
Bugalyze.com - Detecting Bugs Using Decompilation

and Data Flow Analysis

Silvio Cesare

Deakin University

Abstract—Detecting bugs in programs is important to establish

trusthworthy software. To achieve this, static analysis on source

code is a common approach to discover bugs. However, source

code is not always available, as in the case of a black box

penetration test. Even if source code is available, it still remains

prudent to test that compilation and link editing has not

introduced new bugs into the software release. We propose a

system, Bugwise, that performs bug detection on x86 binary-level

programs. Our system employs static analysis and the novel

application of decompilation to make that analysis tractable. We

use data flow analysis as our static analysis which is able to detect

a number of bug classes including use-after-frees, double frees,

and buffer overflows using environment variables. We have also

provided limited access to our system as a web service for the

public to use. Our results have found tens of bugs and

vulnerabilities in Debian Linux where we scanned the entire

package repository of that Linux distribution. Bugwise shows

that traditional static analysis can be applied to binaries through

the use of decompilation techniques.

Keywords—bug detection; static analysis

I. INTRODUCTION

Detecting bugs in software is an important task to help
improve the security and trustworthiness of the computer
industry. Detecting bugs in software can be done at any time
during the software lifecycle. Ideally, all bugs are found during
the testing phase before the software is deployed. In reality,
software verification and testing is not applied or applicable on
all software, or does not find all possible bugs in any given
time. Therefore, software testing is done throughout the entire
lifetime, and as new bugs are found patches are made and
pushed out for deployment. This is exacerbated by the fact that
maintaining software and supplying new features introduces
new bugs. Therefore it is impractical that all bugs are found at
the creation of the initial version of the software.

Formal methods have long touted the ability to secure
software against specific classes of software defects. Formal
methods include such techniques as formally defined
specifications, model checking, theorem proving, and well
defined semantics of programs which can have properties
examined in a mathematical sense. Unfortunately, formal
methods have only been used on systems which are prepared to
pay high costs in terms of budgets and development. In
practice, most vendors do not use formal methods because
those methods are impractical in some sense, whether it be
financial or technical limitations. Software testing is a

dominant technique today used by large and small vendors
alike to ensure some level of trustworthiness in their code base.

Software testing can be performed to a variety of degrees
and it is common that only large software vendors apply best
practices or state-of-the-art techniques to discover new bugs
and vulnerabilities. Smaller vendors have fewer developers, a
smaller quality assurance testing team, and some may not even
have a team dedicated to testing the robustness of the software
or security personnel dedicated to performing code review on
their products.

This situation leads to the condition that bug discovery is
not always performed by the software vendor. Even large
companies such as Google and Microsoft have bug bounties for
users to submit bugs and vulnerabilities in exchange for
monetary or other rewards. Penetration testing is an industry
based on the fact that software vendors, and other people who
use IT require external or separate teams to comb over their
software, products, and infrastructure to discover bugs and
vulnerabilities.

There are many types of penetration tests, all with a variety
of scopes which set the prerequisites for a penetration tester to
do their work. Many penetration testers apply commercial off-
the-shelf software to perform static analysis on source code to
discover possible programming bugs which lead to security
vulnerabilities. That is only possible if source code is available.
However, there exists a gap within industry in that of auditing
proprietary undisclosed software.

A. Motivation

A primary motivation for binary-level vulnerability
auditing is that of black-box penetration testing. In this
scenario, a penetration tester is employed to test the security of
the product without having access to the source code. This
exemplifies what an adversary has access to in many software
deployments. The penetration tester would like to identify if
any vulnerabilities exist in the software's binaries much like a
penetration tester uses network scanning and vulnerability
assessment tools to perform a network based penetration test.

Similar to penetration testing of a vendor's own software, a
vendor may want to audit 3rd party software. If a vendor is
dependent on 3rd party software it provides assurances to the
vendor if a binary-level vulnerability audit of the software
shows that it is of an expected reasonable quality without a
surplus of bugs and vulnerabilities.

