
ShellNoob
Because writing shellcode is fun,

but sometimes painful

Yanick Fratantonio
UC Santa Barbara

Black Hat USA
Arsenal 2013

Who am I?

● PhD Student at UC Santa Barbara
● I play with the ShellPhish team
● What I do

○ I like low-level stuff
○ I worked on shellcode analysis
○ Now I'm on Android security

■ static / dynamic analysis

● Links
○ Website: http://cs.ucsb.edu/~yanick
○ Email: yanick [at] cs.ucsb.edu
○ Twitter: @reyammer

http://cs.ucsb.edu/~yanick
https://twitter.com/reyammer

Writing shellcode - why?

● Sometimes, something ad-hoc is required

● Even when you need something simple,
there are problems with already written ones

● How about Shellcode generators?
○ Even the most advanced ones sometimes fail

■ And if they fail, you are fucked (good luck debugging them!)
● (any reference to Metasploit's shellcode generator is purely coincidental)

○ But please don't get me wrong, Metasploit is awesome :-)

What's the issue?

● We have incredibly awesome tools that try to
do incredibly difficult tasks
○ Shellcode generators are just one example

● This might be too complicated to be infallible
○ Metasploit is written by uber smart guys
○ Why are shellcode generators still not bullet-proof?

■ Extremely difficult stuff!
■ We need a plan B

So what?

● It's good to have something crazy difficult
that sometimes works

● But it's also good to have something simple
that makes simple tasks even simpler

Shellcode writing facts

● We need to be prepared to write shellcode

● Writing shellcode is fun, but some steps are
boring, error-prone, and hence painful

● Most of such steps can be automated
once for all!

Examples of boring steps

● Shellcode on the web, that is almost exactly
what you want, but still needs some tweaks
○ example: samples from shell-storm shellcode DB

● Sometimes they are not in the wanted
format, and you need to "convert" them
○ assembly to hex
○ ELF to assembly
○ C to raw binary

■ I've seen VIM macros that you people wouldn't believe...
○ ...and all the other combinations

Examples of boring steps (2)

● Syscall numbers
○ Which number was the "read" again?
○ 3 you say? Is that on Linux or FreeBSD? duuude!

● Resolving constants
○ O_CREAT was 0, right? oh, on FreeBSD you say?
○ Aaah, that was O_RDWR. Or maybe O_RDONLY?

*Sentences in italic indicate real questions asked by
myself or my fellow colleagues

Examples of boring steps (3)

● Alright, I have the shellcode: now let's
compile and test it
○ mmm, how can I do that?

● Let's run it in gdb
○ Hey it crashed, WTF?
○ oh, self modifying shellcode in the non-writable

code segment?
■ no good :/

● Now let's run it against the target
○ FUUUCK, if it contains byte "0x42" it gets corrupted.
○ Do you think that "inc %edx" will be a problem?

ShellNoob to the rescue!

Disclaimer -- What ShellNoob is NOT

● It's NOT a replacement for Metasploit's
shellcode generator

● It will NOT try to generate shellcode for you

● It will NOT be bug-free
○ But the goal is simple enough that coders more

skilled than me will fix them soon!
■ Go and start now: https://github.com/reyammer/shellnoob :-)

https://github.com/reyammer/shellnoob

What the hell is it then?

● A toolkit to help you write shellcode

● Design principles & goals
○ Extremely easy to deploy and use
○ Automate and make as easy as possible whatever it

supposed to be easy
○ Trial & error should be cheap process
○ Portable & Flexible -- easy to extend
○ Easy to understand "what's going on"

■ To debug the tool
■ As a way to learn how to do it manually!

Easy to deploy & use

● ShellNoob is a single self-contained python
script (~1K LOC)

● Deployment? Just scp it on the target device

● If you want, you can "install" it
○ ./shellnoob.py --install

■ "cp shellnoob.py /usr/local/bin/snoob"

● You are now ready to hack!

