
A Trip Down Memory Lanes

• PCIe (cont)
 • PCIe device types
 • Endpoints (Legacy and Native)
 • Switch/Bridge
 • Root Complex
 • Legacy endpoints
 • More permissive than Native endpoints for backwards compatibility
 • Supports “Locked” transactions, IO transactions and 32-bit addressing only
A Trip Down Memory Lanes

• PCIe (cont)
 • Data sent via “packets” called Transaction Layer Packet (TLP)
 • Point-to-point topology
 • No arbitration
 • Devices do not need to be “granted” access to the bus
 • Packets routed by address
 • Peer-to-peer transfers are possible
 • Packets going to RAM go through “Root Complex”
A Trip Down Memory Lanes
A Trip Down Memory Lanes

• PCIe (cont)
 • PCIe devices are discovered via “enumeration”
 • Starts at Bus 0 (root complex), Device 0, Function 0
 • Checks if it’s a bridge or an endpoint
 • Traverses tree of devices
 • Assigns ids and addresses
 • Hot plug device?
 • Enumerate just that port
 • Device info stored in expansion ROMs and read into configuration space
How My Adventures Went

• Improvised Tools for Analysis
 • Multimeter
 • Soldering station
 • Heat gun
 • Desoldering tools
 • Ethernet cable
 • Epoxy (really?)
 • Logic Analyzer
 • Image Editor
How My Adventures Went

• Reversing Thunderbolt – The Process
 • Research a product
 • Take it apart
 • Locate important ICs
 • Trace connections between ICs
 • Look for datasheets
 • Sniff buses
 • Develop a map
How My Adventures Went

• Looking at consumer products
 • Buffalo MiniStation Thunderbolt/USB3 Hard Drive
 • 500GB and 1TB model
 • USB3 and Thunderbolt
 • Decent form factor for reversing
 • Apple Thunderbolt to Gigabit Ethernet Adapter
 • Tiny
 • Small
 • Little
How My Adventures Went

- Buffalo MiniStation Thunderbolt/USB3 Hard Drive
 - Excellent Anandtech review
 - Tear-down instructions
 - Identified ICs for us!

![Buffalo MiniStation Thunderbolt/USB3 Hard Drive](image)
How My Adventures Went

• Main ICs
 • MLDU03
 • Medial Logic USB3.0 to SATA 6G Bridge
 • ASM1061
 • ASMedia PCIe to SATA Controller
 • DSL2210 (Peak Ridge)
 • Intel Thunderbolt Controller
 • Supports PCIe x1
 • LPC1114
 • NXP ARM Cortex Mo
How My Adventures Went

• ASMedia ASM1061
 • PCIe/SATA Controller
 • Datasheets?
 • ROMs/Flashes?
How My Adventures Went

ASM1061 SATA6G

Reserve internal 1.2V voltage

1.2V delay from 3.3V 90% > 0ms
How My Adventures Went
How My Adventures Went

PCIe RST#
PCIe REFCLK+
PCIe REFCLK-
PCIe TX-
PCIe TX+
PCIe RX-
PCIe RX+
How My Adventures Went

- Patch PCIe Controllers’ SPI ROM to send DMA read requests?
How My Adventures Went

- NXP LPC1114
 - ARM Cortex Mo
 - Used for... ??
 - No ROMs or Flashes
 - TONS of info online
 - Connects into DSL2201
 - How do I know?
How My Adventures Went

• Intel DSL2210
 • Thunderbolt Controller
 • No Datasheets
 • Promo info only
 • ROMs/Flashes?
How My Adventures Went

• Continuity testing SPI ROM...
 • Beep! It’s Thunderbolt!
 • hasROM = TRUE;
How My Adventures Went
How My Adventures Went
How My Adventures Went
How My Adventures Went

Thunderbolt Connector
How My Adventures Went

- Thunderbolt Connector
 - 1 pair of HighSpeed lanes
 - TX and RX
 - All others pulled to ground
 - “LowSpeed” lines go to ARM?