Finally, even if source-level vulnerability assessment has
been performed, the final view of the software is the compiled
and link edited binary. Therefore, it is important to additionally
verify that these processes have not rendered the software
vulnerable.

B. Our Approach

The approach our system Bugwise uses is the combination
of decompilation [1] and the traditional static analysis
technique of data flow analysis [2]. Decompilation recovers
high-level source-like information from a low level binary
representation. Bugwise does not use full decompilation but
instead only recovers local variables and procedure arguments
from procedures. The recovery of these variables enables a
native variable representation in the intermediate language of
Bugwise. We then use data flow analysis on these native
variables to show bugs and security properties. An example of
data flow analysis is detecting use-after-free bugs where a
pointer to memory is accessed after the memory is deallocated.
Data flow analysis easily detects this by identifying if the
pointer is subsequently used after a free before it is reassigned
a new value.

II. DECOMPILATION

A. Wire - A Formal Intermediate Language for Binary

Analysis

The first process we perform is translating x86 machine
code into an intermediate representation. We take as input an
object file and extract executable segments from within it. We
then pass these segments to a disassembler. There are two main
types of disassemblers: linear sweep and recursive traversal [3].
The linear sweep approach disassembles one instruction at a
time from the beginning of the memory segment until the end.
The recursive traversal approach disassembles each instruction
and follows branches and other control flow transfer
instructions. The benefit of the recursive traversal approach is
that instructions need not be perfectly sequential and may have
padding and other nil operations (nops) between them. Our
system Bugwise uses speculative disassembly [3]. Speculative
disassembly uses a recursive traversal disassembly and then
uses the linear sweep to fill in any gaps.

Once the object file has been disassembled, each instruction
is translated to 1 or more microcode instructions. These
microcode instructions come from our intermediate language
Wire [4]. Wire is a register-based three address code (TAC)
that simplifies the analysis of native assembly language. It has
a small number of instructions and resembles a RISC style
language. Wire instructions have no implicit side effects, which
simplifies processing.

We use Wire to extract control flow information from the
binary. The intermediate language includes branch and other
control transfer instructions. In Bugwise, we only extract
control flow graphs and call graphs from control transfer
instructions that explicitly state the destination addresses. That
is, we ignore dynamic dispatches. This approach
underapproximates the control flow and makes our system
unsound. However, we are still able to detect many bugs using
this approximation. For future work, we may look at the
dynamic dispatch problem using control flow analysis.

B. Stack Pointer Inference

In many x86 call conventions, the stack is used to pass
procedure arguments. The stack is also used to store local
variables. The frame pointer in x86 is a general purpose
register and gives each procedure and activation record a base
reference into its stack frame. If the frame pointer was used
exclusively then it would be a simple matter to identify the
unique locations on the stack that are being referenced. In
reality, the frame pointer is not necessary and many programs
choose not to use it for the purposes of obtaining an extra
general purpose register and thus leading to greater efficiency
in the generated code. In these cases where the frame pointer is
not used, references relative to the stack pointer are used
instead. The stack pointer points to the top of the stack and
calling a procedure, or setting up procedure arguments alter the
stack and the stack pointer. Some procedures use different call
conventions, and it is during the compilation process that the
stack pointer handling is performed to account for procedures
which expect the caller to clean up the stack or the callee to
clean up the stack. In compiled code, the stack pointer at the
start of each basic block should remain constant and changes to
the stack pointer are either explicitly determinable by the
instruction or as a result of a call modifying the stack in a
constrained way. This sets the scene for using linear
inequalities to represent these constraints and determine the
stack pointer in the procedures. We track the relative stack
pointer entering and leaving a basic block in the control flow
graph for a procedure.