Conversion mode

● Usual task: convert the shellcode from one
"format" to another one

● Input formats
○ --from-asm
○ --from-bin
○ --from-hex
○ --from-obj (an ELF)
○ --from-c
○ --from-shellstorm

Conversion mode

● Usual task: convert the shellcode from one
"format" to another one

● Input formats
○ --from-asm
○ --from-bin
○ --from-hex
○ --from-obj (an ELF)
○ --from-c
○ --from-shellstorm

.section .text
 mov %ebx, %ecx
 mov %eax, %ebx
 xor %edx, %edx
 addb $0xff, %dl
 xor %eax, %eax
 movb $0x3, %al
 int $0x80

Support for both ATT & Intel syntax!

Conversion mode

● Usual task: convert the shellcode from one
"format" to another one

● Input formats
○ --from-asm
○ --from-bin
○ --from-hex
○ --from-obj (an ELF)
○ --from-c
○ --from-shellstorm

'\x41\x42\x43\x44'

'41424344'

Conversion mode

● Usual task: convert the shellcode from one
"format" to another one

● Input formats
○ --from-asm
○ --from-bin
○ --from-hex
○ --from-obj (an ELF)
○ --from-c
○ --from-shellstorm

char shellcode[] =
 "\x6a\x0b\x58\x99"
 "\x52\x66\x68\x2d"
 "\x70\x89\xe1\x52"
 "\x6a\x68\x68\x2f";

But be careful, it's just doing its best
in guessing what's the shellcode

Conversion mode

● Usual task: convert the shellcode from one
"format" to another one

● Input formats
○ --from-asm
○ --from-bin
○ --from-hex
○ --from-obj (an ELF)
○ --from-c
○ --from-shellstorm <shellcode_id>

That's it! ShellNoob will download and
convert the shellcode from the DB

Conversion mode

● Usual task: convert the shellcode from one
"format" to another one

● Output formats
○ --to-asm
○ --to-safeasm
○ --to-bin
○ --to-hex
○ --to-obj
○ --to-exe
○ --to-c, --to-completec
○ --to-python, --to-bash, --to-ruby

Conversion mode

● Usual task: convert the shellcode from one
"format" to another one

● Output formats
○ --to-asm
○ --to-safeasm
○ --to-bin
○ --to-hex
○ --to-obj
○ --to-exe
○ --to-c, --to-completec
○ --to-python, --to-bash, --to-ruby

.section .text
 jmp 0x37 # .byte 0xeb,0x35
 pop %ebx # .byte 0x5b
 mov %ebx,%eax # .byte 0x89,0xd8
 add $0xb,%eax # .byte 0x83,0xc0,0x0b

Conversion mode

● Usual task: convert the shellcode from one
"format" to another one

● Output formats
○ --to-asm
○ --to-safeasm
○ --to-bin
○ --to-hex
○ --to-obj
○ --to-exe
○ --to-c, --to-completec
○ --to-python, --to-bash, --to-ruby

.section .text
 ...
 das # .ascii "/"
 je 0xac # .ascii "tm"
 jo 0x70 # .ascii "p/"
 jae 0xa8 # .ascii "se"
 arpl %si,0x65(%edx) # .ascii "cre"
 je 0xa0 # .ascii "tX"

Conversion mode

● Usual task: convert the shellcode from one
"format" to another one

● Output formats
○ --to-asm
○ --to-safeasm
○ --to-bin
○ --to-hex
○ --to-obj
○ --to-exe
○ --to-c, --to-completec
○ --to-python, --to-bash, --to-ruby

.section .text
 .byte 0xeb,0x35
 .byte 0x5b
 .byte 0x89,0xd8
 .byte 0x83,0xc0,0x0b

