

© Copyright 2013 NCC Group

An NCC Group Publication

Revealing Embedded Fingerprints: Deriving

Intelligence from USB Stack Interactions

Prepared by:

Andy Davis

Research Director

andy.davis ‘at’ nccgroup.com

NCC Group | Page 2 © Copyright 2013 NCC Group

Contents
1 List of Figures and Tables .. 3

2 Introduction .. 4

2.1 Previous Research .. 4

3 USB Background: The Enumeration Phase in Detail ... 4

4 USB Testing Platform .. 8

5 USB Stack Implementations ... 9

6 Identifying Supported Devices ... 10

6.1 USB Device Classes ... 10

6.2 Enumerating Installed Class Drivers ... 12

6.3 Other Devices Already Connected.. 13

7 Fingerprinting Techniques ... 14

7.1 Operating System Identification .. 14

7.2 Application Identification ... 14

7.3 Timing Information .. 15

7.4 Descriptor Types Requested .. 16

7.5 Responses to Invalid Data .. 17

8 Umap ... 17

9 Conclusions ... 23

10 References and Further Reading .. 24

11 Glossary ... 24

NCC Group | Page 3 © Copyright 2013 NCC Group

1 List of Figures and Tables

Figure 1: The use of a Facedancer board in conjunction with a Packet-master USB analyser

Figure 2: Enumeration stops at “Set Configuration” when a device class is not supported

Figure 3: Enumeration continues past the “Set Configuration” when a device class is supported

Figure 4: A Packet-master capture showing multiple USB devices connected to the same bus

Figure 5: Linux-based TV Set-Top-Box

Figure 6: Windows 8

Figure 7: gphoto2 (Linux)

Figure 8: “Photos” Metro app (Windows 8)

Figure 9: USB timing information during enumeration

Figure 10: Umap basic help

Figure 11: The USB device classes that umap currently understands

Figure 12: Umap identifying supported classes, sub-classes and protocols

Figure 13: The umap VID/PID lookup facility

Figure 14: The umap operating system identification capability

Figure 15: Umap emulating a USB camera

Figure 16: Generic USB fuzz test cases

Figure 17: Class-specific USB fuzz test cases

Figure 18: Umap fuzzing a USB host

Table 1: Get Device descriptor request

Table 2: Device descriptor

Table 3: Configuration descriptor

Table 4: Interface descriptor

Table 5: Endpoint descriptor

Table 6: HID descriptor

Table 7: String descriptor

Table 8: Set Configuration request

Table 9: USB Device classes

Table 10: Hub class information in a Device descriptor

Table 11: Image class information in an Interface descriptor

Table 12: VID and PID information in a Device descriptor

Table 13: Microsoft OS descriptor request

NCC Group | Page 4 © Copyright 2013 NCC Group

2 Introduction
Embedded systems are everywhere, from TVs to aircraft, printers to weapons control systems. As a
security researcher when you are faced with one of these black boxes to test, sometimes in situ, it is
difficult to know where to start. However, if there is a USB port on the device. there is useful
information that can be gained. In this paper we will show how USB stack interaction analysis can be
used to provide information such as the OS running on the embedded device, the USB drivers
installed, and the devices supported. When testing the security of a USB host stack, knowledge of
the installed drivers will increase the efficiency of the testing process dramatically.

2.1 Previous Research
There has been plenty of previous research into the security of USB in recent years, which has
mainly focussed on different approaches to enable USB hosts to be tested for vulnerabilities
[Davis][Dominguez Vega][Larimer]. However, the author is only aware of one reference to research
involving the use of USB interactions to identify information about the host stack [Goodspeed].

3 USB Background: The Enumeration Phase in Detail
USB is a master-slave protocol, with the host as the master and devices as slaves. Only the master
can make requests to slaves and not the other way round, which poses a problem as we are trying to
identify information about the configuration of the host from the perspective of a slave (device).
Therefore we need to observe the way the host requests information in great detail, and also to
provide potentially unexpected answers to the host’s requests, generating unique behaviour in the
host, which can then also be observed.

