COMPROMISING INDUSTRIAL FACILITIES FROM 40 MILES AWAY

Lucas Apa
Carlos Mario Penagos
About Us

Lucas Apa

Vulnerability Research
Exploitation
Cryptography
Reverse Engineering
ICS/SCADA

Argentina

Carlos Penagos

Colombia
Agenda

- Motivation
- Industries and Applications
- Wireless Standards
- Journey of Radio Encryption Keys
- Vendor1 Wireless Devices
- Vendor2 Wireless Devices
- Vendor3 Wireless Devices
Motivation

- Critical Infrastructures becoming targets
- Insider attacks (Lately)
 - Devices connected to Internet
 - 0days to reach the PLC, RTU, HMI...
- Stealth and precise attacks
- Incident response at hazardous sites
Industrial Wireless Automation

- Copper wires are used to monitor and control
 - Corrosion, Ductility, Thermal Conductivity
 - Cost of wires, trenching, mounting and installation

Industrial Wireless Solutions

- Eliminate cost of hardwiring, logistics, installation
- Heavy machinery involved
- Remote control and administration (Geography)
- Minimize Safety Risk & Dangerous Boxes
- Adds durability
Industries and Applications

- Plunger lift/artificial lift optimization
- Well-head automation
- RTU/EFM I/O extensions
- Cathodic protection monitoring
- Hydrogen sulfide (H2S) monitoring

Oil & Gas

- Tank level monitoring
- Pipeline cathodic protection
- Rectifier voltage monitoring
- Gas/liquid flow measurement
- Pipeline pressure and valve monitoring

Refined Petroleum Petrochemicals
Industries and Applications (2)

- Transformer temperature
- Natural gas flow
- Power outage reporting
- Capacitor bank control
- kV, Amp, MW, MVAR reading

Energy - Utilities

- Remote pumping stations
- Water treatment plants
- Water distribution systems
- Wastewater/sewer collection systems
- Water irrigation systems/agriculture

Waste & Waste Water
Industrial Wireless Challenges

- Defeat electromagnetic interference (EMI)
- Handle signal attenuation and reflections
- Reliability is far more important than Speed
- Higher transmitter power levels
- Site surveys to assess the consistency and reliability of the plant
- Mainly using 2.4Ghz or 900Mhz (ISM Band)
- No “business” protocols
Cryptographic Key Distribution (WSN)

- Distribute secrets on a large number of nodes
- Base stations with clusters surrounding

Limitations:
- Deployment in public or hostile locations
- Post-deployment knowledge
- Limited bandwidth and transmission power

Methods for crypto key distribution:
- Out-of-band
- In-band
- Factory pre-loaded
IEEE 802.15.4 Standard

- Wireless Radios (Low Power/Speed)
- Set the encryption algorithm and AES Key
- Upper Layer Responsibility
- Each node can have an ACL
- MAC for upper layers:
 - ZigBee
 - WirelessHart
 - ISA SP100
 - IETF IPv6 - LoWPAN

Upper Layers
- IEEE 802.15.4 LLC
- IEEE 802.15.4 MAC
- 868/915/2400 Mhz
ZigBee 2007 (Standard Security Mode)

- Suite of high level communication protocols
- Based on IEEE 802.15.4 (Low level layers)
- ISM radio bands
- Trust Center introduced in 2007
- Network Key (AES 128-bit)
 - Pre-installed (Factory Installed)
 - Individually Commissioned (Commissioning tool)
 - Managed by the Trust Center
ZigBee Pro 2007 (High Security Mode)

- Many enhancements
- More memory requirements
- New keys introduced

1. Master Key
 - Unsecured Transport 😞
 - Out-of-band Technique 😊
 - Secure other keys

2. Link Key
 - Unicast
 - Unique between nodes

3. Network Key
 - Regenerated at Intervals
 - Needed to join the NWK
The Journey of Radio Encryption Keys

- **DeviceVendorID Key in Firmware**
- **No Encryption Key**
- **Per-Client Encryption Key**
- **Device Company Encryption Key**
- **No Encryption Key**
- **Change Encryption Key**
- **Per-Client Encryption Key**
- **Device Company Encryption Key**
- **Change Encryption Key**
- **Set Encryption Key**
- **No Encryption key**
Reusing Radio Keys

- **End-User Node Key Storage**
 - Shared Secret
 - Same Firmware or Same Radio Key

- **Device Company Key** attack
 1. Buy same Device (Buy same Key)
 2. Remove Radio Module
 3. Connect to USB Interface
 4. Interact: API & AT Command Mode
 5. Send frames using the unknown key

