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Abstract—Detecting bugs in programs is important to establish 

trusthworthy software. To achieve this, static analysis on source 

code is a common approach to discover bugs. However, source 

code is not always available, as in the case of a black box 

penetration test. Even if source code is available, it still remains 

prudent to test that compilation and link editing has not 

introduced new bugs into the software release. We propose a 

system, Bugwise, that performs bug detection on x86 binary-level 

programs. Our system employs static analysis and the novel 

application of decompilation to make that analysis tractable. We 

use data flow analysis as our static analysis which is able to detect 

a number of bug classes including use-after-frees, double frees, 

and buffer overflows using environment variables. We have also 

provided limited access to our system as a web service for the 

public to use. Our results have found tens of bugs and 

vulnerabilities in Debian Linux where we scanned the entire 

package repository of that Linux distribution. Bugwise shows 

that traditional static analysis can be applied to binaries through 

the use of decompilation techniques. 

Keywords—bug detection; static analysis 

I.  INTRODUCTION 

Detecting bugs in software is an important task to help 
improve the security and trustworthiness of the computer 
industry. Detecting bugs in software can be done at any time 
during the software lifecycle. Ideally, all bugs are found during 
the testing phase before the software is deployed. In reality, 
software verification and testing is not applied or applicable on 
all software, or does not find all possible bugs in any given 
time. Therefore, software testing is done throughout the entire 
lifetime, and as new bugs are found patches are made and 
pushed out for deployment. This is exacerbated by the fact that 
maintaining software and supplying new features introduces 
new bugs. Therefore it is impractical that all bugs are found at 
the creation of the initial version of the software. 

Formal methods have long touted the ability to secure 
software against specific classes of software defects. Formal 
methods include such techniques as formally defined 
specifications, model checking, theorem proving, and well 
defined semantics of programs which can have properties 
examined in a mathematical sense. Unfortunately, formal 
methods have only been used on systems which are prepared to 
pay high costs in terms of budgets and development. In 
practice, most vendors do not use formal methods because 
those methods are impractical in some sense, whether it be 
financial or technical limitations. Software testing is a 

dominant technique today used by large and small vendors 
alike to ensure some level of trustworthiness in their code base. 

Software testing can be performed to a variety of degrees 
and it is common that only large software vendors apply best 
practices or state-of-the-art techniques to discover new bugs 
and vulnerabilities. Smaller vendors have fewer developers, a 
smaller quality assurance testing team, and some may not even 
have a team dedicated to testing the robustness of the software 
or security personnel dedicated to performing code review on 
their products. 

This situation leads to the condition that bug discovery is 
not always performed by the software vendor. Even large 
companies such as Google and Microsoft have bug bounties for 
users to submit bugs and vulnerabilities in exchange for 
monetary or other rewards. Penetration testing is an industry 
based on the fact that software vendors, and other people who 
use IT require external or separate teams to comb over their 
software, products, and infrastructure to discover bugs and 
vulnerabilities. 

There are many types of penetration tests, all with a variety 
of scopes which set the prerequisites for a penetration tester to 
do their work. Many penetration testers apply commercial off-
the-shelf software to perform static analysis on source code to 
discover possible programming bugs which lead to security 
vulnerabilities. That is only possible if source code is available. 
However, there exists a gap within industry in that of  auditing 
proprietary undisclosed software. 

A. Motivation 

A primary motivation for binary-level vulnerability 
auditing is that of black-box penetration testing. In this 
scenario, a penetration tester is employed to test the security of 
the product without having access to the source code. This 
exemplifies what an adversary has access to in many software 
deployments. The penetration tester would like to identify if 
any vulnerabilities exist in the software's binaries much like a 
penetration tester uses network scanning and vulnerability 
assessment tools to perform a network based penetration test. 

Similar to penetration testing of a vendor's own software, a 
vendor may want to audit 3rd party software.  If a vendor is 
dependent on 3rd party software it provides assurances to the 
vendor if a binary-level vulnerability audit of the software 
shows that it is of an expected reasonable quality without a 
surplus of bugs and vulnerabilities. 