It is noted that we can make the following assumptions on a
procedure:

 The stack pointer entering the control flow graph
is 0

 The stack pointer returning from a control flow
graph at a return instruction is 0

 The stack pointer leaving a basic block is the same
as the stack pointer entering a basic block
following its control flow edge

Imark ($0x80483f5, ,)

AddImm32 (%esp(4), $0x1c, %temp_memreg(12c))

LoadMem32 (%temp_memreg(12c), , %temp_op1d(66))

Imark ($0x80483f9, ,)

StoreMem32 (%temp_op1d(66), , %esp(4))

Imark ($0x80483fc, ,)

SubImm32 (%esp(4), $0x4, %esp(4))

LoadImm32 ($0x80483fc, , %temp_op1d(66))

StoreMem32 (%temp_op1d(66), , %esp(4))

Lcall (, , $0x80482f0)

IL before decompilation

Free (%local_28(186bc), ,)

IL after decompilation

Fig. 1. The intermediate language (IL).

 Simple arithmetic on the stack pointer modifies
the stack in a basic block by a known and constant
amount

 Call instructions modify the stack in the basic
block by a bounded amount

Using linear equalities to infer the stack pointer has been in
industrial software, notably the Hex-Rays decompiler.

C. Local Variable Recovery

Local variable recovery is determined by identifying
memory access to the stack within the stack frame. Bugwise
replaces these memory references with native variables in our
Wire IL. It should be noted that local variables can be
referenced by either the frame pointer or relative to the stack
pointer.

D. Procedure Parameter and Argument Recovery

Procedure parameter recovery is determined by identifying
memory access to the stack outside the stack frame. As with
local variable recovery, Bugwise replaces these memory
references with native variables in our Wire IL format.
Additionally, as noted earlier, procedure parameters may be
reference via either the frame pointer or the stack pointer.

III. DATA FLOW ANALYSIS

Bugwise uses data flow analysis to detect bugs. The process
of data flow analysis determines information about the values
of data throughout the program. There are many types of data
flow analysis problems. Classic problems include reaching
definitions, which Bugwise uses to detect bugs, and live
variable analysis. Both reaching definitions and live variables
look at the uses and definitions of variables in programs and
are often considered as use-def problems. Bugwise primarily
works on use-def problems to determine the presence of bugs
in binaries. Many bugs can be considered as a subproblem of

use-def problems. For example, double free detection is
detecting two uses of a pointer without a definition separating
them. Although many data flow problems exist, many of these
problems can be abstracted and unified under a common
framework of analysis. Data flow analysis is a well studied
field so we summarise the algorithms that Bugwise uses.

A. Monotone Frameworks

Monotone frameworks can represent many data flow
problems. Monotone frameworks also form the basis of
abstract interpretation [5]. The framework establishes a set of
data flow equations and an initial condition to represent the
data in the programs. There are two components in such a
framework that Bugwise uses: 1) a transfer function which
takes input entering a basic block and transforms it, delivering
the output leaving a basic block 2) a join function which
merges the control flow edges representing the data entering a
basic block. For a monotone framework to be effective, the
transfer and join functions in combination must be monotonic.
The monotonic constraint enables the data flow equations to be
solvable by the provable presence of fixed points. These fixed
points are points where application of the data flow equations
does not alter the state of the system. In other words, the
solution to the data flow equations is stable. Solving the data
flow equations by iterating over the system until a fixed point
is reached is described in a later section. Without the
monotonic constraint, no fixed points may exist and the
equations may not be solvable.

There are two configurations for the analysis: a forward
analysis, and a backward analysis. In a forward analysis the
data flow equations are:

In a backwards analysis the transfer function and join
function is altered slightly:

Both forwards and backwards analysis have an initial state
for each basic block.

B. Data Flow Analysis in a Monotone Framework

Monotone frameworks provide a generalised framework for
representing data flow problems. Many compiler style analyses
can be represented under such a model such as reaching
definitions, live variable analysis, upward exposed used,
available expressions, reaching copies, very busy expressions
etc. All of these compiler style data flow analyses can be
modeled under a more specialised framework built on top of
the monotone framework. We can represent these data flow
problems with more specific transfer functions and join
functions. Bugwise implements its data flow analysis using this
specialised model where the transfer function in a forwards
analysis is defined as:

)(_ bb infunctiontransferout

})|({ bb rpredecessoppjoinin

)(_ bb outfunctiontransferin

})|({ bb sucessorppjoinout X=1

Y=3

X=2

Print(X)
Print(X)

X > 2 X <=2

Print(X)
Y=3, X=1, and X=2 are

reaching definitions

Fig. 2. Reaching definitions.

