
The OWASP Foundation
http://www.owasp.org

OWASP Dependency-Check

Jeremy Long
jeremy.long@owasp.org
twitter: @ctxt

Steve Springett
steve.springett@owasp.org

Jeremy Long

•  10 years information security experience

•  10 years software development experience

•  Senior Information Security Engineer at a large financial
institution

•  Northern Virginia OWASP Chapter board member

•  Lead developer/architect for OWASP Dependency-Check

Steve Springett

•  19 years software development experience

•  4 years information security experience

•  Principal application security engineer at

•  Provide direction, best practices & education

•  Contributor to OWASP Dependency-Check

4

Vulnerabilities in 3rd Party Libraries

•  88% of code in today’s applications
come from libraries and frameworks

•  113 million downloads analyzed for the
31 most popular Java frameworks/libs

•  26% had known vulnerabilities

•  Most vulnerabilities are undiscovered
Jeff Williams & Arshan Dabirsiaghi	

The Unfortunate Reality of Insecure Libraries	

Aspect Security (March 2012)	

5

OWASP Top Ten 2013

•  A9 – Using components with known
vulnerabilities

 Prevalence: Widespread

 Detectability: Difficult

6

Dependency-Check

•  Simple answer to the A9 problem

•  Identifies libraries and reports on known/
published vulnerabilities

•  Currently limited to Java libraries

•  Project Team:

•  Jeremy Long – lead developer/architect

•  Steve Springett - contributor

7

Library Identification

•  Reporting on published/known
vulnerabilities requires the correct
identification of the libraries used

8

Problems w/ Library Identification

•  No standard labeling mechanism for identifying

•  CPE identifiers are used in NVD CVE:

•  cpe:/a:springsource:spring_framework:3.0.0
•  cpe:/a:vmware:springsource_spring_framework:3.0.0
•  cpe:/a:apache:struts:1.2.7
•  cpe:/a:apache:struts:2.1.2

•  File hashes could be used to aid in identification

•  Hash database must be maintained

•  Hashes may change if library is built from source

•  Components bundled via one jar, maven-shade-plugin, etc.

9

Library Identification:
Evidence Based Identification
•  Local copy of the NVD CVE is maintained

•  Evidence collected is used to search the local
database to identify the library and vulnerabilities

•  Data extracted from libraries

•  File name, manifest, POM, package names, etc.

•  Mapping of library to CPE/CVE not needed

•  Future enhancements may include a file hash
analyzer – this is not currently available

10

Evidence Based Identification:
Problems
•  False Positives

•  Evidence extracted may cause incorrect
identification

•  False Negatives

•  If key elements are not included in the JAR the
library will not be identified and may be a risk

11

Dependency-Check:
Current State
•  Identifies CVE’s in Java libraries

•  Useful for inventorying and monitoring

•  Developed in Java

•  Current Interfaces: CLI, Ant Task, Maven
Plugin, and Jenkins plugin.

•  Easily extendable to analyze other file
types/languages

12

Dependency-Check:
Roadmap
•  Improve database update process

•  Sonar Plugin

•  Eclipse & Netbeans plugins

•  Possible integration with Apache Archiva

•  Additional analyzers for .NET dlls and
JavaScript

13

Dependency-Check

•  License - GNU GPL v3 license

•  Important Links:

OWASP Project Page:
https://www.owasp.org/index.php/OWASP_Dependency_Check

SCM:
https://github.com/jeremylong/DependencyCheck

Mailing List:
Subscribe: dependency-check+subscribe@googlegroups.com
Post: dependency-check@googlegroups.com

14

DEMO	