Warning: Not possible if exists a Per-Client Encryption Key
Exploiting Vendor1 Devices

- Company Profile (+1990)
- Frequency Hopping Wireless Devices
 - Great for long or short range wireless SCADA applications
 - Secure proprietary FHSS with 128 bit AES encryption
 - Hazardous location approvals, Perfect for outdoor Ethernet SCADA or indoor PLC messaging
 - 30+ miles point to point with high gain antennas
Vendor1 Key Distribution

“<Vendor1 Tool> is easy to use and intuitive. Default values built into the software work well for initial installation and testing making it easy for first-time users. <Vendor1 Tool> manages all important settings to ensure that the network performs correctly.” (User Guide)

- RF Encryption: A 128-bit encryption level key is suggested for the user.
 - **Blank**: No encrypted packets
 - **5-7 Chars**: Field is translated into a 40-bit encryption level.
 - **15-24 Chars**: Field is translated into a 128-bit encryption level.
Reversing Passphrase Generation

Compiled C++ Binary:
- `srand` seeds PRNG
- `time` returns epoch
- `srand(time(NULL))`
 - Low Entropy Seed
- Same algorithm
- `rand()`
 - Bad ANSI C function
Attacking Weak PRNG

```c
void *printPassphrase(time_t epoch)
{
  char buff[100];
  strftime(buff, 100, "%Y-%m-%d %H:%M:%S", (int*)localtime(&epoch));
  printf("%s => ", buff);
  char passphrase[25] = "\0";
  srand(epoch);
  int block_counter = 8;

  do{
    int i = rand();
    int counter = 3;
    do{
      int i2 = i & 0x1f;
      if(i2 >= 0x0a){
        i2 = i2 + 0x57;
      }else{
        i2 = i2 + 0x30;
      }
      appendchar(passphrase,sizeof passphrase,(char) i2);
      i = i >> 5;
      counter--;
    }while(counter > 0);
    block_counter--;
  }while(block_counter > 0);
  printf("%d => %s\n", epoch, strrev(passphrase));
  return;
}
```

C:\>passgen.exe
2013-04-04 21:39:08 => 1365136748 => knc6gadr40565d3j8hbrs6o0
The Oldest Passphrase

Help File

C:\>passgen.exe
2013-04-04 21:39:08 => 1365136748 => knc6gadr40565d3j8hbrs6o0
2013-04-04 21:39:07 => 1365136747 => nir3f1a0dm2sd41q91c06nt
...
2008-04-17 15:20:47 => 1208470847 => re84q92vssgd671pd2smj8ig
Comissioning Tool Audit

- Easily breakable by an outsider
- Further Research with the Devices
- Comissioning Tools needs deep testing

Bruteforce Passphrase

- \(25^{70}\) Passphrases
- Mixed lower case alphabet plus numbers and common symbols
- Impossible to calculate all passphrases
- Need to derive AES 128-bit key on realtime

Weak PRNG Attack

- \(~156\) Million Passphrases
- Every second passed, one more key
- Only a few seconds to calculate all passphrases
- Calculate once and create a database with all possible AES 128-bit key derivations
Vendor2 Wireless Devices

- Market leadership: Oil & Gas
- Wireless and wired solutions for the digital oil field automation
- Trusted by top companies in different industries
- **Family System** (Point to Multipoint):
 - Wireless Gateways
 - Wireless Transmitters
 - I/O Expansion Modules
 - Hardwire Sensors
An Extended Family of Devices

- **Applications**
 - Oil & Gas
 - Refining / Petro Chemicals
 - Water & Waste Water
 - Utilities
 - Industrial Process Monitoring

- **Transmitters**
 - RTD Temperature Transmitter
 - Analog/Discrete Transmitter
 - Flow Totalizer Transmitter
 - Pressure Transmitter
 - Hydrostatic Level Transmitter
 - Many more..
Tool and Project Files

- How the devices access the wireless information?
- “Enhanced Site Security Key”

The Enhanced Site Security feature designed to provide an additional **level of protection** for **RF packets** sent and received between <Vendor2> devices and minimizes the possibility of interference from other devices in this area. This feature is **not available on some older versions** of legacy devices.

