
Revealing Embedded Fingerprints:

Deriving intelligence from USB stack

interactions

Andy Davis, Research Director NCC Group

Image from: p1fran.com

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=1ve6WewxSLnJJM&tbnid=w5N8TKifopu02M:&ved=0CAUQjRw&url=http://p1fran.com/2011/03/decision-optimization/&ei=H53NUdT2PMqb0QWt4YCYCA&psig=AFQjCNGgLOiymMHmJWCIp_K-Ws4gMjnGnQ&ust=1372515984344949

UK Offices

Manchester - Head Office

Cheltenham

Edinburgh

Leatherhead

London

Thame

North American Offices

San Francisco

Atlanta

New York

Seattle

Australian Offices

Sydney

European Offices

Amsterdam - Netherlands

Munich – Germany

Zurich - Switzerland

Agenda

Part One:

• Overview of the USB enumeration phase

• Different USB stack implementations

• USB testing platform

• Installed drivers and supported devices

• Fingerprinting techniques

• Umap demo

Part Two:

• The Windows 8 RNDIS kernel pool overflow

• Challenges faced when exploiting USB bugs

• Conclusions

Part One: Information gathering

• Why do we care?

• If you connect to a device surely you already know the platform?

• Embedded devices are mostly based on Linux anyway aren't they?

• Allows you to focus your testing on only supported functionality

USB Background stuff

Image from: blog.brickhousesecurity.com

Overview of the USB enumeration phase

• What is enumeration for?

• Assign an address

• Speed of communication

• Power requirements

• Configuration options

• Device descriptions

• Identify class drivers

• Lots of information exchange – implemented in many different ways

Image from :http://ewalk2.blog117.fc2.com

The USB enumeration phase

< Get Device descriptor

> Set Address

< Get Device descriptor

< Get Configuration descriptor

< Get String descriptor 0

< Get String descriptor 2

< Get Configuration descriptor

< Get Configuration descriptor

> Set Configuration

Enumeration phase peculiarities

• Why is the device descriptor initially requested twice?

• Why are there multiple requests for other descriptors?

• Class-specific descriptors:

< Get Hub descriptor

< Get HID Report descriptor

Different USB stack implementations

• Typical components of a USB stack

• Windows USB driver stack

• Linux USB stack

• Embedded Access USB stack

Image from: blogs.msdn.com

Typical components of a USB stack

• Host Controller hardware

• USB System software:

• Host Controller Driver – Hardware Abstraction Layer

• USB Driver

• Class drivers

• Application software

Image from: www.wired.com

Windows USB driver stack

Image from: msdn.microsoft.com

Linux USB stack

Image from: www.linux-usb.org

Embedded Access USB stack

Image from: www.embedded-access.com

Interacting with USB

Image from: www.nvish.com

USB interaction requirements

• Need to capture and replay USB traffic

• Full control of generated traffic

• Class decoders extremely useful

• Support for Low/High/Full speed required

• USB 3.0 a bonus

USB testing – gold-plated solution

• Commercial test equipment

USB testing – the cheaper approach

• Facedancer (http://goodfet.sourceforge.net/hardware/facedancer21)

http://goodfet.sourceforge.net/hardware/facedancer21
http://goodfet.sourceforge.net/hardware/facedancer21

Best solution: A combination of both

• Device data can be carefully crafted

• Host response data can be captured

• Microsecond timing is also recorded

• All class-specific data is decoded

Information enumeration

Image from: network.nature.com

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=KdyDvemjtMn2CM&tbnid=XdKOKUlg7lB1yM:&ved=0CAUQjRw&url=http://network.nature.com/profile/danielmietchen&ei=3aPNUcT9KabC0QWJw4HoCg&bvm=bv.48572450,d.d2k&psig=AFQjCNFQ1kHYUmTByoI7wG7zm9KPbqn1Lg&ust=1372517686006876

Target list

• Windows 8

• Ubuntu Linux 12.04 LTS

• Apple OS X Lion

• FreeBSD 5.3

• Chrome OS

• Linux-based TV STB

Installed drivers and supported devices

• Enumerating supported class types – standard USB drivers

• Enumerating all installed drivers

• Other devices already connected

Enumerating supported class types

Where is USB class information stored?

Device Descriptor

Interface Descriptor

Installed drivers and supported devices

• Drivers are referenced by class (Device and Interface descriptors)

• Also, by VID and PID:

• For each device class VID and PID values can be brute-forced

(can easily be scripted using Facedancer)

• Although there may be some shortcuts….