The initial communication any USB device has with a host is during enumeration. Enumeration is the
mechanism by which a USB host determines the status, configuration, and capabilities of an inserted
USB device. The process begins when a device is mechanically inserted into the host and follows a
number of steps:

There are four lines on a USB connector: Vcc (+5V), GND (0V), positive data (D+) and negative data
(D-). Prior to a device being connected, D+ and D- are connected to GND via a 15K resistor. At the
point of insertion, different resistors and differential signals are used to determine the speed of the
connected device:

 A low speed device (1.5Mbps) connects D- to Vcc via a 1K5 pull-up resistor

 A full speed device (12Mbps) connects D+ to Vcc via a 1K5 pull-up resistor

 A high speed device (480Mbps) connects D+ to Vcc via a 1K5 pull-up resistor (and hence
initially appears to be a full speed device). The host then attempts to communicate at
480Mbps with the device using J and K chirps (a J chirp is a differential signal on D+ and D-
>= +300mV, whereas a K chirp is >= -300mV). If the communication fails the host assumes
the device is a full speed device rather than a high speed device.

Now that the host knows what speed it can use to communicate with the device, it can start
interrogating it for information. An 8-byte SETUP packet called the setup transaction (Table 1) is sent
by the host in the first phase of a control transfer. It contains the request “GET_DESCRIPTOR” (for
the device descriptor) and is sent using address 0.

The device then responds with an 18-byte device descriptor, also on address 0 (Table 2).

NCC Group | Page 5 © Copyright 2013 NCC Group

Table 1: Get Device descriptor request

Table 2: Device descriptor

Table 3: Configuration descriptor

Field Value Meaning

bmRequestType (direction) 1 Device-to-host

bmRequestType (type) 0 Standard

bmRequestType (recipient) 0 Device

bRequest 0x06 Get Descriptor

wValue 0x0100 DEVICE Index = 0

wIndex 0x0000 Zero

wLength 0x0040 Length requested = 64

Field Value Meaning

bLength 18 Descriptor length (including the bLength field)

bDescriptorType 1 Device descriptor

bcdUSB 0x0110 Spec version

bDeviceClass 0x00 Class information stored in Interface descriptor

bDeviceSubClass 0x00 Class information stored in Interface descriptor

bDeviceProtocol 0x00 Class information stored in Interface descriptor

bMaxPacketSize0 8 Max EP0 packet size

idVendor 0x413c Dell Inc

idProduct 0x2107 Unknown

bcdDevice 0x0178 Device release number

iManufacturer 1 Index to Manufacturer string

iProduct 2 Index to Product string

iSerialNumber 0 Index to serial number

bNumConfigurations 1 Number of possible configurations

Field Value Meaning

bLength 9 Descriptor length (including the bLength field)

bDescriptorType 2 Configuration descriptor

wTotalLength 34 Total combined size of this set of descriptors

bNumInterfaces 1 Number of interfaces supported by this configuration

bConfigurationValue 1 Value to use as an argument to the SetConfiguration()

request to select this configuration

iConfiguration 0 Index of String descriptor describing this configuration

bmAttributes (Self-powered) 0 Bus-powered

bmAttributes (Remote

wakeup)

1 Yes

bmAttributes (Other bits) 0x80 Valid

bMaxPower 100mA Maximum current drawn by device in this configuration

NCC Group | Page 6 © Copyright 2013 NCC Group

The most important data in the device descriptor is:

 Device class information (if present)

 Maximum packet size in bytes of Endpoint 0

 Vendor and Product IDs (VID and PID)

 Number of configurations

The host resets the device, allocates an address to it (in the range of 1 to 127) and then re-requests
the device descriptor using the new address.

For each possible configuration, the host will request a configuration descriptor, an example of which
is shown in Table 3. The configuration descriptor includes a number of further descriptors (interface
and endpoint, examples of which are shown in tables 4 and 5 respectively); however, the primary
fields of interest are:

 Number of interfaces supported by this configuration

 The power attributes that indicate if the device is self- or bus-powered and the maximum
current the device will draw.

