
By Skip Duckwall and Chris Campbell

for Blackhat USA 2013

Introduction

User credentials are one of the most powerful items an attacker can obtain. Single-factor, or password-
based credentials are dangerous to lose because of their extreme portability. From almost anywhere
inside a prototypical business network, a username and password can and will get the attacker into
almost any application from email to databases. Thus, protecting user credentials from the prying eyes
of both attackers and malicious insiders should be a priority on the network. Unfortunately for the
network defenders, Microsoft does not make this an easy task. Invoking imagery from the 1980 movie
“Airplane”, Microsoft has a credential problem.

Microsoft’s problem with credentials starts with the implementation of the Single Sign on Solution (SSO)
built into many Microsoft products, including Windows. Meant to improve user experience, Windows
goes to extensive lengths behind the scenes to prevent the user from having to type in their username
and password more than once. If this feature didn’t exist, every time a user would try to access a
network resource, such as email for a fileshare, they would be prompted for their password. In the
average corporate network environment, this could end up being 10 or more times upon initial logon.
During a recent talk entitled “Pass the Hash and Other Credential Theft and Reuse: Preventing Lateral
Movement and Privilege Escalation” at the Microsoft Bluehat Security Conference, Mark Russinovich,
Technical Fellow at Microsoft, called this phenomenon “Credential Fatigue1”. The fact there is an
internal term for overly bothering the user to type in their password illustrates how pervasive SSO is in
the MS current and future development.

Behind the scenes, Windows authentication can interact with multiple authentication schemes. In order
to provide the correct authenticator to the authentication service, Windows caches the user’s
credentials in memory in whatever format is required. In the case of NTLM, all that is saved is the user’s
password hash. For other authentication providers, including Kerberos, however, the plaintext
username and password are saved. This means with the proper tools and SYSTEM level access, an
attacker can recover the username and password for all users that are logged in. On servers with a large
number of user logins, such as a file server or Exchange server, this could be devastating. This leaves
attackers asking “Why ‘Pass the Hash’ when you can get the actual username and password?”

Even if an organization has implemented two-factor authentication, its use is only for “interactive
sessions”. This means that the second authentication factor (smart card, passcode token, soft cert, etc)
is only used when physically logging into a server at the console or via Remote Desktop Protocol
/terminal services. It is also possible for websites to require the security certificate of a user before
allowing access. Unfortunately, most interactions that a user has with the work environment aren’t
considered “interactive”. Access to file shares, email and database logins, to name a few, cannot use

1 http://channel9.msdn.com/Events/Blue-Hat-Security-Briefings/BlueHat-Security-Briefings-Fall-2012-
Sessions/BH1208

the second factor for authentication. What does this mean? Windows still relies on the passwords
and/or password hashes behind the scenes to authenticate to network resources that are incapable of
utilizing two-factor authentication.

Outside of the SSO world it isn’t exactly rainbows and unicorns either. User level credentials are
potentially lying all over the place. Examples are domain cached credentials, plaintext passwords for
saved accounts in the LSA secrets, local SAM (Security Account Manager) accounts, application-saved
passwords in the registry, application saved passwords in application configuration files, password
vaults, keylogging, and the list goes on. This presents a veritable virtual smorgasbord of choices for an
attacker to go after in order to gain access to other systems. Not all of these possibilities yield
immediate gold, but that doesn’t mean they aren’t useful to an attacker with time and resources to
burn.

If for some reason an attacker isn’t interested in hunting for credentials, they have other options they
can use. For example, Windows provides that ability for an attacker to create a thread in an already
existing process to run their own code. This thread will run with all the security privileges of the user
running the process. This code can then interact with the network while impersonating the account in
question. It’s also possible to export Kerberos tickets and reintroduce them onto a different machine,
thus granting the ability to literally transplant users from one system to another without any knowledge
of the user’s credentials.

Single Sign-On: The Great and Terrible

A typical day at the office for the average person involves showing up, sitting down at their workstation,
logging in to the computer, bringing up their email, browsing updates on the corporate internet, and
then going on about their daily routine. Behind the scenes, when the user logs in, scripts run that
mount all the required file shares dependent on the user’s level of access. All of these interactions with
network resources only required the user to input their password one time. Through the magic of SSO,
Windows makes it so that as long as all the applications are configured correctly, the user rarely has to
type their passwords in again. How does this work? What’s behind the curtain?

Somewhat simplified, when the user initially logs in interactively (via the computer’s console) they
interact with the “Winlogon2” process. “Winlogon” accepts the user’s credentials and passes them onto
the “LSASS” (Local Security Authority Subsystem Service) process for validation. “LSASS” uses
“authentication packages” to validate that the credentials are valid, for example by validating against
Active Directory or the local SAM database. Assuming the credentials are validated, a shell is created
for the user and the logon process continues on. However, the valid credentials are cached for future

2 http://msdn.microsoft.com/en-us/library/windows/desktop/aa380543(v=vs.85).aspx

use by the LSASS process. In fact, LSASS is a true polyglot, speaking several different authentication
methods.

