

How to Grow a TREE from CBASS

Interactive Binary Analysis for
Security Professionals

Lixin (Nathan) Li, Xing Li, Loc Nguyen,
James E. Just

• Background

• Interactive Binary Analysis with TREE
and CBASS

• Demonstrations

• Conclusions

Outline

• Automated binary analyses useful for
certain tasks (e.g., finding crashes)

• Many binary analyses can’t be automated

• Expert experience and heuristics are still
key to binary analyses

Interactive Binary Analysis

• Applicable to many security problems

• Our tools increase productivity in:

– Finding vulnerabilities

– Analyzing root causes

– Exploitability and risk assessment

Benefits of Interactive Binary Analysis

Interactive Analysis Like Connecting Dots

What’s in the dots?

Our Tools are Designed to Help

Fix the
Dots

Connect
the Dots

Explore
New Dots

What Do Our Tools Do?

TREE
Replay & Taint Analysis

CBASS
Symbolic Execution

Fix the
Dots

Connect
the Dots

Explore
New Dots

Cross-platform Binary
Automated Symbolic

execution System

Tainted-enabled Reverse
Engineering Environment

• Existing research does not support
interactive binary analysis

–No practical tools

–No uniform trace collection tools

–No unified Instruction Set
Architecture(ISA) -independent
analysis tools

Gaps between Research and Interactive
Binary Analysis

• Our tools use dynamic, trace-based, offline
analysis approach

– Interactive binary analysis [1]

– Dynamic taint analysis ([2][3][4])

– Symbolic execution/ SMT solver ([2][5])

– Trace replay ([6])

Bringing Proven Research Techniques
to Interactive Binary Analysis

• Simple Static Analyses

– Cyclomatic complexity

– Loop Detection

• IR Translation

– CBASS and TREE are separate components and
work in a client/server architecture

– CBASS and TREE share native to IR mapping
through IR Store

Making It Practical

• TREE integrates with IDA Pro now and
other mainstream binary analysis
environments (later)

• TREE leverages debugging infrastructure to
support tracing on multiple platforms

• CBASS uses Intermediate Representation
(REIL [6][7])-based approach to support
ISA-independent analysis

 TREE fills gaps for interactive analysis

CBASS Supports Both Automated &
Interactive Analysis

CBASS
IR-based Symbolic
Execution Engine

TREE
Interactive Analysis

Automated Fuzzer
Automated Analysis

Tools Support Interactive Binary Analyses

CBASS
Symbolic Execution

Explore the unexplored

path and code

Fix the
Dots

Connect
the Dots

Explore
New Dots

TREE
Replay

Don’t chase a moving target
Taint Analysis

Focus only on data and code that
are relevant

Illustrative Dots in Vulnerability Analysis:
A Running Example

//INPUT
ReadFile(hFile, sBigBuf, 16, &dwBytesRead, NULL);

//INPUT TRANSFORMATIONS
……

//PATH CONDITIONS
if(sBigBuf[0]=='b') iCount++;
if(sBigBuf[1]=='a') iCount++;
if(sBigBuf[2]=='d') iCount++;
if(sBigBuf[3]=='!') iCount++;
if(iCount==4) // bad!
 StackOVflow(sBigBuf,dwBytesRead)
else // Good
 printf(“Good!”);

//Vulnerable Function
void StackOVflow(char *sBig,int num)
{

char sBuf[8]= {0};
……
for(int i=0;i<num;i++)
//Overflow when num>8
{
 sBuf[i] = sBig[i];
}
……
return;

}

 Fixing the Dots (TREE)

Our Tools Support

• Reverse engineers don’t like moving dots

• Why do the dots move?