Finally, even if source-level vulnerability assessment has 
been performed, the final view of the software is the compiled 
and link edited binary. Therefore, it is important to additionally 
verify that these processes have not rendered the software 
vulnerable. 

B. Our Approach 

The approach our system Bugwise uses is the combination 
of decompilation [1] and the traditional static analysis 
technique of data flow analysis [2]. Decompilation recovers 
high-level source-like information from a low level binary 
representation. Bugwise does not use full decompilation but 
instead only recovers local variables and procedure arguments 
from procedures. The recovery of these variables enables a 
native variable representation in the intermediate language of 
Bugwise. We then use data flow analysis on these native 
variables to show bugs and security properties. An example of 
data flow analysis is detecting use-after-free bugs where a 
pointer to memory is accessed after the memory is deallocated. 
Data flow analysis easily detects this by identifying if the 
pointer is subsequently used after a free before it is reassigned 
a new value. 

II. DECOMPILATION 

A. Wire - A Formal Intermediate Language for Binary 

Analysis 

The first process we perform is translating x86 machine 
code into an intermediate representation. We take as input an 
object file and extract executable segments from within it. We 
then pass these segments to a disassembler. There are two main 
types of disassemblers: linear sweep and recursive traversal [3]. 
The linear sweep approach disassembles one instruction at a 
time from the beginning of the memory segment until the end. 
The recursive traversal approach disassembles each instruction 
and follows branches and other control flow transfer 
instructions. The benefit of the recursive traversal approach is 
that instructions need not be perfectly sequential and may have 
padding and other nil operations (nops) between them. Our 
system Bugwise uses speculative disassembly [3]. Speculative 
disassembly uses a recursive traversal disassembly and then 
uses the linear sweep to fill in any gaps. 

Once the object file has been disassembled, each instruction 
is translated to 1 or more microcode instructions. These 
microcode instructions come from our intermediate language 
Wire [4]. Wire is a register-based three address code (TAC) 
that simplifies the analysis of native assembly language. It has 
a small number of instructions and resembles a RISC style 
language. Wire instructions have no implicit side effects, which 
simplifies processing. 

We use Wire to extract control flow information from the 
binary. The intermediate language includes branch and other 
control transfer instructions. In Bugwise, we only extract 
control flow graphs and call graphs from control transfer 
instructions that explicitly state the destination addresses. That 
is, we ignore dynamic dispatches. This approach 
underapproximates the control flow and makes our system 
unsound. However, we are still able to detect many bugs using 
this approximation. For future work, we may look at the 
dynamic dispatch problem using control flow analysis. 

B. Stack Pointer Inference 

In many x86 call conventions, the stack is used to pass 
procedure arguments. The stack is also used to store local 
variables. The frame pointer in x86 is a general purpose 
register and gives each procedure and activation record a base 
reference into its stack frame. If the frame pointer was used 
exclusively then it would be a simple matter to identify the 
unique locations on the stack that are being referenced. In 
reality, the frame pointer is not necessary and many programs 
choose not to use it for the purposes of obtaining an extra 
general purpose register and thus leading to greater efficiency 
in the generated code. In these cases where the frame pointer is 
not used, references relative to the stack pointer are used 
instead. The stack pointer points to the top of the stack and 
calling a procedure, or setting up procedure arguments alter the 
stack and the stack pointer. Some procedures use different call 
conventions, and it is during the compilation process that the 
stack pointer handling is performed to account for procedures 
which expect the caller to clean up the stack or the callee to 
clean up the stack. In compiled code, the stack pointer at the 
start of each basic block should remain constant and changes to 
the stack pointer are either explicitly determinable by the 
instruction or as a result of a call modifying the stack in a 
constrained way. This sets the scene for using linear 
inequalities to represent these constraints and determine the 
stack pointer in the procedures. We track the relative stack 
pointer entering and leaving a basic block in the control flow 
graph for a procedure. 