Authentication dialects are supported by “Security Support Providers”, or SSPs for short. There are SSPs
for Kerberos, NTLM, Digest-MD5, and others. Many of the SSPs might not be used at all during the
average user’s session. However, each of the SSPs keeps what it needs in order to properly process
requests for that particular dialect. You know, just in case...

Parlez-Vous [Kerberos|NTLM|Digest|...]?
As previously mentioned, each SSP handles different types of authentication mechanisms as well as
keeps whatever information it needs to act on behalf of the user around just in case it is needed. We
will briefly discuss the various methods of authentication and what (apparent) information is kept
hanging around in the memory of the LSASS process. All an attacker needs is System level privilege to
be able to access the memory of the LSASS process.

● Kerberos

Kerberos is the default authentication mechanism for Active Directory. Kerberos originated at
MIT and is based on a user being granted a time-limited ticket. By providing this ticket to
network services, the authentication exchanges are streamlined resulting in much lower
overhead during the period the ticket is active.

Certain criteria have to be met before Kerberos can be used. For example, both ends of the
connection (client and server) have to be in the same domain (or trusted domain). The client
and/or server must refer to each other by their DNS names. If one end uses an IP address, then
Kerberos cannot be used.

More details on security issues with Kerberos will be discussed later in this paper.

What is kept in memory in LSASS?

Based on the research of Mr. Benjamin Delpy3, AKA gentilkiwi, it appears that LSASS keeps
username and the unencrypted password for the Kerberos SSP. Below is the output of his tool
Mimikatz:

3 http://blog.gentilkiwi.com/mimikatz

Figure 1- Output from Mimikatz for the Kerberos SSP

● NTLM (MSV1_0)

Prior to the introduction of Kerberos, NTLM was the authentication method used by Microsoft
Windows Domains. However, NTLM is still used today, even in Active Directory environments.
If Kerberos cannot be used, for example if one endpoint is referred to by IP address, then NTLM
is used to authenticate instead. NTLM can also be used to authenticate with virtually any
protocol that Microsoft supports. For example, it is not unusual to see NTLM traffic used for
accessing SharePoint. Exchange can configure NTLM authentication for most email protocols, to
include SMTP, IMAP, and POP3. MSSQL servers can be configured to use NTLM authentication
as well.

There are 2 different hash types that get calculated: the older LanManager (LM) hash and the
NT hash. LM hashes suffer from serious cryptographic problems, including a 14 character limit
on the length of passwords. Because of this, the passwords of 14 characters or less can be easily
recovered from the LM hash via rainbow tables. Note: In the LSASS process, a LM hash is
calculated REGARDLESS for any password of 14 characters or less. Even if the registry settings
exist to prevent the LM passwords from being written to disk. The NT hash doesn’t suffer the
same cryptographic issues as the LM hash, however, it is not a cryptographically strong hash,
and modern hardware can crack these hashes at a very high rate of speed.

Additional security risks of NTLM usage will be discussed later in this paper.

What is kept in memory in LSASS?

Mimikatz shows us that both the LM hash and the NT hash are kept in the LSASS process
memory.

● Digest MD5

Digest authentication was primarily introduced as a method of authentication to use with web
servers to replace the credentials being sent in cleartext via so called “basic authentication”.
The username, password, a time-based nonce (number used once) and other information are
concatenated and passed through the MD5 hashing algorithm.

What is kept in memory in LSASS?

Mimikatz was the first tool to introduce the world to the fact that plaintext credentials were
being cached in LSASS, and the Digest-MD5 SSP was the first place they were found.

Figure 2 - Mimikatz Output for the MSV1 (NTLM) SSP

Beyond these three major authentication schemes, there is also support for other, less used
SSPs, like LiveSSP, used to authenticate your computer systems to the Microsoft Live-ID
authentication. Who doesn’t want their user’s accounts tied in with their XBOX account at
home? There is also support for custom SSPs for those who have some sort of custom
authentication scheme.

Tit for Tat - Your Move [Microsoft | Researcher]
Microsoft is in a constant arms race with security researchers. For example, in the most recent preview
release of Windows Blue (8.1) Microsoft made efforts to counter the research that initially brought us
Mimikatz and subsequently added to WCE4. However, within a few hours, Mimikatz was updated5 and
the plaintext passwords were still found. Microsoft will more than likely fix the problems and the fight
will return to the researchers. Lather. Rinse. Repeat.

However, even if Microsoft does find a way to prevent Mimikatz or tools like it from working in current
versions of Windows, there is no guarantee any such features will be backported into previous versions
as this will be terribly expensive for Microsoft. The time to backport the fix(es) into the older codebases,
build patches, update documentation, test, etc could simply be infeasible for Microsoft to undertake.
This leaves most organizations vulnerable to these attacks. The typical upgrade cycle for large
organizations usually takes several years and often corresponds with hardware upgrades. Without a
backport Mimikatz and tools like it will be useful for the foreseeable future.