–Concurrency (multi-thread/multi-core)
brings non-deterministic behavior

–ASLR guarantees nothing will be the
same

Fix the Dots

• How does TREE work?
– Generates the trace at runtime

– Replays it offline

• TREE trace
– Captures program state = {Instruction, Thread,

Register, Memory}

– Fully automated generation

• TREE can collect traces from multiple platforms
– Windows/Linux/Mac OS User/Kernel and real devices

(Android/ARM, Cisco routers/MIPS, PowePC)

Fix the Dots

• Debug-replay lets you connect the dots
– Single step, stop at function boundary, Breakpoint

• TREE replay connects dots for you

– Deterministic replay with taint-point break

TREE Taint-based Replay vs.
Debug-based Replay

 Connecting the Dots (TREE)

Our Tools Support

• Basic elements complex in real programs

– Code size can be thousands (++) of lines

– Inputs can come from many places

– Transformations can be lengthy

– Paths grow exponentially

• Basic elements likely separated by millions of
instructions, spatially and temporally

• Multiple protections built in

Connecting Dots is Hard

• Dynamic Taint Analysis
– Basic Definitions

o Taint source

o Taint Sink:

o Taint Policy:

• Taint-based Dynamic Slicing
– Taint focused on data

– Slicing focused on relevant instructions and
sequences

Techniques Help Connect the Dots

• TREE connects dots -- using taint analysis

Connect the Dots

Taint Source:

• TREE connects dots -- using taint analysis

Connect the Dots

Taint Source:

Taint Sink:

• TREE connects dots -- using taint analysis

Connect the Dots

Taint Source:

Taint Sink:

Taint policy

• TREE connects dots -- using taint analysis

Connect the Dots

Taint Source:

Taint Sink:

Taint policy

- Dynamic Slicing

Find the Dots and Slice that Matter

In practice, most dots don’t matter –
eliminate them quickly to focus on what
matters

Connecting Dots in Running Example

call ds:ReadFile

movb (%eax), %dl

movb %dl,
-0x8(%ebp,%ecx,1)

retl

The Slice The Taint Graph
Taint Source:
(Input)

Taint Sink: eip

Taint policy
(Data)

• Dots can be connected in different ways

– Data dependency

– Address dependency

– Branch conditions

– Loop counter

• Connect dots in different taint policies

What You Connect is What You Get

TAINT-ENABLED

REVERSE ENGINEERING ENVIRONMENT

TREE Key Components

Execution

Tracer
(Cross-platform

Debugging)

Taint

Analyzer &

Slicing

Taint Visualizer

& Slice Navigator
(IDA Native/Qt)

TREE

Replay

Taint

Graph

Execution

Trace

 IDA Plug-in

TREE: The Front-end of Our
Interactive Analysis System

Taint
Graph

TREE: The Front-end of Our
Interactive Analysis System Taint

Table

TREE: The Front-end of Our
Interactive Analysis System

Execution
Trace
Table

TREE: The Front-end of Our
Interactive Analysis System

Register/stack/
memory

Views

Replay is focal point of user interaction

TREE: The Front-end of Our
Interactive Analysis System

 Using TREE to Analyze a Crash

Tree Demo

 Exploring New Dots

Our Tools Support

A Key Branch Point for a Duck

Connects 16 ->17

• Reverse engineers don’t just connect dots; they
want to explore new dots:

The Path for a …

Connects 16 ->26

• How do you force the program to take a
different path to lead to “bad!”?

Explore New Dots

//INPUT
ReadFile(hFile, sBigBuf, 16, &dwBytesRead, NULL);

……
//PATH CONDITION

if(sBigBuf[0]=='b') iCount++;
if(sBigBuf[1]=='a') iCount++;
if(sBigBuf[2]=='d') iCount++;
if(sBigBuf[3]=='!') iCount++;

if(iCount==4) // “bad!” path
 StackOVflow(sBigBuf,dwBytesRead) ?

Else // “Good” path
 printf(“Good!”);

• User wants execution to take different path at a branch
point Y – what input will make that happen?

Explore New Dots

TREE
CBASS
(symbolic
execution)

User:
How to execute
different path
at branch Y?

TREE: Can
we negate
path
condition
at Y?