It is noted that we can make the following assumptions on a 
procedure: 

 The stack pointer entering the control flow graph 
is 0 

 The stack pointer returning from a control flow 
graph at a return instruction is 0 

 The stack pointer leaving a basic block is the same 
as the stack pointer entering a basic block 
following its control flow edge 

Imark  ($0x80483f5, , ) 

AddImm32  (%esp(4), $0x1c, %temp_memreg(12c)) 

LoadMem32 (%temp_memreg(12c), , %temp_op1d(66)) 

Imark  ($0x80483f9, , ) 

StoreMem32 (%temp_op1d(66), , %esp(4)) 

Imark  ($0x80483fc, , ) 

SubImm32  (%esp(4), $0x4, %esp(4)) 

LoadImm32 ($0x80483fc, , %temp_op1d(66)) 

StoreMem32 (%temp_op1d(66), , %esp(4)) 

Lcall  (, , $0x80482f0) 

 

IL before decompilation 

 
Free  (%local_28(186bc), , )  

 

IL after decompilation 

Fig. 1. The intermediate language (IL). 



 Simple arithmetic on the stack pointer modifies 
the stack in a basic block by a known and constant 
amount 

 Call instructions modify the stack in the basic 
block by a bounded amount 

Using linear equalities to infer the stack pointer has been in 
industrial software, notably the Hex-Rays decompiler. 

C. Local Variable Recovery 

Local variable recovery is determined by identifying 
memory access to the stack within the stack frame. Bugwise 
replaces these memory references with native variables in our 
Wire IL. It should be noted that local variables can be 
referenced by either the frame pointer or relative to the stack 
pointer. 

D. Procedure Parameter and Argument Recovery 

Procedure parameter recovery is determined by identifying 
memory access to the stack outside the stack frame. As with 
local variable recovery, Bugwise replaces these memory 
references with native variables in our Wire IL format. 
Additionally, as noted earlier, procedure parameters may be 
reference via either the frame pointer or the stack pointer. 

III. DATA FLOW ANALYSIS 

Bugwise uses data flow analysis to detect bugs. The process 
of data flow analysis determines information about the values 
of data throughout the program. There are many types of data 
flow analysis problems. Classic problems include reaching 
definitions, which Bugwise uses to detect bugs, and live 
variable analysis. Both reaching definitions and live variables 
look at the uses and definitions of variables in programs and 
are often considered as use-def problems. Bugwise primarily 
works on use-def problems to determine the presence of bugs 
in binaries. Many bugs can be considered as a subproblem of 

use-def problems. For example, double free detection is 
detecting two uses of a pointer without a definition separating 
them. Although many data flow problems exist, many of these 
problems can be abstracted and unified under a common 
framework of analysis. Data flow analysis is a well studied 
field so we summarise the algorithms that Bugwise uses. 

A.  Monotone Frameworks 

Monotone frameworks can represent many data flow 
problems. Monotone frameworks also form the basis of 
abstract interpretation [5]. The framework establishes a set of 
data flow equations and an initial condition to represent the 
data in the programs. There are two components in such a 
framework that Bugwise uses: 1) a transfer function which 
takes input entering a basic block and transforms it, delivering 
the output leaving a basic block 2) a join function which 
merges the control flow edges representing the data entering a 
basic block. For a monotone framework to be effective, the 
transfer and join functions in combination must be monotonic. 
The monotonic constraint enables the data flow equations to be 
solvable by the provable presence of fixed points. These fixed 
points are points where application of the data flow equations 
does not alter the state of the system. In other words, the 
solution to the data flow equations is stable. Solving the data 
flow equations by iterating over the system until a fixed point 
is reached is described in a later section. Without the 
monotonic constraint, no fixed points may exist and the 
equations may not be solvable. 

There are two configurations for the analysis: a forward 
analysis, and a backward analysis. In a forward analysis the 
data flow equations are: 

In a backwards analysis the transfer function and join 
function is altered slightly: 

Both forwards and backwards analysis have an initial state 
for each basic block. 