What about simply removing the offending features? What about making the features optional? What
about just prompting users for a password the first time one of these SSPs gets called rather than simply
enabling everything? These are all interesting questions that would need to be discussed with the
designers of Windows authentication. Perhaps there are well-reasoned arguments why this is
infeasible. Microsoft, please, enlighten the masses!

In the next section we explore what an attacker has to play with in the event that there’s nothing
available to use in LSASS.

4http://hexale.blogspot.com/
5 http://blog.gentilkiwi.com/securite/oups-compte-microsoft-windows-8-1-preview-en-clair

Figure 3 - Output of Mimikatz for the MD5 Digest SSP

The Delusion Starts, LSASS Memory is Empty
Even if Microsoft were to fix the issues with SSPs and plaintext credentials, attackers still have the
venerable “Pass-the-hash Attacks” (PTH) to fall back on as well as possible attacks against Kerberos, such
as “Pass-the-ticket”.

As alluded to in the SSP section of this paper, NTLM suffers from several weaknesses. The first, which
allows the so called PTH attacks relies on the fact that the NTLM protocols acts on the unsalted and
hashed form of the password instead of the actual password. If the password hashes are compromised,
then an attacker can use the hashes themselves to authenticate to almost anything on the network and
access any and all data. It is worth noting that this is exactly what the NTLMSSP does in Windows
systems, it passes the hash! This is evidenced by the fact that only the hashes are kept by the
NTLMSSP.

There are two primary versions of NTLM in use today. The older version, sometimes referred to as
NTLMv1 (also known as MS-CHAPv2) has been completely broken. Please refer to Moxie Marlinspike
and David Hutton’s talk last year at Defcon 20 for more details6. Their attack allows the initial password
hash to be recovered, thus enabling PTH attacks. While their talk specifically talks about MS-CHAPv2,
the authentication process is the exactly same for NTLMv1. A third security researcher, Mark Gamache7,
released a tool to pull out the necessary parts and run the NTLMv1 hash against Moxie’s Cloudcrack8

service. The other NTLM protocol in use, NTLMv2 has corrected many of the problems with NTLMv1,
however it still affords an opportunity for the plaintext password to be cracked directly if captured on
the wire.

In addition, both NTLMv1 and NTLMv2 are vulnerable to a relay attack9. In the relay scenario, an
attacker somehow gets a user to authenticate to a service they control using NTLM. This could be an
icon in a word document that references a network share on the attackers computer, or possibly a
website requiring NTLM authentication. When the victim’s computer automatically tries to authenticate
(thanks again SSO), the attacker then attempts to authenticate to a service on a different server, simply
forwarding on the victim’s authentication to that service. When the service responds back with the
challenge, the attacker forwards the challenge back to the victim’s computer. This continues
throughout the rest of the authentication exchange. After the authentication is complete, the attacker
has an authenticated session to do with what they please.

It is worth noting that by default, domain controllers, require SMB signing in order to authenticate using
NTLM. This effectively prevents the relay attack from working against a domain controller. However,
the relay attack will work just fine against any other member servers which typically do not have SMB
signing enabled.

6 https://www.cloudcracker.com/blog/2012/07/29/cracking-ms-chap-v2/
7 http://markgamache.blogspot.com/2013/01/ntlm-challenge-response-is-100-broken.html
8 https://github.com/moxie0/chapcrack
9 http://www.room362.com/blog/2012/7/10/cross-protocol-chained-pass-the-hash-for-metasploit.html

The Microsoft implementation of Kerberos also has its issues. First off, WCE allows the attacker to
dump the user’s TGT from one computer and reload it on a different computer, effectively transplanting
the user from machine to machine. If the attacker gets ahold of a Domain Admin’s TGT, they can
effectively replicate the user on as many domain-connected computers as they want. Also, while
technically the ticket granting tickets (TGTs) expire, it is relatively trivial to get the ticket’s timeout
extended, since the Microsoft implementation will automatically do it for you if you present an expired
TGT when requesting access to services.

In addition, from our Blackhat USA 2012 whitepaper, the long term secret keys between the domain and
the Kerberos entities is their password hash. In addition, the secret key used to sign all Kerberos TGTs is
the KRBTGT hash. It’s theoretically possible for somebody to take a regular users TGT, alter the server
only portion to grant access as a Domain Admin, repackage it all together and then introduce it back
onto the Windows system. Talk about a golden ticket.

People might think that these attacks against Kerberos are some sort of recent or newly discovered
problems. However, many of the essential problems with Kerberos have been described in the 1991
paper “Limitations of the Kerberos Authentication System10” by Bellovin and Merrit. While the paper
primarily relates to Kerberos 4 and spends most of its time talking about specific message interactions
between Kerberos clients and servers, there are still some eerie security discussions that ring just as true
today. Things like the previously discussed “pass-the-ticket” attack, compromise of the Kerberos Key
Distribution Center can allow an attacker the ability to emulate any user, and the fact that the long term
secret keys are the user passwords are all discussed. As George Santayana said “those who cannot
remember the past are condemned to repeat it.”

