
Evading Deep Inspection for Fun and Shell

Olli-Pekka Niemi

Stonesoft Corporation

Helsinki, Finland

olli-pekka.niemi@stonesoft.com

 Antti Levomäki
Stonesoft Corporation

Helsinki, Finland

antti.levomaki@stonesoft.com

ABSTRACT

This paper describes the state of contemporary network

deep inspection devices from the viewpoint of an attacker

attempting to evade detection. Despite claims to the

contrary, even basic transport protocol layer evasions can

still fool network security devices. We will present a set of

working evasion techniques along with a tool that can be

used to test the reactions of security devices to these

techniques.

Keywords

Network, intrusion prevention, evasion, IDS, IPS.

1. INTRODUCTION

Network intrusion detection systems (IDS) and intrusion

prevention systems (IPS) are middleboxes used to protect

hosts and services on the Internet. These systems do real-

time analysis on network traffic and attempt to alert and

possibly terminate connections that are deemed harmful.

Successful traffic analysis requires that the IPS device

interprets traffic in the same way as the host it is protecting.

As many protocols are built according to the robustness

principle stated by Jon Postel in RFC 793 [1] “be

conservative in what you do, be liberal in what you accept

from others”, there is a large gap between how protocols

should be used and how they can be used. We call

deliberately sending traffic in a way that is difficult to

analyze by a middlebox an evasion technique.

Evasion techniques have been researched actively in the

past, and there are open source tools that can be used to do

evasions. However, most of the tools are at least ten years

old, limited in scope to a few protocols or otherwise

unsuitable for automated black box testing of a network

device.

In this paper we highlight some evasion techniques that

work against current commercial and open source IPS

devices. We also describe our testing tool Evader, which

can be used to test the inspection capabilities of security

devices.

2. BACKGROUND

IPS evasion techniques have been actively researched both

by the scientific and the security communities.

 Ptacek and Newsham [2], and Horizon [3]

published a set of TCP/IP layer evasion techniques

in 1998. The use of TCP urgent pointer as an

evasion was published in Phrack [4]. Fragroute [5]

can be used to perform some of these evasions.

 HTTP evasions used by Whisker were

documented by Rain Forest Puppy [6] and URI

related evasions by Daniel Roelker [7]. Metasploit

[8] implements most of these evasions.

 Caswell and Moore [9] summarized the current

state of IPS evasions in 2006 and introduced new

application layer techniques. Bidou [10] surveyed

IPS issues and demonstrated bypassing multiple

consecutive IPS systems. Gorton and Champion

[11] systematically combined evasions to find

working combinations against tested systems.

 Evasion blocking performance of various IPS

devices has been tested in [12] [13] [14].

IPS devices are typically implemented as middleboxes

which inspect traffic flowing through them. Unlike

firewalls, IPS devices let through all traffic that is not

deemed malicious. Evading IPS therefore requires that

traffic is obfuscated so that the IPS cannot classify it as

evil.

Reliable inspection also requires that the traffic is

interpreted on the device similarly to the mediated hosts.

This includes performing IP reassembly, TCP reassembly

and application specific tasks like HTTP chunked encoding

handling.

3. EVADING DEEP INSPECTION

In this paper we have concentrated on examples of evading

TCP reassembly because TCP is complex and is used as the

base for most application layer protocols. If an IPS cannot

perform correct TCP reassembly, it cannot parse any of the

protocols transported over TCP either. IPS devices can

additionally run signature matching on separate TCP

segments as an optimization. Evading all inspection

2

therefore may require both breaking TCP reassembly

capabilities and making sure that individual segments do

not contain anything a signature could match to.

We will highlight a few evasion techniques that currently

have a high success rate in thwarting the TCP reassembly

of the tested systems. All methods can be combined with

non-standard TCP segmentation to avoid packet-based

signatures.

Additionally, custom shellcode encoders should be used to

avoid signatures targeting commonly used encoders, e.g.,

stock Metasploit encoders.