CBASS:
This byte
must be ‘b’

TREE: Input
[0] must be ‘b’

Explore New Dots Demo

Execution

Tracer
(Cross-platform

Debugging)

Taint

Analyzer &

Slicing

Taint Visualizer

& Slice Navigator
(IDA Native Qt)

TREE
Replay

Taint

Graph

Execution

Trace

On-demand

Symbolic

Execution &

Constraint

Generation

SMT Solver

New

input
Path

Selection

Path

constraints
Satisfiable

input

IDA Plugin

(Front End)

CBASS

(BACK End)

1

2

3
4

5

6 7

8

Task 1:

Force the Program to Take “bad!” Path

Branch Conditions In Disassembly

//INPUT
ReadFile(hFile, sBigBuf, 16,

&dwBytesRead, NULL);

//INPUT TRANSFORMATION

……

//PATH CONDITION
if(sBigBuf[0]=='b') iCount++;

if(sBigBuf[1]=='a') iCount++;

if(sBigBuf[2]=='d') iCount++;

if(sBigBuf[3]=='!') iCount++;

if(iCount==4) // “bad!” path

 //Vulnerable Function
StackOVflow(sBigBuf,dwBytesRead)

else

 printf(“Good!”);

 TREE Pin Trace 1

PIN: A popular Dynamic Binary Instrumentation (DBI)

Framework

http://software.intel.com/en-us/articles/pin-a-dynamic-binary-

instrumentation-tool

TREE Console: Trace Generation 2

PINAgent: Connects TREE with PIN tracer

TREE: Taint Analysis Configuration 3

 TREE: Branch Taint Graph 4

 Negate Tainted Path Condition to

Exercise a New (“Bad”) Path

5

“Bad!” Path Query

CBASS

(Cross-platform

Symbolic

Execution)

Result

‘b’

‘a’

‘d’

On-demand Symbolic Execution

(What Happens Behind the Scene)

 Satisfiable Input (0x62,’b’)

(set-logic QF_AUFBV)

(declare-fun _IN_0x12ff6c_0x0_SEQ0 () (_ BitVec 8))

(declare-fun EXPR_0 () (_ BitVec 32))

(assert (= EXPR_0 (bvsub ((_ sign_extend 24) (bvxor _IN_0x12ff6c_0x0_SEQ0 (_ bv128 8))) (_ bv4294967168 32))))

(assert (= (ite (not (= (ite (not (= (bvand ((_ extract 63 0) (bvsub ((_ sign_extend 32) (bvand ((_ extract 31 0) EXPR_0) (_

bv4294967295 32))) (_ bv98 64))) (_ bv4294967295 64)) (_ bv0 64))) (_ bv1 32) (_ bv0 32)) (_ bv0 32))) (_ bv1 8) (_

bv0 8)) (_ bv0 8)))

(check-sat)

(get-value (_IN_0x12ff6c_0x0_SEQ0))

7

6

TREE: Re-execute with

“Satisfiable” Input

8
 Satisfiable

Input

7

8

Task 2: Own the Execution
Assume Payload at 0x401150

TREE Constraint Dialogue

Task 2:
Own the Execution: From Crash to Exploit

Symbolic eip =
(= expr_0 (concat (bvand (bvor
_IN_0x12ff6c_0xd_SEQ0 (_ bv0 8)) (_ bv255 8))
(bvand (bvor _IN_0x12ff6c_0xc_SEQ0 (_ bv0 8))
(_ bv255 8))))
Query:
get-value (_IN_0x12ff6c_0xd_SEQ0
_IN_0x12ff6c_0xc_SEQ0
_IN_0x12ff6c_0xe_SEQ0
_IN_0x12ff6c_0xf_SEQ0)

SMT
Solver

Sat:
(_IN_0x12ff6c_0xd_SEQ0 #x11
_IN_0x12ff6c_0xc_SEQ0 #x50
_IN_0x12ff6c_0xe_SEQ0 #x40
_IN_0x12ff6c_0xf_SEQ0 #x00 Symbolize Input and perform

concrete-symbolic execution

 Using CBASS/TREE to Explore
Bad Paths and Refine Exploits

TREE/CBASS Demo

Real World Case Studies

Target

Vulnerability

Vulnerability

Name

Target Application

Mode

Target OS

CVE-2005-4560 Windows WMF User Mode Windows

CVE-2207-0038 ANI Vulnerability User Mode Windows

OSVDB-2939 AudioCoder

Vulnerability

User Mode Windows

CVE-2011-1985 Win32k Kernel

Null Pointer De-

reference

Kernel Mode Windows

CVE-2004-0557 Sound eXchange

(SoX) WAV

Multiple Buffer

Overflow

User Mode Linux

Compression/

Decompression

Zip on Android User Mode Real Device Trace

Generation (In

Progress)