Hypothetically, what would happen if NTLM were eliminated and Kerberos didn’t suffer from these
weaknesses?

The Descent into Madness - Tokens
If for whatever reason NTLM / Kerberos were unavailable, the next rung down the ladder relates to
“security tokens”. Security tokens are associated with every Windows process and detail information
regarding the security context of the process. The seminal paper on the subject was entitled “Security
Implications of Windows Access Tokens - A Penetration Tester’s Guide11” by Luke Jennings from 2008.
Even 5 years later this paper is worth the read.

As a quick summary, there are essentially 2 privilege levels of security tokens that are useful for
attackers, impersonation and delegation. Impersonation allows an attacker to impersonate another
user on the compromised system. Impersonation tokens are typically created when the computer is
accessed non-interactively. This is primarily used as a privilege escalation technique in order to get to
System level privileges on the compromised computer.

10 http://academiccommons.columbia.edu/catalog/ac%3A127106
11 http://labs.mwrinfosecurity.com/assets/142/mwri_security-implications-of-windows-access-
tokens_2008-04-14.pdf

Delegation allows the user to leverage the level of access this token has on this system onto another
system. Delegation tokens are typically created when the user establishes an interactive session. This is
truly what an attacker wants in that it allows an attacker who finds a token for a user with higher
privileges than what is currently available to move laterally and upwards towards the ultimate prize, a
domain admin account. There could be several intermediate hops between a regular user and domain
administrator. Usually from an attacker’s standpoint it’s simply a matter of time and jumping from
account to account to discover the path to the top. One of our favorite techniques is to try to entice an
administrator to log onto the system by causing some sort of issue on the computer. The admin logs in,
we steal their token, life is good. Barring trying to invoke a login by an administrator user, attackers will
often target network file shares as they have a large number of users who have file shares mounted
through login scripts, and thus often have usable tokens.

The biggest problem with tokens is that in many cases, security tokens can remain available long after
the process has been terminated. This is especially true with the way that many admin tools interact
with the system. If the program being used properly logs out, the tokens generally disappear properly.
However, in many cases, the only way to prevent the token from being used is to reboot the system!

For example, if a server administrator used RDP to log into a server and didn’t explicitly log out of his
session, the delegate tokens will remain. Other tools such as Sysinternals PsExec often leave tokens as
well, depending on how it was used. Microsoft did some testing as part of their revision of their PTH
whitepaper and has a section listing under what circumstances a limited set of tools leaves usable
tokens.

Note: We have personally seen other tools leave tokens lying about. For example, recently we saw a
McAfee AV scan kicked off by an IT department leave its security token after the scan was completed.
An attacker now has instant access to the account the McAfee scanner used, often a highly privileged
domain account!

The risk associated with delegate tokens can be somewhat mitigated on newer versions of Windows.
Windows 2008 domains and later have the ability to designate accounts as “sensitive and cannot be
delegated”. However, in many cases this will prevent things from working properly. For example, the
McAfee virus scanner previously mentioned needs to log on interactively in order to execute the scan
that was initiated by the IT staff. Without delegation this account couldn’t be used to execute the
scanner on the remote machine.

So, what else is there to worry about? In the next section we’ll talk about some items that deserve
attention, but we really want to focus on GPP, or Group Policy Preferences, a commonly used feature
that doesn’t really help the problem.

Other Flotsam and Jetsam
● Domain Computer Accounts / Domain Service Accounts

When a computer joins Active Directory, a computer account is created. The plaintext password
(a long random unicode string) is kept in an area called the LSA (Local Security Authority)
secrets. While using this account isn’t anything terribly sexy, it’s still a member of the ‘Domain
Users’ group, which by default can gather all sorts of information regarding the Active Directory,
such as a list of users, list of groups, group memberships, etc. This could also mean the ability to
mount a file share. Useless Trivia: When a computer account is pre-created (or the password
for the computer account is reset) the password is automatically set to the be the same as the
computer account name. When the account is used to join the domain, the password is
automatically reset to something random. Domain service accounts also save their passwords in
LSA secrets.

● Domain Cached Credentials

In the event that a computer loses touch with the Active Directory, by default up to 10 domain
logon credentials in a salted and hashed format are stored. This allows the computer to
authenticate an account while the connection between the computer and Active Directory is
being fixed. While these credentials cannot be passed in a PTH attack, they can be dumped with
tools like cachedump and they can be attacked offline with John the Ripper. These hashes are
also stored in the LSA secrets.

● Plaintext Credentials in unattend.xml/autounattend.xml

If an organization uses the Windows unattended installer to install new workstations, it’s
possible to recover credentials (possibly Domain Administrator!) from the master configuration
file for the installation. There are several locations on a workstation where the file could be
found after the installation. Read this cited article for more information12. Please note,
oftentimes the unattended installer is installed on a network share and executed remotely
leaving the configuration files readable by anybody on the domain.

● Plaintext credentials in configuration files / registry

Some applications store credentials in configuration files or hide them somewhere in the
registry. Metasploit has a large number of post-exploitation scripts that will hunt for these
credentials since oftentimes they will be used in other places across the network.