<table>
<thead>
<tr>
<th>Pin</th>
<th>Pin out</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>HPD</td>
<td>Hot plug detect</td>
</tr>
<tr>
<td>3</td>
<td>HS0TX(P)</td>
<td>HighSpeed transmit 0 (positive)</td>
</tr>
<tr>
<td>4</td>
<td>HS0RX(P)</td>
<td>HighSpeed receive 0 (positive)</td>
</tr>
<tr>
<td>5</td>
<td>HS0TX(N)</td>
<td>HighSpeed transmit 0 (negative)</td>
</tr>
<tr>
<td>6</td>
<td>HS0RX(N)</td>
<td>HighSpeed receive 0 (negative)</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>LSR2P TX</td>
<td>LowSpeed transmit</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>Ground (reserved)</td>
</tr>
<tr>
<td>11</td>
<td>LSP2R RX</td>
<td>LowSpeed receive</td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
<td>Ground (reserved)</td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>15</td>
<td>HS1TX(P)</td>
<td>HighSpeed transmit 1 (positive)</td>
</tr>
<tr>
<td>16</td>
<td>HS1RX(P)</td>
<td>HighSpeed receive 1 (positive)</td>
</tr>
<tr>
<td>17</td>
<td>HS1TX(N)</td>
<td>HighSpeed transmit 1 (negative)</td>
</tr>
<tr>
<td>18</td>
<td>HS1RX(N)</td>
<td>HighSpeed receive 1 (negative)</td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>20</td>
<td>DPPWR</td>
<td>Power</td>
</tr>
</tbody>
</table>
How My Adventures Went

- ARM UART Traffic
 - String “EM “
How My Adventures Went

- Thunderbolt Firmware Update
 - Display contents of Application Package
 - Decompress “Payload” file

```
$ ls
Bom  postinstall
PackageInfo postinstall_actions
Payload  preinstall
Scripts  preinstall_actions
ThunderboltFirmwareUpdate.pkg

$ file Payload
Payload: gzip compressed data, from Unix

$ mv Payload Payload.tgz

$ tar zxf Payload.tgz
```
How My Adventures Went

• Two Firmwares for Thunderbolt?
 • One is probably ARM
 • Let’s look for string “EM “

```
$ ls
HPM-em-00020007.bin ThorUtil.efi
MBP-22-01.bin
```
How My Adventures Went

Jackpot!
How My Adventures Went

• Round 2...
 • String \"\x27\x0a\x00\x00\"
How My Adventures Went

Successaroo!
How My Adventures Went
How My Adventures Went

```cpp

379     // hot plug bridge, but use legacy if avail
380     uint8_t line = device->configRead8(kIOPCIConfigInterruptLine);
381     if (tunnelLink)
382         {
383             tunnelLink = (0x15138006 != vendorProd)
384                 && (0x151a8006 != vendorProd)
385                 && (0x151b8006 != vendorProd)
386                 && (0x15498006 != vendorProd)
387                 && ((0x15478086 != vendorProd) || ((revIDClass & 0xff) > 1));
388             DLOG("tunnel bridge 0x%08x, %d, msi %d\n",
389                     vendorProd, (revIDClass & 0xff), tunnelLink);
390         }
391     if (tunnelLink || (line == 0) || (line == 0xFF))
392         {
393             // no legacy ints, need one MSI
394             numVectors = 1;
395         }
```
How My Adventures Went
How My Adventures Went
How My Adventures Went
function InitJTAG {
 eax = InitGPIO();
 if (eax != 0x0) {
 sub_bb8b();
 *(int8_t *)0x16090 = 0x1;
 sub_bbea(0x38);
 sub_bd0f(0x100000);
 sub_bbea(0x3a);
 eax = sub_bd0f(0x0);
 if (eax == 0x151a8086) {
 debug_output(0x1, "InitJTAG: Found EagleRidge (0x151A8086)\n");
 eax = 0x10002c;
 } else if (eax != 0x15138086) {
 debug_output(0x1, "InitJTAG: Found unknown device (0x%08x)\n", eax);
 esi = 0x8000000e;
 } else {
 debug_output(0x1, "InitJTAG: Found LightRidge (0x15138086)\n");
 eax = 0x100028;
 }
 }
 *0x15fe8 = eax;
 esi = 0x0;
}
else {
 eax = debug_output(0x7, "InitJTAG: Couldn't initialize GPIOs (0x%x)\n", esi);
 if (**0x14a84 <= 0x6) {
 *(int16_t *)(**0x14a88 + eax * 0x2) = 0x100;
 }
 *(**0x14a88 + 0x10) = esi;
}
return esi;
How My Adventures Went