Highlights from Real World Case Study:

Windows WMF Vulnerability (CVE-2005-4560)

• WMF SETABORTPROC Escape Vulnerability

– http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2005-4560

– The Windows Graphical Device Interface library
(GDI32.DLL) in Microsoft Windows allows remote
attackers to execute arbitrary code via a Windows Metafile
(WMF) format image with a crafted SETABORTPROC GDI
Escape function call, related to the Windows Picture and
Fax Viewer (SHIMGVW.DLL).

WMF Format

• [MS-WMF]: Windows Metafile Format

– http://msdn.microsoft.com/en-us/library/cc250370.aspx

• A Simplified One:

– http://wvware.sourceforge.net/caolan/ora-wmf.html

• Overall WMF File Structure:

– One type of record is “escape” record

– SETABORTPROC escape allow an application to register a
hook function to handle spooler errors

Meta

Header

Meta

Record 1
Meta

Record 2

Meta

Record 3
…

WMF Crash

The WMF SETABORTPROC Vulnerability

rundll32.exe c:\windows\system32\shimgvw.dll,ImageView_Fullscreen

C:\escape\escape.wmf

Dynamic Facts:

229,679

instructions

executed just to

cause the crash

WMF Taint Graph

Partial TREE Taint Graph Visualization

(Taint Sources)

Input Bytes 7th-10th

(FileSize)

Security-Sensitive Locations

(Taint Sinks)

Memory taint node

 ALL Nodes are

Clickable to Take User

to IDA CFG

Register taint node

(Taint Sources)

Initial Input Bytes 29th(0x1d)-

32th(0x20)

(SHELLCODE)

Data Dependency

(Default)

LOOP Counter

Dependency

(C)

WMF File: The Fields & The Vulnerability

• Key Structures:

typedef struct _WindowsMetaHeader

{

WORD FileType; /* Type of metafile (0=memory, 1=disk) */

WORD HeaderSize; /* Size of header in WORDS (always 9) */

WORD Version; /* Version of Microsoft Windows used */

DWORD FileSize; /* Total size of the metafile in WORDs */

WORD NumOfObjects; /* Number of objects in the file */

DWORD MaxRecordSize; /* The size of largest record in WORDs */

WORD NumOfParams; /* Not Used (always 0) */

} WMFHEAD;

typedef struct _StandardMetaRecord

{

 DWORD Size;

 /* Total size of the record in WORDs */

 WORD Function;

 /* Function number (defined in WINDOWS.H)

*/

 WORD Parameters[];

 /* Parameter values passed to function */

} WMFRECORD;

Shellcode

Escape SetAbortProc

WMF Slicing (1)

An Instruction Slice Traced Back from Crash Site to Input

Each node uniquely trace back to one execution event through its sequence number

0x77f330a3 call eax 2 ffd0 0x0 0x3812f Reg(EAX=0xa8b94 ESP=0xb4fb88 EIP=0x77f330a3) W 4

b4fb88

0x77c472e3 rep movsd 2 f3a5 0x0 0xb142 Reg(EDI=0xa8804 eflags=0x10216 ESI=0xa9f8c ECX=0xa

) R 4 a9f8c cc_cc_cc_cc W 4 a8804

0x77f2e997 mov ecx, [ebp+arg_8] 3 8b4d10 0x0 0xc5c3 Reg(EBP=0xb4fbf8 ECX=0x7c809a20) R 4

b4fc08 44_0_0_0

0x77f2e983 mov [ebp+arg_8], eax 3 894510 0x0 0xbd8c Reg(EAX=0x44 EBP=0xb4fbf8) W 4 b4fc08

0x77f2e97f add eax, eax 2 03c0 0x0 0xbd89 Reg(EAX=0x22 eflags=0x246)