B.  Data Flow Analysis in a Monotone Framework 

Monotone frameworks provide a generalised framework for 
representing data flow problems. Many compiler style analyses 
can be represented under such a model such as reaching 
definitions, live variable analysis, upward exposed used, 
available expressions, reaching copies, very busy expressions 
etc. All of these compiler style data flow analyses can be 
modeled under a more specialised framework built on top of 
the monotone framework. We can represent these data flow 
problems with more specific transfer functions and join 
functions. Bugwise implements its data flow analysis using this 
specialised model where the transfer function in a forwards 
analysis is defined as:  

)(_ bb infunctiontransferout 

})|({ bb rpredecessoppjoinin 

)(_ bb outfunctiontransferin 

})|({ bb sucessorppjoinout X=1

Y=3

X=2

Print(X)
Print(X)

X > 2 X <=2

Print(X)
Y=3, X=1, and X=2 are 

reaching definitions

Fig. 2. Reaching definitions. 



The gen and kill sets are defined for each basic block and 
are specific to the data flow problem being solved. For 
example, reaching definitions and upward exposed uses are 
two data flow problems which use the same transfer function, 
but the gen and kill sets for each problem will be different. The 
transfer function is then seen as the application of set operators 
including union and difference. 

In a backwards analysis, the transfer function is defined as: 

The join function in the data flow problems being examined 
are either union or intersection depending on the type of data 
flow problem and applied over the predecessors or successors 
depending on the direction of the analysis. 

The reason why we represent data flow problems in this 
manner is that we can apply the transfer function and join 
function very quickly. A typical optimisation that most 
compilers use is to represent each data set with a bit vector. Bit 
vector union, intersection and difference can be applied very 
efficiently in terms of computational time and this means that a 
solver is able to reach a fixed point faster and more efficiently. 

We have experimented with using bit vector 
representations, but in our current system we find that a sparse 
representation operates more efficiently.  

C.  Reaching Definitions 

A reaching definition is a definition of a variable that 
reaches a program point without being redefined in between. 
Reaching definitions are the canonical use-def analysis and are 
used in many further types of analysis and optimisations in use 
by optimising compilers and specifically Bugwise. A program 
point may have multiple reaching definitions for a particular 
variable because there may be several program paths that have 
a definition that reaches the program point. An example of a 
program and some reaching definitions is shown in Fig. 2. 

Reaching definitions can be defined in terms of the data 
flow analysis framework described in the previous section. 
Reaching definitions is a forward analysis. The transfer 
function is as previously described. The join function is union 
over the basic block's predecessors. The gen set for basic block 
B is defined  as the set of definitions that appear in B and reach 
the end of B. The kill set of B is defined as the set of all 
definitions that never reach the end of B. The out set for B is 
initialised as gen[B]. 

These data flow equations and initial state represent the 
reaching definitions data flow. The equations are monotonic 
and guaranteed to have a fixed point where a solution to the 
equations does not alter the state of the system if the transfer 
functions and join functions are subsequently applied. 

D.  Upward Exposed Uses 

Upward exposed uses gathers information on the uses of a 
definition before it is redefined. It can be thought of as a dual 
to the reaching definitions. 

Upward exposed uses is a backwards analysis and its 
transfer function is constructed accordingly. Gen[B] is defined 
as the set {(s,x) where s is a use of x in B and there is no 
definition of x between the beginning of B and s}. kill[B] is 
defined as the set {(s,x) where s is a use of x not in B and B 
contains a definition of x}. The in set of B is initialised to the 
null set. The join function is the union of the successors of each 
particular basic block. 

Upwards exposed uses is a data flow analysis that is used 
by Bugwise to determine a number of bug related properties. 
Use-after-free and double free detection can be constructed in 
terms of this particular analysis. 

E.  More Data Flow Problems 

Bugwise primarily uses reaching definitions and upward 
exposed uses to determine bugs in binaries yet other data flow 
analyses are possible. These analyses including reaching copies 
which we implement to determine the reach of a copy 
statement so that we can use this in a copy propagation 
optimisation described in the following section. Other analyses 
include available expressions which is useful to implement 
common subexpression elimination, and very busy expressions 
which is useful to perform code hoisting. 

Live variable analysis is a popular analysis which 
determines which variables will subsequently be used before 
they are redefined. This is useful for use-after-free detection 
and also the dead code elimination optimisation. Live variable 
analysis is similar to upwards exposed uses, but tracks less 
information. 