The gen and kill sets are defined for each basic block and
are specific to the data flow problem being solved. For
example, reaching definitions and upward exposed uses are
two data flow problems which use the same transfer function,
but the gen and kill sets for each problem will be different. The
transfer function is then seen as the application of set operators
including union and difference.

In a backwards analysis, the transfer function is defined as:

The join function in the data flow problems being examined
are either union or intersection depending on the type of data
flow problem and applied over the predecessors or successors
depending on the direction of the analysis.

The reason why we represent data flow problems in this
manner is that we can apply the transfer function and join
function very quickly. A typical optimisation that most
compilers use is to represent each data set with a bit vector. Bit
vector union, intersection and difference can be applied very
efficiently in terms of computational time and this means that a
solver is able to reach a fixed point faster and more efficiently.

We have experimented with using bit vector
representations, but in our current system we find that a sparse
representation operates more efficiently.

C. Reaching Definitions

A reaching definition is a definition of a variable that
reaches a program point without being redefined in between.
Reaching definitions are the canonical use-def analysis and are
used in many further types of analysis and optimisations in use
by optimising compilers and specifically Bugwise. A program
point may have multiple reaching definitions for a particular
variable because there may be several program paths that have
a definition that reaches the program point. An example of a
program and some reaching definitions is shown in Fig. 2.

Reaching definitions can be defined in terms of the data
flow analysis framework described in the previous section.
Reaching definitions is a forward analysis. The transfer
function is as previously described. The join function is union
over the basic block's predecessors. The gen set for basic block
B is defined as the set of definitions that appear in B and reach
the end of B. The kill set of B is defined as the set of all
definitions that never reach the end of B. The out set for B is
initialised as gen[B].

These data flow equations and initial state represent the
reaching definitions data flow. The equations are monotonic
and guaranteed to have a fixed point where a solution to the
equations does not alter the state of the system if the transfer
functions and join functions are subsequently applied.

D. Upward Exposed Uses

Upward exposed uses gathers information on the uses of a
definition before it is redefined. It can be thought of as a dual
to the reaching definitions.

Upward exposed uses is a backwards analysis and its
transfer function is constructed accordingly. Gen[B] is defined
as the set {(s,x) where s is a use of x in B and there is no
definition of x between the beginning of B and s}. kill[B] is
defined as the set {(s,x) where s is a use of x not in B and B
contains a definition of x}. The in set of B is initialised to the
null set. The join function is the union of the successors of each
particular basic block.

Upwards exposed uses is a data flow analysis that is used
by Bugwise to determine a number of bug related properties.
Use-after-free and double free detection can be constructed in
terms of this particular analysis.

E. More Data Flow Problems

Bugwise primarily uses reaching definitions and upward
exposed uses to determine bugs in binaries yet other data flow
analyses are possible. These analyses including reaching copies
which we implement to determine the reach of a copy
statement so that we can use this in a copy propagation
optimisation described in the following section. Other analyses
include available expressions which is useful to implement
common subexpression elimination, and very busy expressions
which is useful to perform code hoisting.

Live variable analysis is a popular analysis which
determines which variables will subsequently be used before
they are redefined. This is useful for use-after-free detection
and also the dead code elimination optimisation. Live variable
analysis is similar to upwards exposed uses, but tracks less
information.

F. An Iterative Solution

Data flow analysis is formalised using lattice and order
theory. The initial state of a basic block is the bottom of a

lattice known as .

The naive algorithm to reach a fixed point for our data flow
equations is to initialise each basic block, and then iteratively
apply the transfer and join functions to each node until the
system stablises and the in and out sets of data reach a fixed
point.

An improvement to the naive approach is to implement a
work list. The work list approach notes that in a forward
analysis, the successors only need to be processed if the out
data in the current node changes. Thus, only in these cases are
the successors added to the work list for subsequent processing.