0x77f2e949 mov eax, [edi+6] 3 8b4706 0x0 0xbd7d Reg(EAX=0xa8920 EDI=0xa87e8) R 4 a87ee

22_0_0_0

0x77c472e3 rep movsd 2 f3a5 0x0 0xb13c Reg(EDI=0xa87ec eflags=0x10216 ESI=0xa9f74

ECX=0x10) R 4 a9f74 0_3_22_0 W 4 a87ec

WMF Slicing (2)

An Instruction Slice with Text Helps Put Instruction In Its Context Helps

More

Module: gdi32.dll

Function: CommonEnumMetaFile

text:77F330A3 call eax

WMF Slicing (3)

An Instruction Slice with Text Helps a

Little
More Context Helps More

Module: gdi32.dll

Function: CommonEnumMetaFile

Call Graph: caller PlayMetaFile text:77F330A3 call eax

WMF -- The Relevant Parts

The WMF SETABORTPROC Vulnerability

rundll32.exe c:\windows\system32\shimgvw.dll,ImageView_Fullscreen

C:\escape\escape.wmf

Dynamic Facts:

Out of 229,679

instructions

executed just to

cause the crash

ONLY 12 Unique

Instructions Are

Relevant to the

CRASH

• Our tools support interactive binary
analysis, with Replay, Dynamic Taint
Analysis, and Symbolic Execution.

• TREE runs on top of IDA Pro and supports
cross-platform trace collection, taint analysis
and replay.

• CBASS (based on REIL) enables IR-based
architecture-independent symbolic execution
and can support both automated and
interactive analysis.

• YOU drive the tools!

Conclusions

• TREE is open source at:

http://code.google.com/p/tree-cbass/
• First version of TREE (Taint Analysis) is released
• Replay is in Progress
• CBASS is Following

– Contacts:
• Li.L.Lixin@gmail.com, Project Lead
• xingzli@gmail.com, Developer
• locvnguy@gmail.com, Developer
• james.just@gmail.com, Program Manager

Where You Can Get TREE

http://code.google.com/p/tree-cbass/
http://code.google.com/p/tree-cbass/
http://code.google.com/p/tree-cbass/
http://code.google.com/p/tree-cbass/
mailto:Li.L.Lixin@gmail.com
mailto:xingzli@gmail.com
mailto:locvnguy@gmail.com
mailto:james.just@gmail.com

• Thanks to Ilfak Guilfanov and the IDA team for
promptly fixing the bugs that we have
reported to them and for their suggestions on
the GUI integration.

• Thanks to Thomas Dullien and Tim Kornau of
the Google Zynamics team for making their
latest version of REIL available to us.

• Thanks to numerous reviewers at Battelle
Memorial Institute for their feedback

Acknowledgements

[1] L. Li and C. Wang. , Dynamic analysis and debugging of binary code for security
applications, (to appear) International Conference on Runtime Verification (RV'13).
Rennes, France. 2013

[2] Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
Network And Distributed System Security Symposium(2008)

[3] Song, Dawn, et al. "BitBlaze: A new approach to computer security via binary
analysis." Information systems security. Springer Berlin Heidelberg, 2008. 1-25.

[4] Clause, James, Wanchun Li, and Alessandro Orso. "Dytan: a generic dynamic taint
analysis framework." Proceedings of the 2007 international symposium on Software
testing and analysis. ACM, 2007.

[5] Schwartz, Edward J., Thanassis Avgerinos, and David Brumley. "All you ever wanted
to know about dynamic taint analysis and forward symbolic execution (but might
have been afraid to ask)." In Security and Privacy (SP), 2010 IEEE Symposium on, pp.
317-331. IEEE, 2010.

[6] Bhansali, Sanjay, et al. "Framework for instruction-level tracing and analysis of
program executions." Proceedings of the 2nd international conference on Virtual
execution environments. ACM, 2006.

[7] Dullien, T., Porst, S.: REIL: A platform-independent intermediate representation of
disassembled code for static code analysis. In:CanSecWest(2009)

[8] REIL:URL:http://www.zynamics.com/binnavi/manual/html/reil language.htm

References

