Defending Networks with Incomplete Information: A Machine Learning Approach

Alexandre Pinto
alexcp@mlsecproject.org
@alexcpsec
@MLSecProject
This is a talk about DEFENDING not attacking
 - NO systems were harmed on the development of this talk.
 - This is NOT about some vanity hack that will be patched tomorrow
 - We are actually trying to BUILD something here.

This talk includes more MATH thank the daily recommended intake by the FDA.

You have been warned...
• 12 years in Information Security, done a little bit of everything.

• Past 7 or so years leading security consultancy and monitoring teams in Brazil, London and the US.
 – If there is any way a SIEM can hurt you, it did to me.

• Researching machine learning and data science in general for the past year or so. Participates in Kaggle machine learning competitions (for fun, not for profit).

• First presentation at BlackHat! Thanks for attending!
Agenda

• Security Monitoring: We are doing it wrong
• Machine Learning and the Robot Uprising
• Data gathering for InfoSec
• Case study: Model to detect malicious activity from log data
• MLSec Project
• Attacks and Adversaries
• Future Direction
The Monitoring Problem

- Logs, logs everywhere
The Monitoring Problem

- Logs, logs everywhere
Are these the right tools for the job?

- SANS Eighth Annual 2012 Log and Event Management Survey Results (http://www.sans.org/reading_room/analysts_program/SortingThruNoise.pdf)
Are these the right tools for the job?

<table>
<thead>
<tr>
<th>Challenge</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification of key events from normal background activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlation of information from multiple sources (e.g., servers or firewalls) to meet complex needs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of analytics capabilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data normalization at collection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data reduction prior to forwarding the logs to tools, such as SIEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managing agents that will forward logs to a log server</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Being able to access logs and/or analysis results without IT support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of native visualization capabilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inconsistent product updates supported by the vendor</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. First, Second and Third Most Challenging Aspects of Log Management and Integration

- SANS Eighth Annual 2012 Log and Event Management Survey Results (http://www.sans.org/reading_room/analysts_program/SortingThruNoise.pdf)
• Rules in a SIEM solution invariably are:
 – “Something” has happened “x” times;
 – “Something” has happened and other “something2” has happened, with some relationship (time, same fields, etc) between them.

• Configuring SIEM = iterate on combinations until:
 – Customer or management is fooled satisfied; or
 – Consulting money runs out

• Behavioral rules (anomaly detection) helps a bit with the “x”s, but still, very laborious and time consuming.
Not exclusively a tool problem

• However, there are individuals who will do a good job

• How many do you know?

• DAM hard (ouch!) to find these capable professionals
Next up: Big Data Technologies

• How many of these very qualified professionals will we need?

• How many know/will learn statistics, data analysis, data science?
We need an Army! Of ROBOTS!
Enter Machine Learning

- “Machine learning systems automatically learn programs from data” (*)
- You don’t really code the program, but it is inferred from data.
- Intuition of trying to mimic the way the brain learns: that’s where terms like artificial intelligence come from.

(*) CACM 55(10) – A Few Useful Things to Know about Machine Learning
Applications of Machine Learning

- Sales
- Trading
- Image and Voice Recognition
Security Applications of ML

• Fraud detection systems:
 – Is what he just did consistent with past behavior?

• Network anomaly detection (?):
 – NOPE!
 – More like statistical analysis, bad one at that

• SPAM filters
 – Remember the “Bayesian filters”? There you go.
 – How many talks have you been hearing about SPAM filtering lately? ;)

© Original Artist

EVER SINCE THEY INSTALLED THE SPAM FILTER, I HAVEN'T HAD A SINGLE LETTER.
Kinds of Machine Learning

- **Supervised Learning:**
 - Classification (NN, SVM, Naïve Bayes)
 - Regression (linear, logistic)

- **Unsupervised Learning:**
 - Clustering (k–means)
 - Decomposition (PCA, SVD)

Source – scikit-learn.github.io/scikit-learn-tutorial/
Considerations on Data Gathering

• Models will (generally) get better with more data
 – But we always have to consider bias and variance as we select our data points
 – Also adversaries – we may be force-fed “bad data”, find signal in weird noise or design bad (or exploitable) features

• “I’ve got 99 problems, but data ain’t one”

Domingos, 2012
Abu-Mostafa, Caltech, 2012
Considerations on Data Gathering

• Adversaries – Exploiting the learning process
• Understand the model, understand the machine, and you can circumvent it
• Something InfoSec community knows very well
• Any predictive model on Infosec will be pushed to the limit
• Again, think back on the way SPAM engines evolved.
Designing a model to detect external agents with malicious behavior

• We’ve got all that log data anyway, let’s dig into it
• Most important (and time consuming) thing is the “feature engineering”
• We are going to go through one of the algorithms I have put together as part of my research
Model: Data Collection

- Firewall block data from SANS DShield (per day)
- Firewalls, really? Yes, but could be anything.
- We get summarized “malicious” data per port
- Number of aggregated events (orange)
- Number of log entries before aggregation (purple)
Model Intuition: Proximity

• Assumptions to aggregate the data
• Correlation / proximity / similarity BY BEHAVIOR
• “Bad Neighborhoods” concept:
 – Spamhaus x CyberBunker
 – Google Report (June 2013)
 – Moura 2013

• Group by Netblock (/16, /24)
• Group by ASN
 – (thanks, Team Cymru)
Map of the Internet (Hilbert Curve)
Block port 22
2013-07-20