The naive solution is correct, but slow. The work list
improves this, but in Bugwise the best approach is careful
traversal of the control flow graph. To improve the efficiency
of the iterative solver, the order of the nodes matters. For a
forwards analysis a reverse postorder traversal of the nodes is
made. In a reverse postorder traversal, a node is visited before
all of its successors, except when the successor is reached by a
back edge. For a backwards analysis a postorder traversal of
the nodes is made. In a postorder traversal, a node is visited
after all of its successors.

])[][(][][BkillBinBgenBout

])[][(][][BkillBoutBgenBin

G. IL Optimisations

Bugwise uses compiler style optimisations throughout
many of its analyses. For example, to perform stack pointer
inference, the code must undergo a round of optimisations for
the analysis to perform effectively. Optimising the code also
reduces its size which makes later analysis on the code more
efficient. Bugwise implements a number of compiler
optimisations including:

 Constant Folding

 Constant Propagation

 Copy Propagation

 Backward Copy Propagation

 Dead Code Elimination

These optimisations are implemented using data flow
analysis which determines when such optimisations are
possible. We examine some of these optimisations in the
following sections.

H. Constant Propagation

Constant propagation propagates a copy assignment that
consists of a constant. The motivation of this optimisation is to
reduce the number of copies (assignments) and instructions in
the code.

The algorithm to implement constant propagation is:

 For each instruction:

o if all the reaching definitions of a
variable have the same assignment and it
is constant

o the constant can be propagated to the
variable

This algorithm makes use of the reaching definitions data
flow analysis.

I. Copy Propagation

Copy propagation is similar to constant propagation except
all copies are examined, not just constant copies. Again, the
motivation is to reduce the number of copies and instructions in
the code.

The algorithm to implement the copy propagation
algorithm is as follows:

For a statement u where x is used, if:

 statement u is the only definition of x reaching u

 on every path from s to u there are no assignments
to y

then we can substitute y for x in u.

An alternative framework is to use data flow analysis to
determine the reaching copies:

 at each use of x where x=y is a reaching copy

o replace x with y

This algorithm makes use of the reaching copies data flow
analysis which Bugwise implements. Reaching copies is
similar to reaching definitions but gathers information on the
reach of a copy statement as opposed to general variables.

J. Dead Code Elimination

Dead code elimination eliminates unnecessary instructions
that do not affect the semantics of the program. The algorithm
to implement dead code elimination is as follows:

 For each expression

o If the result is not live

o then eliminate the instruction

This algorithm makes use of live variable analysis.

IV. BUG DETECTION

Bugwise detects bugs in binaries by applying data flow
analysis on a decompiled binary. Data flow analysis is
generally conservative, so in the case of bug detection, over
approximation of program behaviour may occur leading to
false positives. Additionally, because decompilation is not
sound, program behaviour may be underapproximated leading
to false negatives. Therefore, our bug detection system is
unsound. However, it is still effective in detecting a reasonable
number of bugs and provides benefit for analysts who use it.

In this paper we examine 3 bug classes that Bugwise can
detect:

 getenv() based buffer overflows

 Use-after-free bugs

 Double free bugs

These bugs may lead to security vulnerabilities when they
are found in privileged programs. We have performed scans
on privileged programs and also entire Linux repositories to
evaluate our system as we will explain in a later section.

A. getenv()

Environment variables are a common source of buffer
oveflows in Unix-based programs. Environment variables are
effectively unbounded and the Unix API call to access the
environment variable, getenv(), is not bound by length.
Therefore, it is reasonably common that lazy programmers
copy the environment variable into a buffer without bounds
checking. as is shown below.