F.  An Iterative Solution 

Data flow analysis is formalised using lattice and order 
theory. The initial state of a basic block is the bottom of a 

lattice known as   .  

The naive algorithm to reach a fixed point for our data flow 
equations is to initialise each basic block, and then iteratively 
apply the transfer and join functions to each node until the 
system stablises and the in and out sets of data reach a fixed 
point. 

An improvement to the naive approach is to implement a 
work list. The work list approach notes that in a forward 
analysis, the successors only need to be processed if the out 
data in the current node changes. Thus, only in these cases are 
the successors added to the work list for subsequent processing. 

The naive solution is correct, but slow. The work list 
improves this, but in Bugwise the best approach is careful 
traversal of the control flow graph. To improve the efficiency 
of the iterative solver, the order of the nodes matters. For a 
forwards analysis a reverse postorder traversal of the nodes is 
made. In a reverse postorder traversal, a node is visited before 
all of its successors, except when the successor is reached by a 
back edge. For a backwards analysis a postorder traversal of 
the nodes is made. In a postorder traversal, a node is visited 
after all of its successors. 

])[][(][][ BkillBinBgenBout 

])[][(][][ BkillBoutBgenBin 



G. IL Optimisations 

Bugwise uses compiler style optimisations throughout 
many of its analyses. For example, to perform stack pointer 
inference, the code must undergo a round of optimisations for 
the analysis to perform effectively. Optimising the code also 
reduces its size which makes later analysis on the code more 
efficient. Bugwise implements a number of compiler 
optimisations including: 

 Constant Folding 

 Constant Propagation 

 Copy Propagation 

 Backward Copy Propagation 

 Dead Code Elimination 

These optimisations are implemented using data flow 
analysis which determines when such optimisations are 
possible.  We examine some of these optimisations in the 
following sections. 

H.  Constant Propagation 

Constant propagation propagates a copy assignment that 
consists of a constant. The motivation of this optimisation is to 
reduce the number of copies (assignments) and instructions in 
the code. 

The algorithm to implement constant propagation is: 

 For each instruction: 

o if all the reaching definitions of a 
variable have the same assignment and it 
is constant 

o the constant can be propagated to the 
variable 

This algorithm makes use of the reaching definitions data 
flow analysis. 

I.  Copy Propagation 

Copy propagation is similar to constant propagation except 
all copies are examined, not just constant copies. Again, the 
motivation is to reduce the number of copies and instructions in 
the code. 

The algorithm to implement the copy propagation 
algorithm is as follows: 

For a statement u where x is used, if: 

 statement u is the only definition of x reaching u 

 on every path from s to u there are no assignments 
to y 

then we can substitute y for x in u. 

An alternative framework is to use data flow analysis to 
determine the reaching copies: 

 at each use of x where x=y is a reaching copy 

o replace x with y 

This algorithm makes use of the reaching copies data flow 
analysis which Bugwise implements. Reaching copies is 
similar to reaching definitions but gathers information on the 
reach of a copy statement as opposed to general variables. 

J.  Dead Code Elimination 

Dead code elimination eliminates unnecessary instructions 
that do not affect the semantics of the program. The algorithm 
to implement dead code elimination is as follows: 

 For each expression 

o If the result is not live 

o then eliminate the instruction 

This algorithm makes use of live variable analysis. 

IV. BUG DETECTION 

Bugwise detects bugs in binaries by applying data flow 
analysis on a decompiled binary. Data flow analysis is 
generally conservative, so in the case of bug detection, over 
approximation of program behaviour may occur leading to 
false positives. Additionally, because decompilation is not 
sound, program behaviour may be underapproximated leading 
to false negatives. Therefore, our bug detection system is 
unsound. However, it is still effective in detecting a reasonable 
number of bugs and provides benefit for analysts who use it. 