• Header rows
 • CN₃ = LED Voltages
 • CN₉ = Power rails
 • CN₄ = JTAG!
How My Adventures Went

• JTAG Reversing
 • Trail and error
 • They make devices for this
 • Pin 1 => TCK
 • Pin 2 => TDI
 • Pin 3 => TMS
 • Pin 4 => TDO

jtag> cable ft2232 vid=0x0403 pid=0x8a98
Connected to libftdi driver.
jtag> idcode
Reading 0 bytes of idcode
Read 00000000(0x00) 00000000(0x00) 00000000(0x00) 00000000(0x00)
jtag> detect
IR length: 6
Chain length: 1
Device Id: not supported (bit 0 was not a 1)
jtag>
How My Adventures Went

JTAG
How My Adventures Went

• JTAG Reversing
 • ARM Cortex Mo uses SWD, not JTAG...
 • Obfuscated with a start sequence
 • We saw this code earlier...

```
jtag> discovery
Detecting IR length ... 6
Detecting DR length for IR 111111 ... 1
Detecting DR length for IR 000000 ... 25
Detecting DR length for IR 000001 ... 25
Detecting DR length for IR 000010 ... warning: TDO seems to be stuck at 1
-1
Detecting DR length for IR 000011 ... warning: TDO seems to be stuck at 1
-1
```
How My Adventures Went

• Thunderbolt Device ROM
 • Vendor Name
 • Device Name
 • Vendor ID
 • Device ID
 • Device Revision
 • UID

HD-PATU3:

Vendor Name: BUFFALO INC.
Device Name: HD-PATU3
Vendor ID: 0x29
Device ID: 0x1
Device Revision: 0x1
UID:
Route String: 3
Firmware Version: 5.1
Port:
 Status: Device connected
 Link Status: 0x2
 Port Micro Firmware Version: 0.2.5
 Cable Firmware Version: 0.1.24
How My Adventures Went

- Thunderbolt Device ROM
 - Vendor Name
 - Device Name
 - Vendor ID
 - Device ID
 - Device Revision
 - UID

HD-PATU3:

- Vendor Name: BUFFALO INC.
- Device Name: HD-PATU3
- Vendor ID: 0x29
- Device ID: 0x1
- Device Revision: 0x1
- UID: 0x002900010005A0E0
- Route String: 3
- Firmware Version: 5.1
- Port:
 - Status: Device connected
 - Link Status: 0x2
 - Port Micro Firmware Version: 0.2.5
 - Cable Firmware Version: 0.1.24
How My Adventures Went

- Thunderbolt Device ROM
 - Vendor Name
 - Device Name
 - Vendor ID
 - Device ID
 - Device Revision
 - UID

```
<table>
<thead>
<tr>
<th>Vendor Name</th>
<th>BUFFALO INC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Name</td>
<td>HD-PATU3</td>
</tr>
<tr>
<td>Vendor ID</td>
<td>0x29</td>
</tr>
<tr>
<td>Device ID</td>
<td>0x1</td>
</tr>
<tr>
<td>Device Revision</td>
<td>0x1</td>
</tr>
<tr>
<td>UID</td>
<td>0x002900010005A0E0</td>
</tr>
<tr>
<td>Route String</td>
<td>3</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>5.1</td>
</tr>
<tr>
<td>Port</td>
<td>Status: Device connected</td>
</tr>
<tr>
<td></td>
<td>Link Status: 0x2</td>
</tr>
<tr>
<td></td>
<td>Port Micro Firmware Version: 0.2.5</td>
</tr>
<tr>
<td></td>
<td>Cable Firmware Version: 0.1.24</td>
</tr>
</tbody>
</table>
```