Table 4: Interface descriptor

Table 5: Endpoint descriptor

Field Value Meaning

bLength 9 Descriptor length (including the bLength field)

bDescriptorType 4 Interface descriptor

bInterfaceNumber 0 Number of this interface

bAlternateSetting 0 Value used to select this alternative setting for the

interface identified in the prior field

bNumberEndpoints 1 Number of endpoints used by this interface

bDeviceClass 0x03 HID

bDeviceSubClass 0x01 Boot interface

bDeviceProtocol 0x01 Keyboard

iInterface 0 Index of string descriptor describing this interface

Field Value Meaning

bLength 7 Descriptor length (including the bLength field)

bDescriptorType 5 Endpoint descriptor

bEndpointAddress 0x81 Endpoint 1 – OUT

bmAttributes 0x03 Interrupt data endpoint

wMaxPacketSize 0x0008 Maximum packet size is 8

bInterval 0x0a 10 frames (10ms)

NCC Group | Page 7 © Copyright 2013 NCC Group

Within the interface descriptor, the important information is:

 Number of endpoints

 Class information (interface-specific information not provided in the device descriptor)

An endpoint descriptor contains:

 The endpoint address and type

 The maximum packet size in bytes of the endpoint

Sometimes class-specific descriptors are included within the configuration, for example the HID
descriptor in Table 6:

Table 6: HID descriptor

If there are multiple configurations for a device then further configuration (as well as interface,
endpoint, etc.) descriptors will be requested.

The next descriptors requested are string descriptors, which provide human-readable information
about the device type and vendor. An example is shown in Table 7.

Table 7: String descriptor

The final step is for the host to select one of the device configurations and inform the device that it
will be using that configuration. This is performed by issuing a “Set Configuration” request, as shown
in Table 8.

Field Value Meaning

bLength 9 Descriptor length (including the bLength field)

bDescriptorType 0x21 HID

bcdHID 0x0110 HID Class Spec Version

bCountryCode 0 Not Supported

bNumDescriptors 1 Number of Descriptors

bDescriptorType 34 Report descriptor

wDescriptorLength 65 Descriptor length

Field Value Meaning

bLength 48 Descriptor length (including the bLength field)

bDescriptorType 3 String descriptor

bString “Dell USB

Entry

Keyboard”

NCC Group | Page 8 © Copyright 2013 NCC Group

Table 8: Set Configuration request

The enumeration phase is now complete, with the USB device configured and ready to use. From
now until the device is removed, class-specific communication is used between the device and the
host. However, as we will discuss later, there are variations to this enumeration phase which can be
used to fingerprint different host implementations.

4 USB Testing Platform
Additional hardware is needed to interact with USB, so that different USB devices can be emulated.

There are a number of requirements for this testing platform:

The ability to both capture and replay USB traffic: There are many USB analyser tools available,
but only a few that allow captured traffic to be replayed; an ability that is crucial in this instance.

Full control of generated traffic: Many test-equipment-based solutions restrict the user to
generating traffic that conforms to the USB specification. We need full control of all aspects of any
generated traffic, as the host many behave in an unexpected way if it receives unconventional data,
which is what we are hoping to observe.

Class decoders are extremely useful: For each USB device class (e.g. mass storage, printer),
there are separate specification documents that detail the class-specific communications protocols.
Having an application that understands and decodes these protocols makes understanding the class
communication significantly easier.

Support for multiple speeds: USB devices, depending on their function, operate at a number of
different speeds; therefore the ability to capture and generate data at these different speeds is
crucial if the whole range of devices is to be emulated.

The solution chosen for this project comprised two primary components: A commercial USB analyser
and generator – Packet-Master [MQP], and a bespoke device emulation board called Facedancer
[GoodFET]. Figure 1 shows how they are used together.

Figure 1: The use of a Facedancer board in conjunction with a Packet-master USB analyser

Field Value Meaning

bmRequestType (direction) 0 Host-to-device

bmRequestType (type) 0 Standard

bmRequestType (recipient) 0 Device

bRequest 0x09 Set Configuration

wValue 0x0001 Configuration No.

wIndex 0x0000 Zero

wLength 0x0000 Zero

NCC Group | Page 9 © Copyright 2013 NCC Group

The benefit of using both devices is that fully arbitrary USB traffic can be generated by Facedancer,
acting as a USB device, and the responses from the host under test can be captured by the Packet-
Master appliance. However, for the majority of the techniques described in this paper, just a
Facedancer board would suffice.