- Security Key == Encryption Key ???
- Legacy Devices Without Encryption???
Key Generation and Distribution

- Create a “Project File” and update all Nodes
- From documentation:

 “If the project file name is changed, a new Site Security Key will be assigned”

Possible Scheme: **Per-Site Encryption**

This Key MUST be somewhere on the Project File.
File Name Change => New Key

```
mov ecx, [ebx+2084h] ; Check if file path has changed
mov edi, [ecx+esi*4]
test edi, edi
jz short not_changed
```

```
push 0 ; Time
call __time64 ; Determine the current calendar time
add eax, esi
add esp, 4
mov [esp+18h+var_4], edx
mov edx, [edi]
push eax
mov eax, [edx+10h]
mov ecx, edi
call eax ; eax = &update_key
mov eax, [esp+18h+security_enabled]
```
Project File Binary Diffing

ProjectA

<table>
<thead>
<tr>
<th>Offset</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000000</td>
<td>0300</td>
<td>0000</td>
<td>0100</td>
<td>0000</td>
<td>0200</td>
<td>ffff</td>
<td>0800</td>
<td>0800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x00000010</td>
<td>4669</td>
<td>6c65</td>
<td>4e6f</td>
<td>6465</td>
<td>0000</td>
<td>0000</td>
<td>8403</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x00000020</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>ffff</td>
<td>0800</td>
<td>0800</td>
<td>0000</td>
<td>0010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x00000030</td>
<td>0000</td>
<td>0850</td>
<td>726f</td>
<td>6a65</td>
<td>6374</td>
<td>4205</td>
<td>433a</td>
<td>Sc01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x00000040</td>
<td>00ff</td>
<td>fffe</td>
<td>0004</td>
<td>0053</td>
<td>6974</td>
<td>6571</td>
<td>584f</td>
<td>5101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x00000050</td>
<td>0653</td>
<td>6974</td>
<td>65ff</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x00000060</td>
<td>0000</td>
<td>0000</td>
<td>ffff</td>
<td>0800</td>
<td>0800</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x00000070</td>
<td>0000</td>
<td>0850</td>
<td>726f</td>
<td>6a65</td>
<td>6374</td>
<td>4205</td>
<td>433a</td>
<td>Sc01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x00000080</td>
<td>0099</td>
<td>4761</td>
<td>7465</td>
<td>7761</td>
<td>795f</td>
<td>3100</td>
<td>0000</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x00000090</td>
<td>0000</td>
<td>0882</td>
<td>0010</td>
<td>0000</td>
<td>0100</td>
<td>0000</td>
<td>1600</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x000000a0</td>
<td>3c00</td>
<td>0000</td>
<td>0010</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0c84</td>
<td>0300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ProjectB

<table>
<thead>
<tr>
<th>Offset</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000000</td>
<td>0300</td>
<td>0000</td>
<td>0100</td>
<td>0000</td>
<td>0200</td>
<td>ffff</td>
<td>0800</td>
<td>0800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x00000010</td>
<td>4669</td>
<td>6c65</td>
<td>4e6f</td>
<td>6465</td>
<td>0000</td>
<td>0000</td>
<td>8403</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x00000020</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>ffff</td>
<td>0800</td>
<td>0800</td>
<td>0000</td>
<td>0010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x00000030</td>
<td>0000</td>
<td>0850</td>
<td>726f</td>
<td>6a65</td>
<td>6374</td>
<td>4205</td>
<td>433a</td>
<td>Sc01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x00000040</td>
<td>00ff</td>
<td>fffe</td>
<td>0004</td>
<td>0053</td>
<td>6974</td>
<td>6571</td>
<td>584f</td>
<td>5101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x00000050</td>
<td>0653</td>
<td>6974</td>
<td>65ff</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x00000060</td>
<td>0000</td>
<td>0000</td>
<td>ffff</td>
<td>0800</td>
<td>0800</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x00000070</td>
<td>0000</td>
<td>0850</td>
<td>726f</td>
<td>6a65</td>
<td>6374</td>
<td>4205</td>
<td>433a</td>
<td>Sc01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x00000080</td>
<td>0099</td>
<td>4761</td>
<td>7465</td>
<td>7761</td>
<td>795f</td>
<td>3100</td>
<td>0000</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x00000090</td>
<td>0000</td>
<td>0882</td>
<td>0010</td>
<td>0000</td>
<td>0100</td>
<td>0000</td>
<td>1600</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x000000a0</td>
<td>3c00</td>
<td>0000</td>
<td>0010</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0c84</td>
<td>0300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Component Identification

- Support Center
 - Firmware Images & Documentation
 - Radio Modules, Architectures & Processors