In this paper we examine 3 bug classes that Bugwise can 
detect: 

 getenv() based buffer overflows 

 Use-after-free bugs 

 Double free bugs 

These bugs may lead to security vulnerabilities when they 
are found in privileged programs. We have performed scans 
on privileged programs and also entire Linux repositories to 
evaluate our system as we will explain in a later section. 

 

A.  getenv() 

Environment variables are a common source of buffer 
oveflows in Unix-based programs. Environment variables are 
effectively unbounded and the Unix API call to access the 
environment variable, getenv(), is not bound by length. 
Therefore, it is reasonably common that lazy programmers 
copy the environment variable into a buffer without bounds 
checking. as is shown below. 

The most common method to detect these buffer overflows 
in closed source testing is using fuzz testing. Sharefuzz [6] is a 
tool that implements this. The typical approach, and that which 

char bf[128]; 

 

... 

strcpy(bf,getenv(“HOME”)); 



is used by Sharefuzz, is to execute the application while 
monitoring uses of the getenv() API call. The environment 
variables passed to the API are intercepted and the return value 
of the environment variable is replaced with a large string to 
trigger potential bugs. This approach has successfully found 
many environment variable bugs in privileged programs. 
Today, it is uncommon to see these bugs in privileged code 
because there is generally greater awareness for this class of 
bug. Nevertheless, in unprivileged code, these bugs are still 
prevelant. A simple technique to search source code for these 
bugs is to use a regular expression similar to "strcpy.*getenv". 
This simple technique can find many vulnerabilities and when 
used in conjunction with searchable and public code 
repositories can uncover numerous instances of the buffer 
overflow. We can use Bugwise to determine common instances 
of this bug by using data flow analysis to detect that the return 
value of getenv() is passed directly to a string copy or any other 
unbounded copy. The advantage of our approach compared to 
using a search string, is that our system works when the buffer 
overflow and retrieval of the environment variable spans 
multiple lines. 

To detect if an strcpy or strcat has a buffer overflow caused 
by copying the results of getenv() we use the following 
algorithm: 

 For each getenv() 

o if return value is live 

o and it's the reaching definition to the 2nd 
argument to strcpy() or strcat() 

o then warn 

This algorithm incurs false positives when getenv() is 
called prior to the copy and a bounds check is performed. 
Generally however, when getenv() is passed to a n 
unbounded copy, a bug is likely to be present. 

B.  Use-after-free 

A use-after-free bug occurs when a pointer has been 
deallocated and the memory of the original allocation is 
accessed without any subsequent reallocation. This bug occurs 
when a pointer has been freed and the pointer is then accessed 
without it being redefined. This makes it possible to detect this 
class of bug using data flow analysis. 

These types of bugs can be exploitable. If the access to the 
deallocate memory is a read, then an information disclosure 
may occur and if the pointer access is a write, then it may be 
possible to gain execution control. 

The algorithm to detect use-after-frees is as follows: 

 For each free(ptr) 

o If ptr is live 

o then warn 

C.  Double Free 

A double free is a subset of the use-after-free bug wherein 
the use of undefined pointer after a deallocation is a second 
free call. Historically, these types of bugs were once 
exploitable under Linux. Today, a program that performs a 
double free will crash due to sanity checks by the memory 
manager. 

The algorithm to detect double frees is as follows: 

 For each free(ptr) 

o if an upward exposed use of ptr's 
definition is free(ptr) 

o then warn 

V. IMPLEMENTATION AND RESULTS 

A. Implementation 

Bugwise is built on our system Malwise for binary and 
program analysis which has previously been used for malware 
analysis [4, 7-10]. Bugwise and Malwise consist of over 
100,000 lines of C++ code. It is a modular system with a core 
static analysis engine and a plugable module interface where 
the bug detection modules are implemented. The figure below 
shows the configuration component for a scan implementing 
double free detection. 

