
Nishant Das Patnaik
@dpnishant

Sarathi Sahoo
@sarathisahoo

Agenda

• Introduction to the problem

- Why is it a problem?

- What is the impact?

- Demo

• What is JSPrime?
- What is it?

- Who is it for?

- How it works?

- What it can do?

- What it can’t do?

- Demo

• Conclusion and questions

Who am I?

• First time BlackHat speaker
• Senior Paranoid at Yahoo! Inc.

- Security Engineer at eBay Inc. (Past)
• Bug Bounty Hunter
• Speaker at NullCon 2012, Goa, India
• Co-author of Ra.2: – DOM XSS Scanner Firefox add-on
• 5+ years of security self-studying
• Keyboard Player & Sports-bike enthusiast

Who is Sarathi?

• Experienced Application Developer, 7+ years
experience

• 5+ years at Yahoo! Inc.

• Full-time JSPrime Developer

• @sarathisahoo, http://fb.me/sarathi.sahoo

JavaScript: the lingua franca of Web &

Mobile

Introduction: The Problem

JavaScript is a dynamic language
• Object-based, properties created on demand
• Prototype-based inheritance
• First-class functions, closures
• Runtime types, coercions

Introduction: The Problem

• Client Side Script Injection
- DOM XSS

• Server Side Script Injection

- Node.JS Applications

Introduction: Why is it problem?

• Server side filtering fails for DOM XSS

• JavaScript code review is intimidating #iykwim

• Library dependent source-to-sink pairs

• Not Enough Scanners

Introduction: The Impact

• Same as regular XSS: Reflected or Stored

• Script Injection on server side or mobile device can be
really lethal.

• Node.JS, Firefox OS, Windows 8 Apps (WinJS)

Vulnerability Demo

Some videos or sample codes

Introducing JSPrime

• What is it?
• Who is it for?
• What it can do? Avoiding False positives
• What it can’t do? Knowing the False negatives
• Stability & Automation
• Demo

Introducing JSPrime: What is it?

• JSPrime is a light-weight source code scanner
for identifying security issues using static
analysis.

• It is written in Javascript to analyze
JavaScript.

• Uses the open-source ECMAScript parser:
Esprima.org

Introducing JSPrime: Who is it for?

• JSPrime is mostly a developer centric tool.

• It can aid code reviewers for identifying security
issues in 1st pass.

• Security professionals may find it useful during
penetration testing engagements.

Introducing JSPrime: How it works?

• Feed the code to Esprima, to generate the AST.
• Parse the JSON AST, to locate all sources (including Objects,

Prototype) and keeping track of their scopes
• Parse the AST, to locate all assignment operations related to

the sources, while keeping track of their scopes
• Parse the AST to locate sinks and sink aliases, again keeping

track of their scope.
• Parse AST to locate functions (including closures, anon

functions) which are fed with sources as arguments and
while tracking down their return values.

Introducing JSPrime: How it works?

• Once all the sources, source aliases are collected we check
for any filter function on them, rejected if found.

• Remaining sources, source aliases are tracked for
assignments or pass as argument operations to the collected
sinks or sink aliases.

• We repeat the same process in reverse order to be sure that
we reach the same source when we traverse backwards, just
to be sure.

• Once we confirm that we extract the line numbers and their
statement and put it in the report we generate with
different color coding

Introducing JSPrime: What it can do?

• It can follow code execution order
• Handle First-class functions
• Analyze Prototype-based inheritance
• Understand type-casting
• Understand context-based filter functions (has to

be manually supplied, though)
• Library aware sources and sinks
• Variable, Objects, Functions scope aware analysis
• Control-flow analysis
• Data-flow analysis

Introducing JSPrime: What it can’t do?

• It can’t detect 100% of the issues.
• It can’t learn sources and sinks automatically
• It can’t handle obfuscated JavaScript
• It can’t report issues in minified JavaScript, unless

beautified.
• It can’t analyze dynamically generated JavaScript

using ‘eval’ or similar methods

Introducing JSPrime: Stability & Automation

• Handle up to 1500 LoC in a single scan

• Node.JS port is available for server-side web service
like setup

• Largely dependent on Esprima’s robustness, can be
the 1st point failure

Demo

Have patience! J

Roadmap

Improved performance and stability
Multiple file scanning
Node.JS Project Scanning capability
IDE Plugin (Notepad++, WebStorm, ??)
More Library Support
String manipulation simulation
Your suggestions? J

Summary

Actively work-in-progress
Promising project roadmap
Open-sourced today

www.jsprime.org

Credits

• Aria Hidayat, Esprima.org
• Paul Theriault, Mozilla Security Team
• Bishan Singh - @b1shan
• Rafay Baloch – rafayhackingarticles.com

Questions?

THANK YOU