The most common method to detect these buffer overflows
in closed source testing is using fuzz testing. Sharefuzz [6] is a
tool that implements this. The typical approach, and that which

char bf[128];

...

strcpy(bf,getenv(“HOME”));

is used by Sharefuzz, is to execute the application while
monitoring uses of the getenv() API call. The environment
variables passed to the API are intercepted and the return value
of the environment variable is replaced with a large string to
trigger potential bugs. This approach has successfully found
many environment variable bugs in privileged programs.
Today, it is uncommon to see these bugs in privileged code
because there is generally greater awareness for this class of
bug. Nevertheless, in unprivileged code, these bugs are still
prevelant. A simple technique to search source code for these
bugs is to use a regular expression similar to "strcpy.*getenv".
This simple technique can find many vulnerabilities and when
used in conjunction with searchable and public code
repositories can uncover numerous instances of the buffer
overflow. We can use Bugwise to determine common instances
of this bug by using data flow analysis to detect that the return
value of getenv() is passed directly to a string copy or any other
unbounded copy. The advantage of our approach compared to
using a search string, is that our system works when the buffer
overflow and retrieval of the environment variable spans
multiple lines.

To detect if an strcpy or strcat has a buffer overflow caused
by copying the results of getenv() we use the following
algorithm:

 For each getenv()

o if return value is live

o and it's the reaching definition to the 2nd
argument to strcpy() or strcat()

o then warn

This algorithm incurs false positives when getenv() is
called prior to the copy and a bounds check is performed.
Generally however, when getenv() is passed to a n
unbounded copy, a bug is likely to be present.

B. Use-after-free

A use-after-free bug occurs when a pointer has been
deallocated and the memory of the original allocation is
accessed without any subsequent reallocation. This bug occurs
when a pointer has been freed and the pointer is then accessed
without it being redefined. This makes it possible to detect this
class of bug using data flow analysis.

These types of bugs can be exploitable. If the access to the
deallocate memory is a read, then an information disclosure
may occur and if the pointer access is a write, then it may be
possible to gain execution control.

The algorithm to detect use-after-frees is as follows:

 For each free(ptr)

o If ptr is live

o then warn

C. Double Free

A double free is a subset of the use-after-free bug wherein
the use of undefined pointer after a deallocation is a second
free call. Historically, these types of bugs were once
exploitable under Linux. Today, a program that performs a
double free will crash due to sanity checks by the memory
manager.

The algorithm to detect double frees is as follows:

 For each free(ptr)

o if an upward exposed use of ptr's
definition is free(ptr)

o then warn

V. IMPLEMENTATION AND RESULTS

A. Implementation

Bugwise is built on our system Malwise for binary and
program analysis which has previously been used for malware
analysis [4, 7-10]. Bugwise and Malwise consist of over
100,000 lines of C++ code. It is a modular system with a core
static analysis engine and a plugable module interface where
the bug detection modules are implemented. The figure below
shows the configuration component for a scan implementing
double free detection.

There are multiple phases to the scan as is shown. Code
optimisation on the IL is performed followed by a Linux
specific module to extract the entry point from _start via
__libc_start_main. Then decompilation modules are applied,
followed again by code optimisation to clean up the IL. Finally,
data flow analysis so the double free module has access to the

void f(int x)

{

 int *p = malloc(10);

 dowork(p);

 free(p);
 if (x)

 free(p);
}

void f(int x)

{

 int *p = malloc(10);

 dowork(p);

 free(p);
 if (x)

 p[0] = 1;
}

<ModuleGroup>

 <Name>Scan</Name>

 <Run>Code Optimsation</Run>

 <Run>Linux Arch</Run>

 <Run>Pre Decompiler Data Flow Analysis</Run>

 <Run>X86 Decompiler Data Flow Analysis</Run>

 <Run>Decompiler Data Flow Analysis</Run>

 <Run>Code Optimsation</Run>

 <Run>IRDataFlowAnalysis</Run>

 <Run>Double Free Detection</Run>

</ModuleGroup>

reaching definitions, upwards exposed uses and other
information.

To aid the debugging of Bugwise and the Malwise system
it is built on, we also provide an interactive visualisation of
programs via a Java GUI interface. A screenshot showing the
call graph of a program is shown in Fig. 3.

B. The Bugalyze Web Service

Bugwise is available to use for the public as the
Bugalyze.com web service. Bugwise and Bugalyze.com are
implemented as a set of modules using our Malwise system.
Our web services also serve another system, Simseer, that
performs software similarity scoring and visualization. This
service uses the same infrastructure as Malwise.