● Local credentials

Every Windows box has local accounts that are stored in a special registry hive called the SAM
(Security Accounts Manager). By default Windows has a local administrator account (sometimes
called the 500 account, because of its SID) and a guest account (default sid is 501). On a fresh
install of Vista+, the local administrator account and the guest account are both disabled and
have a blank password. When the machine finishes installation, a new account is created and

12 http://technet.microsoft.com/en-us/library/cc749415(v=ws.10).aspx

added to the local administrators group on the computer. One notable exception to this rule is
with Windows 2012. By default the local administrator account is not disabled.

UAC, or User Account Control, is enabled by default as well. UAC affects the way that the local
accounts can access the computer across the network. The idea is that a local account should
be used for administrative tasks locally. Hence, when a local account attempts to authenticate
to a workstation remotely, the OS prevents it from working properly. However, there are a
couple of very large caveats.

First, the capability that prevents the members of the workstations “administrators” group from
accessing the workstation remotely can be overridden with a registry setting. It is not unusual
for an organization to enable this particular setting when transitioning from older versions of
Windows to newer versions to get around workflow issues13.

Secondly, by default the local 500 account is unaffected by the UAC settings, since the account is
assumed to be disabled. There is an explicit option to enable enforcement of UAC on the local
500 account. So in the event that the local 500 has been enabled, unless that other setting is
enabled, UAC isn’t enforced. This provides a popular method for lateral movement on the
network in the event that the local administrator passwords are the same across multiple
machines using PTH.

This leads us to discuss the previously mentioned Group Policy Preferences.

Making a Bad Problem Worse: Group Policy Preferences
As if the Pass the Hash vulnerabilities aren’t bad enough, Microsoft has introduced two features that
make the problems dramatically worse. Group Policy Preference settings can easily ensure that every
machine in your enterprise is vulnerable to lateral movement attacks by setting an identical password
on every host or server. In addition, it suffers from a design flaw that allows for trivial password
recovery.

Group Policy Preferences
Group Policy Preferences were introduced with Windows Server 2008 and allow for more granular and
flexible policy enforcement14. One of the features is the ability to configure local accounts, service
accounts and scheduled tasks with credentials. Administrators often use this feature to uniformly
rename the built-in administrator account and ensure that password is consistent. A consistent
password is exactly what enables Pass the Hash and why it is so successful.

13 http://msdn.microsoft.com/en-us/library/windows/desktop/aa826699(v=vs.85).aspx
14 http://technet.microsoft.com/en-us/library/cc731892(v=ws.10).aspx

Figure 4 - Configuring GP Preference object to update username/pw

Newer versions of Windows Server actually warn the user against setting passwords in Group Policy
preferences and this paragraph was added to a popular Technet blog post on the subject from 2008:

“Because passwords in preference items are not secured, we recommend that you carefully
consider the security ramifications when deciding whether to store passwords in preference
items. If you choose to use this feature, we recommend that you consider creating dedicated
accounts for use with it and that you do not store administrative passwords in preference
items.15”

Although Microsoft never hid this vulnerability, adoption of the feature by administrators was slow and
it didn’t pique security researcher Emilien Giraul’s interest until 201216. Utilizing a network capture,
Emilien discovered that passwords were enforced utilizing XML files that obscured the passwords by
encrypting them with a static key. Microsoft also published the key17:

With the key, it is trivial to decrypt the encoded and encrypted passwords with a PowerShell function18:

15 http://blogs.technet.com/b/grouppolicy/archive/2008/08/04/passwords-in-group-policy-preferences.aspx
16 http://esec-pentest.sogeti.com/exploiting-windows-2008-group-policy-preferences
17 http://msdn.microsoft.com/en-us/library/2c15cbf0-f086-4c74-8b70-1f2fa45dd4be.aspx#endNote2
18 Get-DecryptedCpassword is a tool to be released with this talk

Figure 5 - AES key published by Microsoft

Figure 6 - Get -DecryptedCpassword PowerShell function to decrypt GPP passwords

With this feature, any member of the “authenticated users” group can simply browse to the policies
folder on their domain controller:

Figure 7 - Groups .xml file from Domain Controller containing encrypted password string

Then easily recover passwords to administrative and service accounts providing a trivial privilege
escalation path:

Figure 8 - Using Get-DecryptedCpassword from the PowerShell console

Instead of utilizing Group Policy Preferences to set passwords on local accounts, administrators have
another option. Utilize a script to set a different password on every machine. There are tools such as
Passgen19, but it is not available for download and isn’t open-source so we wrote Set-UniquePassword20.
Administrators can use the function to set unique passwords for local accounts in two basic ways. The
first is the random option which sets a 30 to 60 character random password for each account. The
hostnames and their associated username/password combinations should be immediately taken offline
or not stored at all. The second option is to provide a password phrase that can be appended or
prepended to a unique string from the machine. Currently, hostname, MAC and serial number are the
only “tokens” supported. Both the hostname and MAC address contribute to a unique password, but
only the serial number would be difficult for an attacker to gain from the network and therefore add
some additional protection if the phrase is discovered.