3.1 TCP PAWS

The PAWS (Protection Against Wrapped Sequence

numbers) algorithm is defined in RFC1323 [12]. The

algorithm uses TCP timestamps to drop segments that

contain timestamps older than the last successfully received

segment. Most modern hosts implement PAWS. Its use as

an evasion was described already by Ptacek and Newsham

in 1998 [2].

PAWS causes problems for TCP reassembly when the IPS

does not know which segments the end hosts accept or

discard. Once the IPS decides to accept a segment that the

end host does not, or vice versa, the reassembled TCP

streams differ in the IPS and the end host.

TCP segments designated for PAWS elimination can be

created by duplicating a valid TCP segment and moving its

timestamp value backwards. The actual contents of the

duplicate segment can be arbitrary, e.g., a non-malicious

version of a protocol message.

3.2 SYN retransmit

TCP assigns a sequence number for each byte of payload

and the control flags SYN and FIN [1]. Hosts receiving

data with an already acknowledged sequence number will

discard the parts already handled and process new data if

present.

This behavior allows for retransmitting the initial SYN flag

along with the first TCP segment containing payload. IPS

devices may have problems with the unexpected

combination of a retransmitted SYN flag and new payload

in an established connection.

3.3 IPv4 options

IPv4 packet headers can contain options [13]. If any of the

options are invalid, the whole IPv4 packet should be

discarded by the receiving host. This can cause problems if

the inspecting device and the end host discard different

packets.

3.4 TCP urgent data

TCP payload can be marked as urgent with the urgent

pointer. The receiving TCP socket can handle urgent data

as either inline or out-of-band. Out-of-band data is not

returned via normal recv() calls and gets discarded by

applications that do not use urgent data. Most operating

systems default to out-of-band urgent data [13].

The use of TCP urgent data as an evasion was documented

in 2001 [4]. It is problematic for IPS devices because the

choice between handling data as inline or out-of-bound is

application specific.

3.5 TCP receive window

TCP receive window is the amount of new data that the

sending side is willing to receive. An attacker can advertise

a small window size to force the other end of the TCP

connection into sending small segments.

This complements sending small TCP segments by

allowing the attacker to control TCP segment sizes in both

directions.

4. EVADER

Evader [14] is a tool for testing the deep inspection

capabilities of an IPS device. It has a few exploits using

different application layer protocols and a set of evasions

that can be applied to them. By using real exploits and real

vulnerable victim hosts we can easily verify that an attack

was successful and that the applied evasions did not make

the traffic unintelligible.

Evader is built on a proprietary user-space TCP/IP stack. It

has application clients/servers for higher layer protocols.

This allows Evader to have complete control over every

packet sent during execution, as opposed to using a

combination of separate tools which each handle their own

layer.

Exploits are further divided into stages over time. Each

stage corresponds to a step in the application protocol, for

example “SMB Session Setup” or “MSRPC Bind”.

Evasions can be targeted to all or a set of stages. Targeting

evasions to specific stages critical to IPS detection makes

anomaly-based blocking more difficult as the protocol

anomaly may be present only once during a connection

instead of occurring frequently.

All exploits containing shellcode can be run ‘obfuscated’.

The obfuscated version generates a different shellcode

encoder and possible NOP sled for each execution to avoid

exploit based detection. Normal versions of these exploits

attempt to look like commonly found public exploits.

3

4.1 Exploits

Because we are testing IPS inspection capabilities and not

doing penetration testing, we have chosen exploits that are

old and well known. All IPS devices should detect them

with no evasions applied:

 CVE-2008-4250, MSRPC Server Service

Vulnerability [14].

o A buffer overflow vulnerability in Microsoft

Windows allowing arbitrary code execution.

Widely exploited by the Conficker worm.

o Evader targets a Windows XP SP2 host.

o Protocols used: IP, TCP, NetBIOS, SMB,

MSRPC.