C. Setup

To perform an experimental evaluation and to see how
many bugs we could find, we set up a machine to perform
scans with Bugwise. Our test machine was an Intel 2nd
generation Core-i7 with 4 physical cores, an SSD for the OS
Image, a 2TB hard disk, 16G of memory, and running Ubuntu
Linux 12.10 as the operating system.

D. File Statistics

One of the things we were interested in was the relationship
between the number of bugs in a binary versus the size of the
binary. The first statistical experiment we did was take every
ELF binary from the Debian 7 unstable repository and sort
them by size. These binaries form the basis for some of our
later experiments and are a good indication on the distribution
of file sizes for binaries that Bugwise is likely to work with.

The results of the analysis are charted in Fig. 4. What is
evident from the chart is that the sizes of the ELF binaries
grows logarithmically but has outliers. This tells us that if
Bugwise scales linearly according to the number of procedures
in a program, then we will have non linear growth in the time

that it scans a binary as we scan through an entire Linux
distribution sorting the binaries by size.

E. use-after-free and double free

In our first main experiment to evaluate Bugwise on finding
bugs and vulnerabilities we used the all the Debian 6 set-user-
id and set-group-id binaries available in the repository. Each
one of these binaries is privileged and a vulnerability in one
may lead to privilege escalation on the local machine. Double
frees are unlikely to lead to privilege escalation, however use-
after-frees that are not double frees may be indicative of an
exploitable memory corruption or access violation.

We ran Bugwise and enabled the use-after-free and double
free bug detection modules using both intraprocedural and
interprocedural analysis. Double frees are a subset of use-after-
frees so we should detect all the double frees in the use-after-
free detection and the use-after-free bug count should always
be equal to or greater than the double free bug count.

We investigated the double free report in the xonix SGID
games binary and identify the location of the double free as
shown in Fig. 6. It is evident from this code that the double free
only occurs on an error path when the high score file cannot be
opened. This type of error can be triggered by a malicious user
who opens a large number of file descriptors such that the
maximum allowable is reached. The next attempt to open a file
will then fail and the double free will be triggered.

Fig. 4. Elf binary sizes.

Fig. 5. Bugs over time.

Fig. 3. Program visualisation.

These results show that Bugwise can successfully detect
double frees and use-after-frees.

F. getenv()

For our next experiment we looked at the getenv() bug
detection module. For this experiment we downloaded every
ELF object from every package in the Debian 7 unstable
repository. This amounted to over 123,000 ELF binaries. Our
system could not scan 30,450 of those binaries due to inability
to parse specific ELF object types. The intraprocedural scan
took less than one week to run on our test machine.

Bugwise reported 85 possible buffer overflows in 47
packages. The reported packages are shown in Table 1. This
result demonstrates Bugwise is effective at detecting getenv()
based buffer overflows with a limited number of false
positives. A security analyst would benefit greatly from reports
such as these.

G. getenv() statistics

The first getenv() statistic we looked at was to determine if
larger binaries lead to more bugs. This is a common
assumption auditors make when looking for bugs and
vulnerabilities. We charted the cumulative number of bugs our
getenv() buffer overflow detection identified as we scanned
larger binaries in ascending order. What we expect is that if
binary size does not matter, the growth of the bugs should be
linear - that is, as the same number of binaries are scanned, the
number of bugs increases at a constant rate. If binary size is
relevant, then the growth of the line should be increasing at a
non-linear rate. Regression testing on our data shows that the
the growth is non linear. However, it is only marginally
different to a linear growth. This tells us that binary size as a
slight impact on this particular bug class and is almost
negligent. We believe that this negligible linear growth is
directly related to the bug class in question. If we examined
other bug classes such as generic buffer overflows, we would
expect that binary size affects the number of bugs.

For our next statistic, we had a hypothesis that bugs tend to
cluster. That is, developers working on code tend to implement

the same things incorrectly in nearby locations. We decided to
test what the likelihood of a getenv() bug occurring in another
binary in the same package given one binary in the package
was already vulnerable.