Not random at all...
Map of the Internet (Hilbert Curve)
Block port 22
2013-07-20
Not random at all...
Be careful with confirmation bias

Country codes are not enough for any prediction power of consequence today
Model Intuition: Temporal Decay

• Even bad neighborhoods renovate:
 – Agents may change ISP, Botnets may be shut down
 – A little paranoia is Ok, but not EVERYONE is out to get you (at least not all at once)
• As days pass, let’s forget, bit by bit, who attacked
• A Half–Life decay function will do just fine
Model Intuition: Temporal Decay

![Exponential Decay per Half-life](image-url)
Model: Calculate Features

- Cluster your data: what behavior are you trying to predict?
- Create “Badness” Rank = lwRank (just because)
- Calculate normalized ranks by IP, Netblock (16, 24) and ASN
- Missing ASNs and Bogons (we still have those) handled separately, get higher ranks.
Model: Calculate Features

- We will have a rank calculation per day:
 - Each “day-rank” will accumulate all the knowledge we gathered on that IP, Netblock and ASN to that day
 - Decay previous “day-rank” and add today’s results
- Training data usually spans multiple days
- Each entry will have its date:
 - Use that “day-rank”
 - NO cheating --->
 - Survivorship bias issues!
Model: Example Feature (1)

- Block on Port 3389 (IP address only)
 - Horizontal axis: lwRank from 0 (good/neutral) to 1 (very bad)
 - Vertical axis: log10(number of IPs in model)
Model: Example Feature (2)

- Block on Port 22 (IP address only)
 - Horizontal axis: lwRank from 0 (good/neutral) to 1 (very bad)
 - Vertical axis: log10(number of IPs in model)
How are we doing so far?
Training the Model

• YAY! We have a bunch of numbers per IP address!

• We get the latest blocked log files (SANS or not):
 – We have “badness” data on IP Addresses – features
 – If they were blocked, they are “malicious” – label

• Now, for each behavior to predict:
 – Create a dataset with “enough” observations:
 – Rule of Thumb: 70k – 120k is good because of empirical dimensionality.
• We also require “non-malicious” IPs!
• If we just feed the algorithms with one label, they will get lazy.
• CHEAP TRICK: Everything is “malicious” – trivial solution
• Gather “non-malicious” IP addresses from Alexa and Chromium Top 1m Sites.
SVM FTW!

• Use your favorite algorithm! YMMV.
• I chose Support Vector Machines (SVM):
 – Good for classification problems with numeric features
 – Not a lot of features, so it helps control overfitting, built in regularization in the model, usually robust
 – Also awesome: hyperplane separation on an unknown infinite dimension.
Results: Training/Test Data

- Model is trained on each behavior for each day
- Training accuracy* (cross-validation): 83 to 95%
- New data – test accuracy*:
 - Training model on day D, predicting behavior in day D+1
 - 79 to 95%, roughly increasing over time

(*) Accuracy = (things we got right) / (everything we tried)
Results: Training/Test Data
Results: Training/Test Data
Results: New Data

- How does that help?
- With new data we can verify the labels, we find:
 - 70 – 92% true positive rate (sensitivity/precision)
 - 95 – 99% true negative rate (specificity/recall)
- This means that (odds likelihood calculation):
 - If the model says something is “bad”, it is 13.6 to 18.5 times MORE LIKELY to be bad.
- Think about this.
- Wouldn’t you rather have your analysts look at these first?
Remember the Hilbert Curve?

Behavior: block on port 22

Trial inference: on 100k IP addresses per Class A subnet

Logarithm scale: brightest tiles are 10 to 1000 times more likely to attack.
Remember the Hilbert Curve?

Behavior: block on port 22

Trial inference on 100k IP addresses per Class A subnet

Logarithm scale: brightest tiles are 10 to 1000 times more likely to attack.
Attacks and Adversaries

• IP addresses are not as reliable as they could be:
 – Forget about UDP
 – Lowest possible value for DFIR

• This is not attribution, this is defense

• Challenges:
 – Anonymous proxies (not really, same rules apply)
 – Tor (less clustering behavior on exit nodes)
 – Fast-flux Tor – 15~30 mins

• Process was designed with different actors in mind as well, given they can be clustered in some way.
Future Direction

• As is, the results from the predictions can help Security Analysts on tiers 1 and 2 of SOCs:
 – You can’t “eyeball” all of the data.
 – Makes the deluge of logs produce something actionable

• The real kicker is when we compose algorithms (ensemble):
 – Web server -> go through firewall, then IPS, then WAF
 – increased precision by composing different behaviors

• Given enough predictive power (increased likelihood):
 – Implement an SDN system that sends detected attackers through a “longer path” or to a Honeynet
 – Connection could be blocked immediately
Final Remarks

• Sign up, send logs, receive reports generated by models!
 – FREE! I need the data! Please help! ;)

• Looking for contributors, ideas, skeptics to support project as well.

• Please visit https://www.mlsecproject.org, message @MLSecProject or just e-mail me.
Take Aways

• Machine learning can assist monitoring teams in data-intensive activities (like SIEM and security tool monitoring)

• The odds likelihood ratio (12x to 18x) is proportional to the gain in efficiency on the monitoring teams.

• This is just the beginning! Lots of potential!

• MLSec Project is cool, check it out and sign up
Thanks!

- Q&A?
- Don’t forget to submit feedback!

Alexandre Pinto
alexcp@mlsecproject.org
@alexcpsec
@MLSecProject

"Prediction is very difficult, especially if it's about the future."
– Niels Bohr