 CVE-2004-1315, HTTP phpBB highlight

o Input sanitation vulnerability in phpBB

allowing arbitrary PHP execution. Exploited

by the Santy.A worm in 2004.

o Protocols used: IP, TCP, HTTP

 CVE-2012-0002, Windows RDP Denial of Service

[15].

o Vulnerability in the Remote Desktop

Protocol implementation in Microsoft

Windows.

o Exploit in Evader crashes unpatched

Windows 7 hosts.

o Protocols used: IP, TCP, RDP

4.2 Evasions

We have implemented atomic evasions for a number of

widely used protocols.

Table 1: IPv4 evasions

ipv4_frag Set IPv4 maximum fragment size

ipv4_order IPv4 fragment reordering

ipv4_opt Duplicate IPv4 packets with broken

options.

Table 2: TCP evasions

tcp_chaff Duplicate TCP packets with broken

headers

tcp_initialseq Initial TCP sequence number modification

tcp_inittsopt Initial TCP timestamp modification

tcp_nocwnd Disable TCP congestion control

tcp_nofastretrans Disable TCP fast retransmit

tcp_order TCP segment reordering

tcp_osspoof TCP SYN OS fingerprint spoofing

tcp_overlap Send overlapping TCP segments

tcp_paws PAWS elimination, duplicate TCP

segments with old timestamps

tcp_recv_window Modify TCP receive window

tcp_seg TCP segment maximum size

tcp_segvar TCP segmentation with variable segment

sizes

tcp_synretranswit

hpayload

Retransmit SYN with first payload

segment

tcp_synwithpayloa

d

Send payload in initial SYN packet

tcp_timewait Open decoy TCP connections from same

IP-port pair before attack

tcp_tsoptreply TCP timestamp echo reply modifications

tcp_urgent Add urgent data to TCP segments

Table 3: HTTP evasions

http_header_lws Add linear white spaces to

HTTP headers

http_known_user_agent Use a common HTTP user

agent

http_request_line_separator Modify HTTP request line

separator

http_request_method Modify HTTP request method

http_request_pipelined Send extra pipelined HTTP

requests before exploit

http_url_absolute Use absolute URLs

http_url_dummypath Add dummy paths to URL

http_url_encoding Encode URL

http_version Set used HTTP version

Table 4: NetBIOS evasions

netbios_chaff Extra NetBIOS messages

netbios_init_chaff Extra NetBIOS messages before first

normal message

Table 5: SMB evasions

smb_chaff Extra invalid SMB messages

smb_decoytrees Opens extra SMB trees with decoy writes

smb_fnameobf SMB filename obfuscation

smb_seg SMB write segmentation

smb_writeandxpad SMB WriteAndX message extra padding

Table 6: MSRPC evasions

msrpc_bigendian Force big endianness

msrpc_ndrflag MSRPC NDR field modifications

msrpc_seg MSRPC request segmentation

4

5. MONGBAT

Mongbat is an automated test tool that runs multiple

instances of Evader in parallel with random evasion

combinations. Successful exploits are reported along with a

command line for easy repeatability.

A single execution of Evader through Mongbat usually

includes the following steps when using an exploit payload

that opens a shell:

 Run a clean traffic test with no exploit and no

evasions (optional). This is used to test that the

victim service is up and reachable. It also verifies

that the security device is not blocking the whole

service or protocol, and allows normal traffic

through. If the clean test is used and it fails, no

exploit run is attempted as the service is

considered to be down. The clean check cannot be

used if the tested security device is configured to

block access to the tested vulnerable service.

 Check that the shell port is not open.

 Run exploit with evasions.

 Check if the shell port opened.

If the shell port opened, the victim host was successfully

exploited and the security device did not block the attack.

Worker threads running Evader use unique source address

and shell port combinations to determine which parallel

attack succeeded. Running exploits with payloads that do

not open a shell are more difficult for automatic testing,

and usually require human verification.