• Valid PIDs and VIDs are available (http://www.linux-usb.org/usb.ids)

Enumerating installed drivers

Not installed:

All communication stops

after “Set Configuration”

Installed:

Sniffing the bus - Other connected devices

• Data from other devices will be displayed on other addresses

• Controlling other devices? (untested)

Fingerprinting techniques

• Descriptor request patterns

• Timing information

• Descriptor types requested

• Responses to invalid data

• Order of Descriptor requests

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=IshB3umJWCTTuM&tbnid=XMBqesvL0ksuOM:&ved=0CAUQjRw&url=http://www.blackberryos.com/general-discussion/17394-blackberry-os-6-have-fingerprint-scanning.html&ei=LqfNUdCrM-jC0QWc4oHQAw&bvm=bv.48572450,d.d2k&psig=AFQjCNGg-mPEy5vzT9KRIT9C72dH82dIyA&ust=1372518544527164

OS Identification

Linux-based TV STB Windows 8

< Get Max LUN (Mass Storage)

> CBW: INQUIRY

< MSC Data In

< CSW - Status Passed

> CBW: TEST UNIT READY

< CSW - Status Passed

> CBW: READ CAPACITY

< MSC Data In

< CSW - Status Passed

> CBW: MODE SENSE

< Get Max LUN (Mass Storage)

> CBW: INQUIRY

< MSC Data In

< CSW - Status Passed

> CBW: INQUIRY

< MSC Data In

< CSW - Status Passed

> CBW: READ FORMAT CAPACITIES

< MSC Data In

< CSW - Status Passed

Application identification

gphoto2 (Linux) “Photos” Metro app (Windows 8)

> Image: OpenSession

< Image: OK

> Image: GetDeviceInfo

< Image: DeviceInfo

< Image: OK

> Image: GetStorageIDs

< Image: StorageIDs

< Image: OK

> Image: GetStorageInfo

< Image: StorageInfo

< Image: OK

> Image: CloseSession

< Image: OK

> Image: OpenSession

< Image: OK

> Image: GetDeviceInfo

< Image: DeviceInfo

< Image: OK

> Image: SetDevicePropValue

> Image: DeviceProperty

< Image: OK

< Image: DeviceInfoChanged

DeviceProperty includes some text:
/Windows/6.2.9200

MTPClassDriver/6.2.9200.16384

Request patterns unique elements?

• Windows 8 (HID) – 3 x Get Configuration descriptor requests (others have two)

• Apple OS X Lion (HID) – Set Feature request right after Set Configuration

• FreeBSD 5.3 (HID) – Get Status request right before Set Configuration

• Linux-based TV STB (Mass Storage) – Order of class-specific requests

Timing information (work in progress…)

Timing information (work in progress…)

Using timing information? (work in progress…)

• Large amount of variance over entire enumeration phase:

• 4.055s, 3.834s, 3.612s, 3.403s, 3.089s

• Much greater accuracy between specific requests:

• Between String Descriptor #0 and #2 requests - 5002us, 5003us, 5003us, 4999us, 5001us

• If we know the OS can we potentially determine the processor speed?

Descriptor types requested

• Microsoft OS Descriptors (MOD)

• Used for “unusual” devices classes

• Devices that support Microsoft OS Descriptors must store a special USB string

descriptor in firmware at the fixed string index of 0xEE. The request is:

Responses to invalid data

• Different USB stacks respond to invalid data in

different ways

• Maximum and minimum values

• Logically incorrect values

• Missing data

• In some cases: Crashes (potential vulnerabilities)

• Other cases: Unique behaviour

Image from: windows7.iyogi.com

Invalid data unique elements?

Windows (all versions)

If you send a specific, logically incorrect HID Report descriptor this happens:

Invalid data unique elements?