If no two local admin account passwords are the same, then no two hashes are the same effectively
neutering the one of the traditional PTH attacks using local credentials.

19 Protect Your Windows Network: From Perimeter To Data (Addison Wesley Professional, 2005)
20 Set-UniquePassword is a tool to be released with this talk

Figure 9 - GPP enables lateral movement with hashes or passwords

Dispelling Rumors: Smart cards as a possible solution
One idea that keeps being trumpeted as the solution to the entire problem is the notion of smart cards.
Microsoft describes smart cards as “small, tamperproof computers” which “perform their own
cryptographic operations” and are “as revolutionary to the computer industry as the introduction of the
mouse or CD-ROM.”21 Ultimately, they are wallet-sized two factor authentication tokens embodying
something the user possesses as well as a pin which is something the user must know. Unfortunately,
Microsoft’s implementation of the technology is flawed.

The easiest way to explain the concern with smart cards is with an example scenario that represents a
common and secure environment. An organization requires smart cards for all interactive logons to
include administrative and privileged accounts.

Traditional enterprise services such as SharePoint, Exchange and Outlook Web Access (OWA) are
internet and intranet-facing. Users login into their workstations with their smart card and access an
external service via SSO. They are not required to authenticate more than once in order to avoid
“credential fatigue”. Additionally, the organization has several internally-developed web applications
that customers use. All servers are patched regularly and the organization has a robust security
infrastructure with antivirus, host-based security products and third-party application whitelisting.

Despite all of security controls, an attacker is able to discover a seemingly insignificant file-upload
vulnerability in a vendor receipt submission system. The attacker uploads a custom ASP file which is
executed as the limited “NT AUTHORITY/Network Service” account22. The webshell is used to quickly
discover domain credentials in database connection strings. This access is used to mount and search the
domain controller for passwords in Group Policy Preferences. A local administrator name change and
password are discovered and trivially reversed with a script23. The attacker then uses the credentials to
invoke a malicious PowerShell script24 to securely exfiltrate the database containing all password and
pulls it off the network with a browser. The attack took less than half an hour from start to finish.

Fortunately, the attack is discovered within 12 hours when an alert employee discovers the strange
receipt submissions within the web application. Incident handlers recover a large encrypted file and

21 http://technet.microsoft.com/en-us/library/dd277362.aspx
22 http://msdn.microsoft.com/en-us/library/windows/desktop/ms684272(v=vs.85).aspx
23 https://github.com/mattifestation/PowerSploit/blob/master/Recon/Get-GPPPassword.ps1
24 http://gallery.technet.microsoft.com/scriptcenter/Get-PasswordFile-4bee091d/

Figure 10 - AD setting requiring the use of smart cards

notice the access times of all the web application source code which leads them to conclude that the
attacker compressed the source code and files associated with each of the websites on the server. The
organization chooses to decommission the server and rush the new and more secure version into
production. After careful monitoring, no evidence of continued compromise was found and the
organization continued business operations after lauding their incident response prowess.

Thanks to common misconceptions, one hour and a small web vulnerability (which could easily be
replaced with a spear-phishing attack), this organization will likely be compromised for years. How is
the enterprise still compromised when the attacker didn’t leave behind any code? Armed with the
NTDS.dit and system files, the attacker can easily retrieve the NT hashes of each user account offline25.
How are the credentials useful to the attacker without persistent internal network access? Aren’t smart
card passwords pseudo-random, long and nearly impossible to crack?

Figure 11 - Hash being supplied instead of the password for NTLMSSP authentication

The attacker doesn’t need to crack them and the hashes can be passed to the internet services that
support NTLMSSP with a version of Firefox patched26 to Pass the Hash. In our scenario, the attacker can
now authenticate to SharePoint and OWA as any user in the domain from the internet. If internal access
was needed, the attacker could certainly leverage webmail to accomplish it.

Figure 12 - Successful pass-the-hash attack utilizing PTH-Firefox from the PTH-Suite

It may not be immediately clear what role smart cards play in this scenario, but it is a devastating one.
In a typical domain, the attacker would have to contend with semi-regular password changes that would
render the stolen Active Directory database ineffective after a few months. Additionally, the attacker
would be forced to repeat a similar brazen attack or leave behind code for persistence which could be

25 http://www.ntdsxtract.com/en/ntdsxtract.html
26 https://code.google.com/p/passing-the-hash/downloads/list

discovered. However, by enforcing smart card logons the hashes associated with each account will likely
never change because the pseudo-random password is only generated once. That means that one
successful attack against this enterprise will yield elevated and user access to services until the active
directory is rebuilt.