Mongbat randomly selects a number of evasions and their

parameters for each Evader execution. No special care is

taken to produce only evasion combinations that produce

legitimate traffic. The victim computer is used to validate

working combinations as it will discard broken traffic.

6. RESULTS

Here we present the results of running Mongbat against 9

vendors’ commercial IPS devices. The vendors include

most Gartner 2012 IPS and 2013 NGFW Magic Quadrant

leaders and challengers. The devices have up-to-date

software and updates installed. We have attempted to

configure the devices for maximum detection and blocking

while still allowing the Evader clean check without an

exploit to succeed.

We have defined 12 evasion test cases and a baseline test

case without evasions. The evasion tests are run with

Mongbat so that only the listed evasions are used. If

Mongbat does not find a working evasion combination in

one minute the test case is marked as failed, otherwise as

success. In test cases 6-11 we additionally require that all

given evasions be used with the exploit.

Table 7: Evasion test cases

All test cases were executed three times per vendor:

 With MSRPC exploit (CVE-2008-4250), no stages

used. All evasions are applied for the whole TCP

connection. Results in Table 8.

 With MSRPC exploit (CVE-2008-4250) using

stages. Mongbat can specify that the evasions are

applied only during given protocol steps. Results

in Table 9.

 With HTTP exploit (CVE-2004-1315). As the

whole exploit is delivered in a single HTTP GET

request no stages are available. All evasions are

applied to the whole connection. Results in Table

10.

The RDP exploit against CVE-2012-0002 was not used in

this test because it is a denial of service attack.

Automatically determining which evasion combination was

successful is more difficult when the victim host crashes.

The exploits used open a specified unique shell port when

successful, allowing automatic verification.

ID Name ID Name

0 No evasions 7 TCP PAWS + TSR

1
TCP PAWS 8

SYN retransmit +

TSR

2 SYN retransmit 9
IPv4 options +

TSR

3 IPv4 options 10
TCP urgent data +

TSR

4
TCP urgent data 11

TCP receive

window + TSR

5 TCP receive window 12 All listed evasions

6

TCP segmentation and

reordering, referred to

as TSR later

5

Table 8: Results for MSRPC exploit against CVE-2008-4250

with no stages used.

Vendor

Test case index

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

Vendor1

Vendor2 x x x x x x x x

Vendor3 x x x

Vendor4 x x x x x x x x

Vendor5 x x x x x x

Vendor6 x x x x x x

Vendor7 x x x x x x x x x x x

Vendor8 x x x x x x x x x x

Vendor9 x x x

x indicates a successful exploit through IPS device.

empty space indicates IPS blocked all exploit attempts.

 Table 9: Results for MSRPC exploit against CVE-2008-4250

using stages.

Vendor

Test case index

0 1 2 3 4 5 6 7 8 9
1

0

1

1

1

2

Vendor1

Vendor2 x x x x x x x x x

Vendor3 x x x x x

Vendor4 x x x x x x x x x

Vendor5 x x x x x x x

Vendor6 x x x x x x x x

Vendor7 x x x x x x x x x x x

Vendor8 x x x x x x x x x x x

Vendor9 x x x x

x indicates a successful exploit through IPS device.

empty space indicates IPS blocked all exploit attempts.

All vendors are able to stop the MSRPC exploit with no

evasion applied. TCP segmentation and reordering by itself

seem to go through most vendors’ IPS devices. When this

is combined with segments destined for PAWS elimination

and applied to stages almost all vendors’ inspection can be

bypassed.

The MSRPC exploit requires multiple SMB requests and

responses before the vulnerability can be exploited. This

allows IPS devices to perform protocol validation and

possibly terminate evasion attempts during the session

setup phase. Evasions using just a small TCP receive

window probably cause some devices to lose protocol state

due to a failure in parsing server responses.

Table 10: Results for HTTP exploit against CVE-2004-1315.