![Image of Thunderbolt Device ROM and vendor information]
How My Adventures Went

• PCIe Info
 • Thunderbolt is a PCIe Bridge
How My Adventures Went
How My Adventures Went

<table>
<thead>
<tr>
<th>Device ID</th>
<th>Vendor ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 49</td>
<td>80 86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Status</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 10</td>
<td>00 07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class Code</th>
<th>RevID</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 04 00</td>
<td>00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIST</th>
<th>HdrType</th>
<th>LatTimer</th>
<th>$LineSze</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>01</td>
<td>00</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BAR0</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 00 00 00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BAR1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 00 00 00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SecLaTmr</th>
<th>SubBus#</th>
<th>SecBus#</th>
<th>PriBus#</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0A</td>
<td>0A</td>
<td>09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary Status</th>
<th>IO Limit</th>
<th>IO Base</th>
<th>Memory Limit</th>
<th>Memory Base</th>
<th>Prefetch Mem Limit</th>
<th>Prefetch Mem Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 00</td>
<td>41</td>
<td>41</td>
<td>8F B0</td>
<td>8F B0</td>
<td>00 01</td>
<td>00 01</td>
</tr>
</tbody>
</table>
How My Adventures Went

<table>
<thead>
<tr>
<th>Device ID</th>
<th>Vendor ID</th>
<th>Status</th>
<th>Command</th>
<th>Type Code</th>
<th>RevID</th>
<th>BIST</th>
<th>HdrType</th>
<th>LatTimer</th>
<th>$LineSze</th>
<th>BAR0</th>
<th>RAR1</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 12</td>
<td>1B 21</td>
<td>00 10</td>
<td>04 06</td>
<td>01 06 01</td>
<td>01</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Base Address Register 0

| Address: 4020h | Type: IO |

The BARs are used to determine what type of address space(s) each function may need and requested by that BAR. If a function supports decoding addresses larger than 32 bits, two con
How My Adventures Went

• Gigabit Ethernet Adapter
 • Researching the product
 • Taking it apart
 • Attack vectors
How My Adventures Went
How My Adventures Went

Conformal Coating

ARM Cortex
How My Adventures Went
How My Adventures Went
How My Adventures Went

DSL2210 & LPC

PCIe wires!!
How My Adventures Went
How My Adventures Went
How My Adventures Went

- Altera Cyclone IV GX Transceiver Starter Kit
 - Hard IP for PCIe
 - PCIe x1
 - ~$400
How My Adventures Went

I can has bypass
How My Adventures Went
How My Adventures Went

• Tips and Tricks
 • Get A LOT of devices!
 • Heat up everything SLOWLY!
 • Continuity testing WINS
 • Sniff EVERYTHING
 • Read all ROMs/Flashes
Thank You

- Russ Sevinsky
 - Security Consultant at iSEC Partners
 - rsevinsky@isecpartners.com

- Special thanks to:
 - Everyone @ iSEC, specifically
 - Jesse Burns
 - Mike Warner
 - Craig Heffner
1.) “I/O Attacks in Intel-PC Architectures and Countermeasures”
 http://www.syssec-project.eu/media/page-media/23/syssec2011-s1.4-sang.pdf

2.) “Understanding DMA Malware”:

3.) “Adventures with Daisy in Thunderbolt-DMA-land: Hacking Macs through the Thunderbolt interface”:
4.) Inception: http://www.breaknenter.org/projects/inception/
6.) “Protecting yourself against Firewire DMA attacks on 10.7.x”: http://derflounder.wordpress.com/2012/02/05/protecting-yourself-against-firewire-dma-attacks-on-10-7-x/
UK Offices
Manchester - Head Office
Cheltenham
Edinburgh
Leatherhead
London
Thame

European Offices
Amsterdam - Netherlands
Munich – Germany
Zurich - Switzerland

North American Offices
San Francisco
Atlanta
New York
Seattle

Australian Offices
Sydney