5 USB Stack Implementations
USB is quite a complex protocol, especially as it provides backward compatibility to support older,
slower devices. Therefore, implementations of the host stack on different operating systems can
behave in different ways, as we hoped to observe during this research. Typical components within a
USB host stack are as follows:

Host controller hardware: This performs the low-level timing and electrical aspects of the protocol
and is communicated with via a host controller interface.

Host controller interface (HCI): There are a number of different HCIs that have been developed
over the years, all of which have different capabilities, but the primary difference is their ability to
support devices running at different speeds; they are:

 oHCI (Open Host Controller Interface)

 eHCI (Enhanced Host Controller Interface)

 uHCI (Universal Host Controller Interface)

 xHCI (Extensible Host Controller Interface)

Host controller driver: This provides a hardware abstraction layer so that the host can
communicate via the controller interface to the hardware.

USB core: The component that performs core functionality such as device enumeration

Class drivers: Once enumeration is complete and control has been passed to a USB class driver,
communication specific to the connected device is processed by the class driver

Application software: When a USB device is inserted a host may start an application specific to the
class of that device (e.g. an application that displays photos when a camera device is connected).

NCC Group | Page 10 © Copyright 2013 NCC Group

6 Identifying Supported Devices
For USB host vulnerability assessment via fuzzing it is important to establish what device classes are
supported. This is because USB fuzzing is a relatively slow process – each test case requires the
virtual device to be “inserted” and “removed” via software, resulting in enumeration being performed
each time. The USB protocol is designed to expect a human, rather than a computer, to insert a
device, and so timing delays result in each test case taking several seconds to complete. If
functionality that is not supported by the target host is fuzzed then this can waste large amounts of
testing time.

6.1 USB Device Classes
There are a number of high level USB device classes; these are shown in Table 9.

Table 9: USB Device classes

USB device class information can be stored in a number of different places within the descriptors

provided during enumeration. The information is provided in three-byte entries:

 bDeviceClass – the high level device class (e.g. mass storage)

 bDeviceSubClass – specific information about this device (e.g. SCSI command set)

 bDeviceProtocol – the protocol used (e.g. bulk transport (BBB))

Taking the mass storage class as an example, the following are the available sub-classes:

 De facto use

 RPC

 MMC-5 (ATAPI)

Base Class Descriptor Usage Description

0x00 Device Use class information in the Interface Descriptors

0x01 Interface Audio

0x02 Both CDC (Communication and Device Control)

0x03 Interface HID (Human Interface Device)

0x05 Interface Physical

0x06 Interface Image

0x07 Interface Printer

0x08 Interface Mass Storage

0x09 Device Hub

0x0a Interface CDC-Data

0x0b Interface Smart Card

0x0d Interface Content Security

0x0e Interface Video

0x0f Interface Personal Healthcare

0x10 Interface Audio/Video Devices

0xdc Both Diagnostic Device

0xe0 Interface Wireless Controller

0xef Both Miscellaneous

0xfe Interface Application Specific

NCC Group | Page 11 © Copyright 2013 NCC Group

 QIC-157

 UFI

 SFF-8070i

 SCSI

 LSD FS

 IEE 1667

 Vendor specific

For each of these mass storage sub-classes there are also a number of possible protocols:

 CBI with command completion interrupt

 CBI without command completion interrupt

 BBB

 UAS

 Vendor specific

So, as you can see, the potential attack surface of a USB host is enormous; but it is important to

establish which functionality is supported prior to any active fuzz testing.

Some devices, such as the hub in Table 10, store their class information in the device descriptor.

Table 10: Hub class information in a Device descriptor

However, more commonly, the class information is interface specific and is therefore stored in the
interface descriptor (within a configuration descriptor), as with the image class device in Table 11.