Vendor

Test case index

0 1 2 3 4 5 6 7 8 9
1

0

1

1

1

2

Vendor1

Vendor2 x x x x x x x x x x x

Vendor3 x x x x x x x x x x x

Vendor4 x x x x x x x x x x x

Vendor5 x x x x x x x x x x x x

Vendor6 x x x x x x x x x x x x

Vendor7 x x x x

Vendor8 x x x x x x x x x x x x

Vendor9 x x x x x x x

x indicates a successful exploit through IPS device.

empty space indicates IPS blocking all exploit attempts.

All vendors were not able to block the obfuscated HTTP

exploit without evasions. The complete set of test cases was

still run to see if the devices block some evasions as

anomalies. TCP segmentation and reordering was again

successful also over HTTP, especially when combined with

TCP segments containing urgent data.

In cases when no exploit succeeded Mongbat executed

around 500-2000 attempts in the 60 second test period.

Most successful evasion combinations were found in 1-10

attempts.

7. CONCLUSIONS

We have highlighted several evasions that work against

modern, up-to-date IPS devices. The evasions attack TCP

reassembly, which makes them usable with different

application protocols, e.g. HTTP, SMB and SIP. We have

also described our freely available Evader tool that can be

used to reproduce our findings and test the inspection

capabilities of security devices.

6

8. REFERENCES

[1] IETF, “Transmission Control Protocol,” IETF, RFC793,

1981.

[2] T. Ptacek and T. Newsham, “Insertion, Evasion and Denial

of Service; Eluding Network Intrusion Detection,” Secure

Networks Inc., 1998.

[3] Horizon, “Defeating Sniffers and Intrusion Detection

Systems,” Phrack Magazine, vol. 8, no. 54, 1998.

[4] “NIDS Evasion Method named "SeolMa",” Phrack, vol.

0x0b, no. 0x39, 2001.

[5] D. Song, “fragroute,” [Online]. Available:

http://www.monkey.org/~dugsong/fragroute/. [Accessed 27

June 2013].

[6] R. F. Puppy, “A look at whisker's anti-IDS tactics,” 1999.

[Online]. Available:

http://www.ussrback.com/docs/papers/IDS/whiskerids.html.

[Accessed 27 June 2013].

[7] D. J. Roelker, “HTTP IDS Evasions Revisited,” 2004.

[Online]. Available:

http://www.snort.org/assets/164/sf_HTTP_IDS_evasions.pdf.

[Accessed 27 June 2013].

[8] “Metasploit,” [Online]. Available:

http://www.metasploit.com/. [Accessed 27 June 2013].

[9] B. Caswell and H. D. Moore, “Thermoptic Camouflage:

Total IDS Evasion,” in Blackhat, 2006.

[10] R. Bidou, “IPS Shortcomings,” in Blackhat, 2006.

[11] A. Gorton and T. Champion, “Combining Evasion

Techniques to Avoid Network Intrusion Detection Systems,”

Skaion, 2004.

[12] E. Korhonen, “Advanced Evasion Techniques: Measuring

the threat detection capabilities of up-to-date network

security devices,” Master's Thesis, Aalto University, 2012.

[13] M. Dyrmose, “Beating the IPS,” SANS Institute, 2013.

[14] C. Xynos, I. Sutherland and A. Blyth, “Effectiviness of

blocking evasions in Intrusion Prevention Systems,”

University of South Wales, 2013.

[15] IETF, “TCP extensions for high performance,” RFC1323,

1992.

[16] IETF, “Internet Protocol,” RFC791, 1981.

[17] IETF, “On the Implementation of the TCP Urgent

Mechanism,” RFC6093, 2011.

[18] Stonesoft, “Evader,” [Online]. Available:

http://evader.stonesoft.com/. [Accessed 27 June 2013].

[19] Microsoft, “Vulnerability In Server Service Could Allow

Remote Code Execution. MS08-067, CVE-2008-4250,”

2008.

[20] Microsoft, “Vulnerabilities in Remote Desktop Could Allow

Remote Code Execution. MS12-020, CVE-2012-0002,”

2012.