"safe mode" -- 100% assemblable

Uber flexible CLI

● Some examples (all equivalent)
$ snoob --from-asm shell.asm --to-bin shell.bin
$ snoob shell.asm --to-bin shell.bin
$ snoob shell.asm --to-bin
$ snoob shell.asm --to-bin - > shell.bin
$ cat shell.asm | snoob --from-asm - --to-bin shell.bin

● Several switches
$ snoob -c shell.asm --to-exe # prepend a breakpoint
$ snoob --intel shell.asm --to-exe # Intel vs ATT syntax
$ snoob --64 shell.asm --to-exe # 64bits vs 32bits mode

Syscalls and constants

● When writing shellcode, you need to directly
call syscalls: you need to know the numbers!
○ $ snoob --get-sysnum read
○ x86 ~> 3
○ x86_64 ~> 0

● Similarly, you need to resolve the constants!
○ $ snoob --get-const O_RDWR
○ O_RDWR ~> 2
○ It can also be used to resolve the error numbers!

■ Example: EACCES ~> 13

Interactive mode

● Quick ways to check which bytes a specific
instruction is assembled to (and viceversa)

● Assembly ~> opcode
○ $ snoob -i --to-opcode
○ >> mov %eax, %ebx
○ mov %eax, %ebx ~> 89c3

● Opcode ~> assembly
○ $ snoob -i --to-asm
○ >> 89c3
○ 89c3 ~> mov %eax, %ebx

Trial & error should be "cheap"

● You are convinced your shellcode is right,
but there is a bug. Debug it!

● "Special" output modes
○ --to-strace

$ snoob open-read-write-shell.asm --to-strace
[Process PID=15085 runs in 32 bit mode.]
open("/tmp/secret", O_RDONLY) = 3
read(3, "ThisIsMySecret", 255) = 14
write(1, "ThisIsMySecret", 14ThisIsMySecret) = 14
_exit(0) = ?

Trial & error should be "cheap"

● You are convinced your shellcode is right,
but there is a bug. Debug it!

● "Special" output modes
○ --to-strace
○ --to-gdb

$ snoob open-read-write.asm --to-gdb
Reading symbols from /tmp/tmpzTg_T0...(no debugging
symbols found)...done.
(gdb) Breakpoint 1 at 0x8048054
(gdb)

A breakpoint is automatically set on the first instruction!

Easily portable & extendable
● The only dependencies

○ as, objdump, ld, objcopy, python, [strace, gdb]

● Built-in support for
○ Linux / i386 - x86_64 - ARM
○ FreeBSD / i386 - x86_64

● Possible extensions
○ Adding a new conversion mode is really easy

■ You just need to define a *_to_hex and/or hex_to_* functions!
■ All the plumbing is done automatically!

○ Adding support for a new OS/arch is simple as well
■ check the {as,objdump,ld}_options_map fields!

ShellNoob as a library
● ShellNoob is a huge Python object

○ all the settings go in the constructor
○ all the features are exported as methods

■ conversion functions (asm_to_hex(asm), ...)
■ do_resolve_syscall(syscall)
■ ...

$ python
Python 2.7.4 (default, Apr 19 2013, 18:28:01)
[GCC 4.7.3] on linux2
>>> from shellnoob import ShellNoob
>>> sn = ShellNoob()
>>> sn.asm_to_hex('nop')
'90'
>>>

Additional plugins

● Following the usual mantra
○ All the simple tasks should be automated and made

as simple as possible

● Few additional "plugins"
$ snoob --file-patch <exe_fp> <file_offset> <data>
$ snoob --vm-patch <exe_fp> <vm_address> <data>
$ snoob --fork-nopper <exe_fp> # this nops out the fork()s

That's all folks!

Thanks!
● Links

○ Website: http://cs.ucsb.edu/~yanick
○ Email: yanick [at] cs.ucsb.edu
○ Twitter: @reyammer
○ ShellNoob: https://github.com/reyammer/shellnoob

http://cs.ucsb.edu/~yanick
https://twitter.com/reyammer
https://github.com/reyammer/shellnoob