Table 11: Image class information in an Interface descriptor

Field Value Meaning

bLength 18 Descriptor length (including the bLength field)

bDescriptorType 1 Device descriptor

bcdUSB 0x0200 Spec version

bDeviceClass 0x09 Hub

bDeviceSubClass 0x00 Full Speed Hub

bDeviceProtocol 0x01 Default

…

Field Value Meaning

bLength 9 Descriptor length (including the bLength field)

bDescriptorType 4 Interface descriptor

bInterfaceNumber 0 Number of this interface

bAlternateSetting 0 Value used to select this alternative setting for the

interface identified in the prior field

bNumberEndpoints 3 Number of endpoints used by this interface

bDeviceClass 0x06 Image

bDeviceSubClass 0x01 Default

bDeviceProtocol 0x01 Default

…

NCC Group | Page 12 © Copyright 2013 NCC Group

When emulating specific device types, whether the class information is provided to the host in the
device descriptor or in an interface descriptor depends on the device.

6.2 Enumerating Installed Class Drivers
To identify which device classes are supported by a USB host, emulated (class-specific) virtual

devices need to be presented to the host iterating through each device class, sub-class, and protocol

whilst monitoring the enumeration process. If a device is not supported then the enumeration phase

will stop at the “Set Configuration” command, as shown in Figure 2.

Figure 2: Enumeration stops at “Set Configuration” when a device class is not supported

However, if the device is supported then class-specific communication starts after the “Set
Configuration” command, as can be seen in the example of a HID device in Figure 3 (the class-
specific communication is highlighted by the green box).

Figure 3: Enumeration continues past “Set Configuration” when a device class is supported

Device class drivers are also referenced by their vendor ID (VID) and product ID (PID). If a specific
device driver has been installed for a USB device then the host can reference this driver by using a
combination of the class information, the VID and the PID, which are located in the device descriptor,
as shown in Table 12.

NCC Group | Page 13 © Copyright 2013 NCC Group

Table 12: VID and PID information in a Device descriptor

New VID and PID values must be registered with the USB Implementers Forum [USBIF] and are
maintained in a number of public repositories. This information can be used to perform a brute-force
attack against the host to identify any specific drivers that have been installed; however, this can be
a very slow process.

6.3 Other Devices Already Connected

When testing a host that may have other devices, such as an HSPA modem, connected internally to
the USB bus, these can be detected by sniffing the USB bus and looking for devices that are
communicating using different addresses than that of the attached device, as shown in Figure 4.

Figure 4: A Packet-master capture showing multiple USB devices connected to the same bus

One area of future research is to investigate if, using the Facedancer board to emulate the host to
which it is connected, descriptor requests could be sent to these other devices to identify more
information about them. Also, what happens if the Facedancer is configured to impersonate an
already-connected device?

Field Value Meaning

bLength 18 Descriptor length (including the bLength field)

bDescriptorType 1 Device descriptor

bcdUSB 0x0110 Spec version

bDeviceClass 0x00 Class information stored in Interface descriptor

bDeviceSubClass 0x00 Class information stored in Interface descriptor

bDeviceProtocol 0x00 Class information stored in Interface descriptor

bMaxPacketSize0 8 Max EP0 packet size

idVendor 0x04DA Panasonic Corporation

idProduct 0x2372 Lumix DMC-FZ10 Camera

NCC Group | Page 14 © Copyright 2013 NCC Group

7 Fingerprinting Techniques
One of the targets of this research was to identify operating system and application information by

observing USB stack interactions and sometimes using active techniques to prompt the host to

perform different actions that may reveal useful information. This section will detail some of the

techniques that were developed to do this.

7.1 Operating System Identification
Figures 5 and 6 show the start of class-specific communication once the enumeration phase has

been completed for two different hosts. As you can clearly see, the class-specific commands used

and the order in which the commands are issued are completely different for the two hosts and this

technique can therefore be used to differentiate between different operating systems.

Note: The commands and the order of commands are the same each time a device is presented to

the hosts

 Figure 5: Linux-based TV Set-Top-Box Figure 6: Windows 8

Other examples of unique behaviour of different operating systems:

 Windows 8 (HID) – Three “Get Configuration descriptor” requests (others have two)

 Apple OS X Lion (HID) – “Set Feature” request right after “Set Configuration”

 FreeBSD 5.3 (HID) – “Get Status” request right before “Set Configuration”

Further research in this area is expected to reveal techniques that will allow for more granular

identification to be performed.

7.2 Application Identification
Applications that use USB devices to provide input (e.g. photo management applications) can also

reveal useful information, as shown in Figures 7 and 8.