<table>
<thead>
<tr>
<th>HARDWARE FEATURES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Functionality</td>
<td>• Wireless Gateway</td>
</tr>
<tr>
<td>Embedded Controller</td>
<td>• 32-bit Low Power ARM7 Microcontroller with Internal FLASH</td>
</tr>
<tr>
<td></td>
<td>(Field Upgradeable)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HARDWARE FEATURES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Functionality</td>
<td>• RTD Temperature Monitor w/ Built-In Wireless Transmitter</td>
</tr>
<tr>
<td>Embedded Controller</td>
<td>• Ultra-low Power RISC Microcontroller with Internal FLASH</td>
</tr>
<tr>
<td></td>
<td>(Field Upgradeable)</td>
</tr>
</tbody>
</table>
Understanding Firmware Image (RISC)

- Industry Standard Format
 - @Address and content
 - Incomplete Image (Update)
 - Only compiler strings

CrossWorks for MSP430
Component Identification
YouTube (XT09 and 802.15.4)
No Per-Client Key

Dear <<Reseller Sales Eng>>,

We are going to **borrow a used “Analog Transmitter”** from one of our partners,

We are going to test it for a few weeks and let you know if we decide to **buy a new one**.

Are there any specific concern we might take into account when deploying this device to connect it with our <Device>? Or just upgrade all project configuration files?

Thank you

Lucas,

You just need to upgrade the configuration files.

Thanks.
Finding Embedded Keys

- Two kind of Firmwares (ARM and MSP430)
- One possible hardcoded key in both firmwares
- Binary Equaling

```
-- offset -- 0 1 2 3 4 5 6 7 8 9 A B C D E F
0x000000000 4f43 4e43 003c f2b0 4000 0200 fc27 5d42
0x000000010 75e0 4f43 d2c2 7600 0200 7f90 7e00 f223
0x000000020 3041 4f43 7e40 5a00 d293 aa07 1728 f290
0x000000030 0600 aa07 132c 4f43 033c 5eef aa07 5f53
```

```
-- offset -- 0 1 2 3 4 5 6 7 8 9 A B C D E F
0x000000000 1870 9fe5 ffff ffff ffff ffff ffff ffff
0x000000010 ffff ffff ffff ffff ffff ffff ffff ffff
0x000000020 1870 9fe5 1870 9fe5 ffff ffff ffff ffff
0x000000030 4000 0000 ffff ffff ffff ffff ffff ffff
0x000000030 C4B8 0000 88B8 0000
```

```
calculate_crc

STMPD SPI, (R4)
MOV R3, #0

; loc 0x8168

CMP R3, R1
B loc 0x8168

; cmp size of data

loc_0x8168

; loc 0x8168

```

```
0000 C16C 61C1 4001 01C3 C003 8002 41C2 01C6 C006 8007 41C7 0005 C19C 81C4 4004
01CC C00C 800D 41C0 0000 C19C 81C6 400E 0000 C19A 81C8 4008 01C9 C009 6008 41C8
0108 C018 8019 41D9 0018 C19B 81DA 401A 001E C19D 81DF 401F 010D C01D 801C 41DC
0014 C014 81D5 4016 0107 C017 8016 41D6 0102 C012 8013 41D3 0111 C011 81D0 4010
01F9 C030 8031 41F1 0033 C163 81F2 4032 0038 C166 81F7 4037 01F5 C035 8034 41F4
003C C1FC 81FD 403D 01FF C03F 803E 41FE 01FF C03A 803B 41FB 0039 C19F 81F8 403B
0028 C1E8 81EB 4020 01E8 C028 802A 41EA 01E8 C02E 802F 41EF 002D C1ED 81EC 402C
01E4 C024 8025 41E5 0027 C1E7 81E9 4026 0022 C022 81E3 4023 01E1 C021 8020 41ED
01A0 C060 8061 41A1 0083 C1A3 81A2 4062 0066 C1A8 81A7 4067 01A5 C065 8064 41A4
006C C1AC 81AD 406D 01AF C06F 806E 41AE 01AA C06A 806B 41AB 0069 C1A9 81AF 4068
0078 C1BB 81BA 4079 01BB C078 807A 41BA 01BB C07E 807F 41BF 007D C1BD 81B0 407C
01B4 C074 8075 41B5 0077 C1B7 81B6 4076 0072 C1B2 81B3 4073 01B1 8070 41BD
0059 C190 8191 4051 0193 C055 8052 4192 0196 C056 8057 4197 0055 C195 8194 4056
019C C05C 805D 419D 005F C19F 819E 405E 005A C19A 819B 4059 0193 C058 8059 419B
0168 C049 8049 4189 0048 C18A 818A 4044 018E C186 818F 4046 016D C04D 804C 418C
0044 C184 8185 4045 0187 C047 8046 4186 0182 C042 8043 4183 0041 C181 8180 4040
```
Acquiring the Devices