There are multiple phases to the scan as is shown. Code 
optimisation on the IL is performed followed by a Linux 
specific module to extract the entry point from _start via 
__libc_start_main. Then decompilation modules are applied, 
followed again by code optimisation to clean up the IL. Finally, 
data flow analysis so the double free module has access to the 

void f(int x) 

{ 

 int *p = malloc(10); 

 dowork(p); 

 free(p); 
 if (x) 

  free(p); 
} 

void f(int x) 

{ 

 int *p = malloc(10); 

 dowork(p); 

 free(p); 
 if (x) 

  p[0] = 1; 
} 

<ModuleGroup> 

   <Name>Scan</Name> 

   <Run>Code Optimsation</Run> 

   <Run>Linux Arch</Run> 

   <Run>Pre Decompiler Data Flow Analysis</Run> 

   <Run>X86 Decompiler Data Flow Analysis</Run> 

   <Run>Decompiler Data Flow Analysis</Run> 

   <Run>Code Optimsation</Run> 

   <Run>IRDataFlowAnalysis</Run> 

   <Run>Double Free Detection</Run> 

</ModuleGroup> 

 



reaching definitions, upwards exposed uses and other 
information. 

To aid the debugging of Bugwise and the Malwise system 
it is built on, we also provide an interactive visualisation of 
programs via a Java GUI interface. A screenshot showing the 
call graph of a program is shown in Fig. 3.  

B. The Bugalyze Web Service 

Bugwise is available to use for the public as the 
Bugalyze.com web service. Bugwise and Bugalyze.com are 
implemented as a set of modules using our Malwise system. 
Our web services also serve another system, Simseer, that 
performs software similarity scoring and visualization. This 
service uses the same infrastructure as Malwise.  

C. Setup 

To perform an experimental evaluation and to see how 
many bugs we could find, we set up a machine to perform 
scans with Bugwise. Our test machine was an Intel 2nd 
generation Core-i7 with 4 physical cores, an SSD for the OS 
Image, a 2TB hard disk, 16G of memory, and running Ubuntu  
Linux 12.10 as the operating system. 

D. File Statistics 

One of the things we were interested in was the relationship 
between the number of bugs in a binary versus the size of the 
binary. The first statistical experiment we did was take every 
ELF binary from the Debian 7 unstable repository and sort 
them by size. These binaries form the basis for some of our 
later experiments and are a good indication on the distribution 
of file sizes for binaries that Bugwise is likely to work with. 

The results of the analysis are charted in Fig. 4. What is 
evident from the chart is that the sizes of the ELF binaries 
grows logarithmically but has outliers. This tells us that if 
Bugwise scales linearly according to the number of procedures 
in a program, then we will have non linear growth in the time 

that it scans a binary as we scan through an entire Linux 
distribution sorting the binaries by size.  

E. use-after-free and double free 

In our first main experiment to evaluate Bugwise on finding 
bugs and vulnerabilities we used the all the Debian 6 set-user-
id and set-group-id binaries available in the repository. Each 
one of these binaries is privileged and a vulnerability in one 
may lead to privilege escalation on the local machine. Double 
frees are unlikely to lead to privilege escalation, however use-
after-frees that are not double frees may be indicative of an 
exploitable memory corruption or access violation. 

We ran Bugwise and enabled the use-after-free and double 
free bug detection modules using both intraprocedural and 
interprocedural analysis. Double frees are a subset of use-after-
frees so we should detect all the double frees in the use-after-
free detection and the use-after-free bug count should always 
be equal to or greater than the double free bug count. 

We investigated the double free report in the xonix SGID 
games binary and identify the location of the double free as 
shown in Fig. 6. It is evident from this code that the double free 
only occurs on an error path when the high score file cannot be 
opened. This type of error can be triggered by a malicious user 
who opens a large number of file descriptors such that the 
maximum allowable is reached. The next attempt to open a file 
will then fail and the double free will be triggered. 

 
Fig. 4. Elf binary sizes. 

 

 
Fig. 5. Bugs over time. 

 
Fig. 3. Program visualisation. 



These results show that Bugwise can successfully detect 
double frees and use-after-frees.  

F. getenv() 

For our next experiment we looked at the getenv() bug 
detection module. For this experiment we downloaded every 
ELF object from every package in the Debian 7 unstable 
repository. This amounted to over 123,000 ELF binaries. Our 
system could not scan 30,450 of those binaries due to inability 
to parse specific ELF object types. The intraprocedural scan 
took less than one week to run on our test machine. 