Windows (all versions)

If you send a specific, logically incorrect HID Report descriptor this happens:

Order of Descriptor requests

• Some USB stacks request data from devices in a different order

• Different drivers may request different descriptors multiple times

• Sometimes descriptors are re-requested after enumeration is complete

Demo: umap

Image from: us.cdn4.123rf.com

Umap overview

• Supported device classes can be enumerated

• Operating system information can be enumerated

• Devices with specific VID/PID/REV can be emulated

• The enumeration phase and class-specific data can be fuzzed

• Endpoint protection systems configuration can be assessed

• Endpoint protection systems USB protection can be circumvented

• USB host implementations can be comprehensively tested

Part Two: Potentially exploitable

USB bugs

Image from: www.biro-media.hr

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=6mcOgsEmS01vjM&tbnid=rqtJy3Z9-zJrLM:&ved=0CAUQjRw&url=http://www.biro-media.hr/usb-4gb-tdk-lady-bug.aspx&ei=VajNUe6xHuGX1AXzvYCwAw&bvm=bv.48572450,d.d2k&psig=AFQjCNHJfE40cuVA2-By94PRVbhjGV5p_Q&ust=1372518771534858

The Windows 8 RNDIS kernel pool overflow

• MS13-027

• usb8023x.sys - default (Microsoft-signed) Windows Remote NDIS driver that

provides network connectivity over USB.

• When the following USB descriptor field is manipulated a Bug check occurs

indicating a kernel pool overwrite:

 Configuration descriptor: bNumInterfaces field > actual number of USB interfaces

The Bug Check
BAD_POOL_HEADER (19)

The pool is already corrupt at the time of the current request.

<Truncated for brevity>

Arguments:

Arg1: 00000020, a pool block header size is corrupt.

Arg2: 83e38610, The pool entry we were looking for within the page.

Arg3: 83e38690, The next pool entry.

Arg4: 08100008, (reserved)

<Truncated for brevity>

WARNING: SystemResourcesList->Flink chain invalid. Resource may be

corrupted, or already deleted.

WARNING: SystemResourcesList->Blink chain invalid. Resource may be

corrupted, or already deleted.

SYMBOL_NAME: usb8023x!SelectConfiguration+1bd

The SelectConfiguration() function

The crash point

Analysis #1

When bNumInterfaces = 3 (one more than it should be) and bNumEndpoints = 2
(valid value)

Next kernel pool:

849c3b28 10 00 0a 04 56 61 64 6c-6b 8f 94 85 28 8c 90 85 Vadlk...(...

becomes:

849c3b28 00 00 0a 04 56 61 64 6c-6b 8f 94 85 28 8c 90 85 Vadlk...(...

So we’re overwriting "PreviousSize" in the next nt!_POOL_HEADER - this is what

triggered the original Bug Check when ExFreePool() is called

Analysis #2

When bNumInterfaces = 3 (one more than it should be) and bNumEndpoints = 5
(three more than it should be)

Next kernel pool:

84064740 17 00 03 00 46 72 65 65-48 2d 09 84 30 a8 17 84 FreeH-..0...

becomes:

84064740 17 00 03 00 00 72 65 65-48 2d 09 84 30 a8 17 84 reeH-..0...

So we’re now overwriting "PoolTag" in the next nt!_POOL_HEADER

What’s going on?
kd> dt nt!_POOL_HEADER

– +0x000 PreviousSize : Pos 0, 8 Bits

– +0x000 PoolIndex : Pos 8, 8 Bits

– +0x000 BlockSize : Pos 16, 8 Bits

– +0x000 PoolType : Pos 24, 8 Bits

– +0x004 PoolTag : Uint4B

– +0x008 ProcessBilled : Ptr64 _EPROCESS

By manipulating bNumInterfaces and bNumEndpoints in a USB Configuration

descriptor we appear to have a degree of control over where in the next adjacent

kernel memory pool we can overwrite a single byte with a null (the null write occurs

four bytes after the end of the pool I control and I can also control its size and some

elements of its contents so could also potentially overwrite the next pool header with

something useful)

Some pseudo code

Challenges faced when exploiting USB bugs

• Lack of feedback channel

• The bug is often in kernel code

• Descriptors are generally very size-constrained

• Typical impact of USB exploitation typically restricted to privilege escalation

• Modern operating systems e.g. Windows 8 have comprehensive exploit mitigation

• What about USB over RDP?

Image from: leadershipfreak.wordpress.com

Conclusions

• The USB enumeration phase reveals useful information for fingerprinting

• Class-specific communication is potentially even more revealing

• Even vendors with mature SDL processes have USB bugs

• USB bugs can potentially be exploited, to provide privilege escalation

• …but it is extremely difficult to achieve reliably

Questions?

Andy Davis, Research Director NCC Group

andy.davis ‘at’ nccgroup ‘dot’ com