- **RTD Temperature Transmitter**
 - Integrates Platinum 100 ohm RTD Sensor
 - Ideal for use in various mission-critical industrial applications.
 - Ideal for Monitoring Air, Gas, Water, or Liquid Temperatures

- **Wireless Gateway**
 - Gateways are responsible for receiving/collecting data from wireless end nodes
 - The collected data can be communicated with third-party Modbus device such as a RTU, PLC, EFM, HMI, or DCS
Resilience and Node Capture

- Extraction
 - Site Security Key
 - Project File

FF 41 06 00 0A 00 00 00 33 2E 1D CC

FF 41 0A 00 0A 00 00 00 04 00 AB D0 9A 51 B0 ...
A crypto attack disappointment

- Protocol Reverse Engineering
 - Device has a debug interface
 - Developed a custom tool to receive and send 802.15.4 data
 - 2.4ghz Transceiver (Modified Firmware and Reflashed by JTAG)
 - PyUsb, IPython, Scapy Dissectors, etc.
 - Borrowed KillerBee Frame Check Sequence Code

- Against the perfect scheme: Per-Site Encryption Key
 - Key not really used for data encryption
 - Key only used to ”authenticate” devices
 - No integrity and confidentiality
Temperature Injection Live Demo

- Developed an HMI Project
- **Chemical Safety Board (US)** background video
- Modbus RTU Driver
- Arduino and SimpleModbus
- Rotary Actuator
- Cost of the attack: $40 USD
- **Live Demo**
KEEP CALM AND GET TO THE CHOPPA!
Remote Memory Corruption

- Identify all the protocol fields
- Memory corruption bug using unhandled values.
- Remotely exploitable over the air

- **Plant Killer** =>

- Also could be useful to dump firmware or memory.
- We recorded a demo
Vendor3 Devices

- **Company Profile**
 - Self-proclaimed leader in process and industrial automation
 - Clients: Nearly all manufacturing companies from Fortune 500
 - 22,000 different products across 40 industries

- **Wireless System (Family)**

- **Wireless Gateway**
 - Master device used to control network timing and comm traffic

- **Nodes**
 - Collect data -> TX Gateway
Research

- Wireless Family Technical Note:
 “Multi-layer security protocol protects your data”
 - Network Security
 - Data Security
 - Data Integrity and Control Reliability

“The wireless I/O systems provide a level of security, data integrity, and reliability far exceeding most wireless systems on the market today”
Quotes (Network Security)

“<Family> is designed to completely eliminate all Internet Protocol (IP) based security threats. Wi-Fi access points have the potential to route any and all data packets, which is why these systems use encryption”
Quotes (Data Security)

“The protocol only carries sensor data values. Only I/O data is transmitted in the wireless layer.”
Quotes (Comm Protocols)

“Widely used open protocols such as Wi-Fi have serious security issues. Even a high degree of encryption may not protect your data. It is common for new encryption schemes to be hacked within months of implementation. Proprietary systems are more difficult to hack than an open standard.”
Quotes (Comm Protocols)

“<Vendor3> achieves data security by using a proprietary protocol, pseudo-random frequency hopping, and generic data transfer. The <Family> protocol only carries I/O data, making it impossible for a malicious executable file to be transmitted.”
Quotes (Comm Protocols)

“This protocol does not operate like an open protocol such as Wi-Fi and is not subject to the risks of an open protocol.”
Conclusions (Securing the scheme)

- Out of bands methods
 - Pre-share a strong secret for the initial link (eg: serial comm)
 - Also 802.15.4 AES Encryption at lower layers (MAC)
- Secure the Node Physical Access (Mainly KDC)
- Use hardware Anti-tamper mechanisms
- Audit Source Code // Audit Site regularly
- ICS-CERT Hardening Guides
Conclusions

- Problem space has always been an open topic
- The journey of keys allows practical attacks
- WSN’s standards maturity is growing
- Vendors can fail at implementing them
- No evidence of previous security reviews
- Testing the field location is possible with the proper Hardware and open source Software

CC1111 RZUSB TelosB HackRF
Acknowledgements

- ICS/CERT – US/CERT
- References: Piotr Szcezechowiak, Haowen Chan, A. Perrig, Seyit A. Camtepe, Bulent Yener, Rob Havelt, Travis Goodspeed, Joshua Wright...
- IOActive, Inc.
THANK YOU!

Lucas Apa (lucas.apa@ioactive.com)
Carlos Penagos (carlos.hollman@ioactive.com)