We can see how this works by creating a new user, setting a password and dumping the hash of the
associated account:

Figure 13 - Username:ID:LM:NT::: hash format of newly created account

Next we enable the setting for “Smart card is required for interactive logon” from the account options of
the new user:

The password change is confirmed by the new NT hash:

Figure 15 - The NT password hash has been altered

Figure 14 - Smart Card is enforced for interactive logons

In order to get the plaintext, we need to login with a smart card and we can use Mimikatz27 to dump the
wdigest password from lsass:

Figure 16 - Hex representation of account's plaintext password from Mimikatz

Even if the account’s password age is allowed to expire, the hash will not change. There are two general
ways of addressing this problem, but both suffer from the same major shortcoming. The first way is to
toggle the account option setting thereby causing Windows to generate a new random password for the
account. This can easily be automated and ran against every relevant account in the domain with
PowerShell28:

Figure 17 - Code snippet from Reset-SmartCardPassword

The other solution is to regularly generate random passwords for every account. This is generally not
recommended because of the difficulty in generating truly random passwords. Pseudo-random
passwords can of near random lengths can be created with .Net and PowerShell29:

27 http://blog.gentilkiwi.com/mimikatz
28 Reset-SmartCardPassword is a tool to be released with this talk
29 Get-RandomPassword is a tool to be released with this talk as a part Set-UniquePassword

Figure 18 - Code snippet from Set-UniquePassword

Either solution is flawed in that it renders all current interactive logon sessions invalid. This shortcoming
would have to be solved with policy or a hotfix from Microsoft.

Mitigation
We summed up mitigation in our previous whitepaper30:

A common misconception is that security tools and configuration changes can prevent
this type of attack from being successful. Unfortunately, most antivirus tools are looking
for specific, known attack tools and their behavior. For example, several antivirus
products flag Hernan Ochoa’s WCE as malicious and remove it. Other products detect
the use the Metasploit PSEXEC exploitation module31 due to the service it starts.
However, AV products can be trivially bypassed32, in many cases, by encoding or
otherwise obfuscating the binary in question.

On the network side, a successful “network login” event is virtually indistinguishable
from one created with a hash. Up until recently (Windows 2008 R2)33 there wasn’t a
distinction between NTLM and Kerberos being used for logins that was noted in the
event logs. The ultimate mitigation against the “Pass the Hash” attack is to protect the
hashes from being disclosed to an attacker. However, there are steps that can be taken
to lessen the chance of a successful attack. The first is regular password changes. NT
hashes have limited value once the corresponding account’s password has been
changed. Frequent password changes forces an attacker to repeat their attack which
could be detected. Audit log review and monitoring of privileged accounts is also critical
to detecting the attack. Networks should be segmented to prevent lateral movement by
attackers. Administrators should also prevent external services from being accessed
from external hosts. Sensitive ports such as SMB (TCP 445) and NetBios (TCP 139)

30 http://media.blackhat.com/bh-us-12/Briefings/Duckwall/BH_US_12_Duckwall_Campbell_Still_Passing_WP.pdf
31 http://www.metasploit.com/modules/exploit/windows/smb/psexec
32 http://www.obscuresecurity.blogspot.com/2012/12/finding-simple-av-signatures-with.html
33 http://blogs.technet.com/b/askds/archive/2009/10/08/ntlm-blocking-and-you-application-analysis-and-
auditing-methodologies-in-windows-7.aspx

should be blocked and integrated authentication should not be used by externally
accessible websites (e.g. SharePoint).

The “Pass the Hash” attack is actually a documented part of the way that Windows
protocols interact. Since the designers of the protocols didn’t want to ask the user for
their username/password every time network authentication takes place, the password
hash is stored locally in memory and is constantly being recycled as long as the user
stays logged in. Because it’s an integral part of the design of Windows authentication,
the “attack” does not have a traditional defense. The best way to prevent the attack
from happening is to protect the Domain Controller from compromise with a
comprehensive defense in depth approach. Enforce least privilege, enable UAC, limit the
number of elevated accounts, etc. Once the DC is lost, all your data becomes accessible.

The best and only real mitigation to the Pass-the-Hash attack is to completely prevent credentials from
ever being exposed. There are hundreds of ways to lessen the severity of the attack and Microsoft’s
working group on the subject published an 80-page whitepaper34 that settles on 3 main suggestions to
mitigate the attack:

1. Restrict and protect high privileged domain accounts.
2. Restrict and protect local accounts with administrative privileges.
3. Restrict inbound traffic using Windows Firewall.

Microsoft covers step-by-step how to implement each mitigation with controls that range from obvious
to absurd in any realistic enterprise. Some of the absurdity lies in the fact the authors chose to only
reference Microsoft products and ignore common network devices that likely exist in every enterprise.
For example, creating an administrative VLAN and ensuring administrative workstations are isolated is
far more realistic for most enterprises than creating complex Windows Firewall rules, especially given
the lack of true centralized management capabilities for large Windows Firewall installations.

Detection
Any mitigation strategy that focuses on preventing the “Pass the Hash” attack will likely result in failure
because a well-executed attack is indistinguishable from an administrator doing their job. That isn’t to
say that administrators shouldn’t be reviewing their logs for signs of potential compromise, because
detection is probably the best second best defense to this attack.