NCC Group | Page 15 © Copyright 2013 NCC Group

 Figure 7: gphoto2 (Linux) Figure 8: “Photos” Metro app (Windows 8)

Figures 7 and 8 not only show that these two applications use different class-specific commands but

the “Device Property” command sent by the host in Figure 8 contains the following data:

/Windows/6.2.9200 MTPClassDriver/6.2.9200.16384

This is specific information about the version of the operating system running on the host (Version

6.2 is the Microsoft internal representation for Windows 8 and 9200.16384 is the exact build revision).

7.3 Timing Information
The Packet-master analyser can differentiate between events occurring on the USB bus down to the

microsecond. Figure 9 shows the capture information for five enumerations with the same device

and same host.

NCC Group | Page 16 © Copyright 2013 NCC Group

Figure 9: USB timing information during enumeration

Across the entire enumeration phase there is a large amount of variance between the times to
enumerate the device. However, if the time is measured between specific requests e.g. between the
requests for String descriptor 0 and String descriptor 2, something more interesting can be seen:

5002us, 5003us, 5003us, 4999us, 5001us

There is a maximum variance of 4 microseconds. Therefore, if the operating system is known can
information be gleaned about the speed of the host? This hypothesis is still under investigation.

7.4 Descriptor Types Requested
Some operating systems have implemented their own USB descriptors —for example Microsoft has
Microsoft OS descriptors (MODs). These were apparently developed for use with unusual device
classes. Devices that support Microsoft OS descriptors must store a special string descriptor in
firmware at the fixed string index of 0xee. The request is shown in Table 13.

Table 13: Microsoft OS descriptor request

bmRequestType bRequest wValue wIndex wLength Data

10000000B GET_DESCRIPTOR 0x03ee 0x0000 0x12 Returned

String

NCC Group | Page 17 © Copyright 2013 NCC Group

If a device does not contain a valid string descriptor at index 0xee, it must respond with a stall packet.
If the device does not respond with a stall packet, the system will issue a single-ended zero reset
packet to the device, to help it recover from its stalled state (this is for Windows XP only).

7.5 Responses to Invalid Data
Earlier in the paper we mentioned that the ability to send completely arbitrary USB packets to the
host was required to determine how each host responds when a reply to one of its requests contains
invalid data. Examples of invalid data include:

• Maximum and minimum values

• Logically incorrect values

• Missing data

During the research, various behaviours were observed as a result of sending this data. In some
cases different “handled” error conditions occurred; however in many other situations unhandled
errors were observed in the form of application errors, kernel panics and bug checks. The
conclusions drawn from this area of the research were that invalid data was most useful in fuzzer
test-cases for identifying bugs and potential security vulnerabilities.

8 Umap
A tool was developed to demonstrate many of the techniques described in this paper and forms the

basis for a comprehensive USB security testing tool. Umap is written in Python and builds on the

sample code provided with the Facedancer board. Figure 10 shows the basic help information.

 Figure 10: Umap basic help

Figure 11 shows the various USB device class types that umap currently understands.

NCC Group | Page 18 © Copyright 2013 NCC Group

Figure 11: The USB device classes that umap currently understands

Figure 12 shows umap identifying supported classes, sub-classes, and protocols

Figure 12: Umap identifying supported classes, sub-classes and protocols

NCC Group | Page 19 © Copyright 2013 NCC Group

Figure 13 shows the umap VID/PID lookup capability.

Figure 13: The umap VID/PID lookup facility

Figure 14 shows umap performing operating system identification using some of the techniques
described earlier in this paper.

Figure 14: The umap operating system identification capability

NCC Group | Page 20 © Copyright 2013 NCC Group

Figure 15 shows umap emulating an image class device (a digital stills camera).

Figure 15: Umap emulating a USB camera

Umap includes a large database of both generic and class-specific fuzzer test-cases, samples of
which are shown in Figures 16 and 17.

NCC Group | Page 21 © Copyright 2013 NCC Group

Figure 16: Generic USB fuzz test cases

Figure 17: Class-specific USB fuzz test cases

NCC Group | Page 22 © Copyright 2013 NCC Group

Figure 18 shows umap fuzzing a USB host.