The probability of a binary being reported vulnerability was
0.00067. The probability of a package being reported
vulnerable was 0.00255. The conditional probability of a 2nd
vulnerability being present given that one binary in the package
is vulnerable was 0.52380. This is a very interesting result and
shows that bugs cluster in packages. It is more prudent to look
for other bugs in the same package if the objective is to find as
many bugs as quickly as possible.

memset(score_rec[i].login, 0, 11);

strncpy(score_rec[i].login, pw->pw_name, 10);

memset(score_rec[i].full, 0, 65);

strncpy(score_rec[i].full, fullname, 64);

score_rec[i].tstamp = time(NULL);

free(fullname);

if((high=freopen(PATH_HIGHSCORE, "w",high))==NULL) {

 fprintf(stderr, "xonix: cannot reopen high score

file\n");

 free(fullname);

 gameover_pending = 0;

 return;

}

Fig. 6. Double free in xonix game.

Table 1. Bugs via getenv().

4digits Ptop

acedb-other-belvu recordmydesktop

acedb-other-dotter rlplot

bvi sapphire

comgt sc

csmash scm

elvis-tiny sgrep

fvwm slurm-llnl-slurmdbd

garmin-ant-downloader statserial

gcin stopmotion

gexec supertransball2

gmorgan theorur

gopher twpsk

gsoko Udo

gstm vnc4server

hime Wily

le-dico-de-rene-cougnenc wmpinboard

libreoffice-dev wmppp.app

libxgks-dev xboing

lie xemacs21-bin

Lpe xjdic

mp3rename xmotd

mpich-mpd-bin

open-cobol

Procmail

VI. CONCLUSION

Bugwise is a system for detecting bugs in binaries by
combining traditional static analysis techniques, namely data
flow analysis, with decompilation. Data flow analysis has a
strong theoretical foundation and today's decompilation
techniques provide functional methods to recover high level
and usable information. Binary-level analysis to find bugs is in
its beginnings, but it has applications in areas such as black-
box penetration testing and verification of the compiler and
link editor. We implemented Bugwise using our previous
research for program, binary, and malware analysis and now
host the Bugalyze.com web service. The results of using
Bugwise show that it effectively found a number of real bugs
in widespread Linux distributions. We believe systems like
Bugwise open the door to industrial and useful applications
when source code is not available, yet assurance is still
required in that software.

REFERENCES

[1] C. Cifuentes, "Reverse compilation techniques," Queensland

University of Technology, 1994.

[2] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles,

techniques, and tools. Reading, MA: Addison-Wesley, 1986.

[3] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, "Static

disassembly of obfuscated binaries," in USENIX Security

Symposium, 2004, pp. 18-18.

[4] S. Cesare and X. Yang, "Wire -- A Formal Intermediate Language

for Binary Analysis," in Trust, Security and Privacy in Computing

and Communications (TrustCom), 2012 IEEE 11th International

Conference on, 2012, pp. 515-524.

[5] P. Cousot and R. Cousot, "Abstract interpretation: a unified lattice

model for static analysis of programs by construction or

approximation of fixpoints," in Sixth Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages,

Los Angeles, California, 1977, pp. 238-252.

[6] D. Aitel, "Sharefuzz," ed, 2004.

[7] S. Cesare and Y. Xiang, "Classification of Malware Using

Structured Control Flow," in 8th Australasian Symposium on

Parallel and Distributed Computing (AusPDC 2010), 2010.

[8] S. Cesare and Y. Xiang, "A Fast Flowgraph Based Classification

System for Packed and Polymorphic Malware on the Endhost," in

IEEE 24th International Conference on Advanced Information

Networking and Application (AINA 2010), 2010.

[9] S. Cesare and Y. Xiang, "Malware Variant Detection Using

Similarity Search over Sets of Control Flow Graphs," in IEEE

Trustcom, 2011.

[10] S. Cesare, Y. Xiang, and W. Zhou, "Malwise -- An Effective and

Efficient Classification System for Packed and Polymorphic

Malware," Computers, IEEE Transactions on, vol. PP, pp. 1-1,

2012.