Administrators should be tracking all privileged account usage and verifying that the usage is authorized.
Reviewing logs is time expensive and log analytics tools can be spend expensive, however any review is
better than none at all. There are also ways to automate the analysis without spending any money on
software and there are several strategies that have proven effective in detecting this attack (not
preventing it).

34 http://www.microsoft.com/en-us/download/details.aspx?id=36036

The concept of two man integrity should be utilized when reviewing logs for any system. By reviewing
the logs of a server administered by someone else, members of the team will learn and recommend
improved methods in addition to adding an early detection process for insider threats. Any unusual
activity should be investigated by both administrators.

Another promising technique is to have a weekly review of all elevated account usage. Modern
Windows systems support a feature35 that can be used to forward all logs to a central point for review.
With the logs centrally located, they can be reviewed and analyzed for signs of compromised
credentials. For example, a company’s security policy prohibits the use of the popular PsExec36 tool due
to the fact that it sends credentials in plaintext. They have aggregated their logs to one server and
would like to automate detection of policy violations:

Figure 19- Find-PSExecService searches the registry for evidence of the PSEXECSVC

This simple function quickly churns through the system log for evidence of services being created and
returns the relevant information:

35 http://technet.microsoft.com/en-us/library/4aa6403f-d4b8-43a4-a70d-ceb7f88c524e
36 http://technet.microsoft.com/en-us/sysinternals/bb897553.aspx

Figure 20 - Find-PSExecService used to detect suspicious credential use

Now administrators can quickly audit for a specific banned application on regular intervals, but what if
we want to be alerted sooner? All of these functions can be schedule to run hourly and combined with
the built in PowerShell commandlet Send-MailMessage37. This enables an administrator to receive an
email or text close to when the activity is originally logged.

This process can quickly become ineffective if all detection is focused on publically available attack and
penetration tools such as Metasploit. In all likelihood, these will not be the exact tools that will be used
against you. For example, there are a few attributes that when combined make the service that the
Metasploit PsExec module creates easily identifiable. By default, the service name begins with “M” and
is followed by a random number of characters38. Additionally, the service binary is always eight
characters long and placed in the “%SYSTEMROOT%” directory. Using those two facts we can quickly
locate log entries that were likely created by the Metasploit module:

Figure 21 - Find-MsfPSExec searches the logs for activity matching the default config of a Metasploit module

37 http://technet.microsoft.com/en-us/library/hh849925.aspx
38 https://github.com/rapid7/metasploit-
framework/blob/master/modules/exploits/windows/smb/psexec.rb#L241

Figure 22 - Find-MsfPSExec used to detect potential compromised credentials

The limitation of this type of signature matching should be obvious. The attacker could change the
service name to match a legitimate service39 or not start a service at all40. So instead of targeting the
tools, we can target the specific activity that we need to monitor for. Service creation is definitely
something you want to check for, but network logon events41 are definitely more relevant.

By focusing on the activity that should be monitored and not the tools, administrators can potentially
detect other authentication problems or attacks. We will need to search for all events with the ID of
4624 and instead of using the Get-Eventlog Commandlet in PowerShell, we can take advantage of the
new filtering available in Windows Server 2008:

Figure 23 - Find-NTLMNetworkLogon function to parse event log quickly

39 http://www.room362.com/blog/2012/6/25/evidence-of-compromise-metasploits-psexec.html
40 http://www.metasploit.com/modules/auxiliary/admin/smb/psexec_command
41 http://support.microsoft.com/kb/947226

On a busy server this is going to return a lot of results, so we should filter out objects that we don’t want
to see:

This could be combined with a filter for privileged accounts and piped to Send-MailMessage all in a task
that sends a report daily. Alternatively, a task could be configured with event-triggering42 to act as an
Intrusion Detection System (IDS) for nefarious credential use. Automating tedious tasks like log review
is an important task if you hope to stop attacks such as Pass-the-Hash.

Conclusion
An attacker has multiple vectors to get credentials in a Microsoft Active Directory environment, with
PTH attacks being only a small part of the problem. While the term “Pass the Hash” is pretty sexy, it
does a disservice to the numerous other issues that Windows has with credential leakage. Whether it’s
plaintext passwords found in memory, plaintext passwords found somewhere on disk, using tokens or
whatever, attackers tend to take the path of least resistance. For the attacker, all roads eventually lead
to Domain Admin.

The only true preventative measure that can be taken is to make the trip from regular user on a
computer to SYSTEM level privileges take as long as possible. This often means basic security principles
such as not allowing desktop users to be admins on their local machines, enforcing privilege separation,
etc. By preventing an attacker from gaining SYSTEM, it becomes harder to extract credentials from
memory since they don’t have easy access to credentials in LSASS, and thus have to work a little harder
for their access.

Detective measures will ultimately be the best defense. We hope that enterprises find the tools we
release as ultimately useful and helpful in narrowing down possible attacks.

42 http://technet.microsoft.com/en-us/library/ff935309(v=ws.10).aspx

Figure 24- Filtered results detecting 2 Metasploit PSExec Attacks