Figure 18: Umap fuzzing a USB host

NCC Group | Page 23 © Copyright 2013 NCC Group

9 Conclusions
The goal of this research was to identify ways of revealing configuration information about a
connected USB host. This is useful because it allows us to streamline any subsequent fuzzing
process by identifying supported USB functionality, and to enumerate operating system and
application information that may be useful for other security testing. The major problem with trying to
identify information about the configuration of the host is that USB is a master–slave relationship and
the device is the slave, so a device cannot query a host.

By emulating specific USB device classes such as mass storage and printer, it was possible to
identify which generic class drivers were supported by the connected host. This process was refined
to also emulate (and therefore identify) supported sub-classes and protocols. In order to identify non-
generic class drivers, which are referenced by their vendor and product IDs, a brute force approach
was demonstrated which uses the public VID/PID database.

Due to the complexity of the USB protocol there are many different implementations of USB host
functionality. A number of different techniques were developed to identify a host; these included
analysing:

 The order of descriptor requests

 The number of times different descriptors were requested

 The use of specific USB commands

 Class-specific communication

These techniques demonstrated that the host operating system, and in some cases applications
running on the host, could be identified.

A tool called umap was developed during the research to demonstrate these different techniques
and also to perform targeted fuzzing once the information-gathering phase was complete. Possible
uses for umap include Endpoint Protection System configuration assessment, USB host fuzzing and
general host security audit (for USB).

NCC Group | Page 24 © Copyright 2013 NCC Group

10 References and Further Reading
Davis, Undermining Security Barriers, media.blackhat.com, <http://media.blackhat.com/bh-us-
11/Davis/BH_US_11-Davis_USB_Slides.pdf>, accessed 6 August 2013

Dominguez Vega, USB Attacks: Fun with Plug and 0wn, labs.mwrinfosecurity.com,
<http://labs.mwrinfosecurity.com/assets/135/mwri_t2-usb-fun-with-plug-and-0wn_2009-10-29.pdf>,
accessed 6 August 2013

GoodFET, GoodFET – Facedancer21, goodfet.sourceforge.net,
<http://goodfet.sourceforge.net/hardware/facedancer21/>, accessed 6 August 2013

Goodspeed, Writing a thumbdrive from scratch: Prototyping active disk antiforensics,
www.youtube.com, <http://www.youtube.com/watch?v=D8Im0_KUEf8>, accessed 6 August 2013

Larimer, Beyond Autorun: Exploiting vulnerabilities with removable storage, media.blackhat.com,
<https://media.blackhat.com/bh-dc-11/Larimer/BlackHat_DC_2011_Larimer_Vulnerabiliters_w-
removeable_storage-wp.pdf >, accessed 6 August 2013

MOD, Microsoft OS Descriptors, msdn.microsoft.com, <http://msdn.microsoft.com/en-
us/library/windows/hardware/gg463179.aspx>, accessed 6 August 2013

MQP, Packet-Master USB500 AG, www.mqp.com, <http://www.mqp.com/usb500.htm>, accessed 6
August 2013

USBIF, USB Implementers Forum, www.usb.org, < http://www.usb.org/about>, accessed 6 August
2013

11 Glossary
ATAPI - AT Attachment Packet Interface

BBB - Bulk-only transport (also called BOT)

CBI - Control/Bulk/Interrupt

CDC - Communication and Device Control

eHCI - Enhanced Host Controller Interface

HID - Human Interface Device

HSPA - High Speed Packet Access

IEE 1667 .Protocol for Authentication in Host Attachments of Transient Storage Devices

LSD FS - Lockable Storage Devices Feature Specification

MOD - Microsoft OS descriptor

oHCI - Open Host Controller Interface

PID - Product ID

QIC-157 Quarter Inch Cartridge (standard for streaming tape)

RPC - Remote Procedure Call

SCSI - Small Computer System Interface

SFF-8070i - ATAPI specification for floppy disks

UAS - USB Attached SCSI

UFI - USB Floppy Interface

uHCI - Universal Host Controller Interface

USBIF - Universal Serial Bus Implementers Forum

USB . Universal Serial Bus

VID . Vendor ID

xHCI - Extensible Host Controller Interface