Bugwise reported 85 possible buffer overflows in 47 
packages.  The reported packages are shown in Table 1. This 
result demonstrates Bugwise is effective at detecting getenv() 
based buffer overflows with a limited number of false 
positives. A security analyst would benefit greatly from reports 
such as these. 

G. getenv() statistics 

The first getenv() statistic we looked at was to determine if 
larger binaries lead to more bugs. This is a common 
assumption auditors make when looking for bugs and 
vulnerabilities. We charted the cumulative number of bugs our 
getenv() buffer overflow detection identified as we scanned 
larger binaries in ascending order. What we expect is that if 
binary size does not matter, the growth of the bugs should be 
linear - that is, as the same number of binaries are scanned, the 
number of bugs increases at a constant rate. If binary size is 
relevant, then the growth of the line should be increasing at a 
non-linear rate. Regression testing on our data shows that the 
the growth is non linear. However, it is only marginally 
different to a linear growth. This tells us that binary size as a 
slight impact on this particular bug class and is almost 
negligent. We believe that this negligible linear growth is 
directly related to the bug class in question. If we examined 
other bug classes such as generic buffer overflows, we would 
expect that binary size affects the number of bugs. 

For our next statistic, we had a hypothesis that bugs tend to 
cluster. That is, developers working on code tend to implement 

the same things incorrectly in nearby locations. We decided to 
test what the likelihood of a getenv() bug occurring in another 
binary in the same package given one binary in the package 
was already vulnerable. 

The probability of a binary being reported vulnerability was 
0.00067. The probability of a package being reported 
vulnerable was 0.00255. The conditional probability of a 2nd 
vulnerability being present given that one binary in the package 
is vulnerable was 0.52380. This is a very interesting result and 
shows that bugs cluster in packages. It is more prudent to look 
for other bugs in the same package if the objective is to find as 
many bugs as quickly as possible.  

 

memset(score_rec[i].login, 0, 11); 

strncpy(score_rec[i].login, pw->pw_name, 10); 

memset(score_rec[i].full, 0, 65); 

strncpy(score_rec[i].full, fullname, 64); 

score_rec[i].tstamp = time(NULL); 

free(fullname); 

if((high=freopen(PATH_HIGHSCORE, "w",high))==NULL) { 

   fprintf(stderr, "xonix: cannot reopen high score 

file\n"); 

   free(fullname);  

   gameover_pending = 0; 

   return; 

} 

Fig. 6. Double free in xonix game. 

Table 1. Bugs via getenv(). 

4digits Ptop 

acedb-other-belvu  recordmydesktop 

acedb-other-dotter rlplot 

bvi  sapphire 

comgt  sc 

csmash  scm 

elvis-tiny sgrep 

fvwm slurm-llnl-slurmdbd 

garmin-ant-downloader statserial 

gcin  stopmotion 

gexec  supertransball2 

gmorgan  theorur  

gopher twpsk  

gsoko Udo 

gstm vnc4server 

hime Wily 

le-dico-de-rene-cougnenc wmpinboard  

libreoffice-dev wmppp.app 

libxgks-dev xboing  

lie xemacs21-bin 

Lpe xjdic  

mp3rename xmotd  

mpich-mpd-bin   

open-cobol   

Procmail   

 



VI. CONCLUSION 

Bugwise is a system for detecting bugs in binaries by 
combining traditional static analysis techniques, namely data 
flow analysis, with decompilation. Data flow analysis has a 
strong theoretical foundation and today's decompilation 
techniques provide functional methods to recover high level 
and usable information. Binary-level analysis to find bugs is in 
its beginnings, but it has applications in areas such as black-
box penetration testing and verification of the compiler and 
link editor. We implemented Bugwise using our previous 
research for program, binary, and malware analysis and now 
host the Bugalyze.com web service. The results of using 
Bugwise show that it effectively found a number of real bugs 
in widespread Linux distributions. We believe systems like 
Bugwise open the door to industrial and useful applications 
when source code is not available, yet assurance is still 
required in that software. 
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