Lead Security Researcher
Trustwave SpiderLabs
rbarnett@trustwave.com
@ryancbarnett

-

LUSA 2013

* Trustwave SpiderLabs Research

— Specialize in Web Application
Defense/WAF Research
 WebDefend (Commercial)
 ModSecurity (Open Source)

* OWASP

— Lead the ModSecurity Core Rule
Set (CRS) Project

e Author

— The Web Application Defender’s
Cookbook
blackhat

LUSA 2013

The
Web Application
Defender’s
Cookbook F::i:i..

Protecting

« 8

SECURITY EXTERNAL CODE .
REVIEW PENETRATION
REQUIREMENTS REVIEW (TOOLS) TESTING

RISK-BASED
ABUSE RISK SECURITY RISK SECURITY
CASES ANALYSIS TESTS ANALYSIS OPERATION$

2 AR T N\

REQUIREMENTS ARCHITECTURE TEST PLANS TESTS AND FEEDBACK FROM
AND USE CASES AND DESIGN TEST RESULTS THE FIELD

(] I
Y &\ & \&E

BENEEE

_ Defenders |

69
blacik o

LUSA 2013

* ModSecurity Overview J§°* Advanced Usage
— Project Overview Examples
— Installation Options — DAST/WAF Integration
— Recommended Base — HMAC Token Validation

Configuration — Bayesian Analysis
* OWASP Core Rule Set « Trustwave SpiderLabs

— GitHub Repo Commercial Rules Feed

— Regression Tests — Virtual Patches

— Convert DAST XML to — IP Reputation
Virtual Patches

— Malware Detection

m Od P}Trust\gdaexbe;

Open Source Web Application Firewall

Developers

Mﬂdsecurity @ ModSecurity

Now Available = @ modSecurity
® Core Rules

”(-'i_l ‘ ﬂl ;] ModSecurity
it ricmasdoly AN Commercial Rules

ModSecurity Status (v2.7.0)

News and Updates ModSecurity Blog Apache (Stable): download
IIS (Beta): download

Availability of ModSecurity 2.7.0 Stable Release SpiderLabs Anterior Nginx (Beta): download
(October 16, 2012)
The ModSecurity Development Team is pleased to Announcing the availability of
announce the availability of ModSecurity 2.7.0 ModSecurity extension for Nginx Search www.modsecurity.org)
Stable Release.The stability of this release is good
and includes many new features and bug fixes. ModSecurity for Nginx ModSecurity for Nginx is a My ModSecurity
Highlights include: web server plug-in for the@Nginx web server platf... ™ ModSecurity

® |nternationalization (I118N) Support How Should WAFs Handle Authorized Mfohisgéurit)’_/\"n;!’"gig? g\lvailability
® HMAC Token Injection to prevent data Vulnerability Scanning Traffic? oo efcuntyv - sane

LUSA 2013

Web Server Platform (11S/Nginx)

ModSeclnit()

ModSecNewConnection()

ModSecNewRequest()

ModSecProcessRequest|()

SecRuIeEng‘ne][SecAud‘tEng'ne][SecRule]

&

4

LUSA 2013

APR

PCRE

Libxml

Lua

Install Binaries from OS Repositories

— Fedora Core, CentOS and RedHat Enterprise Linux
e # yum install mod_security

— Debian or Ubuntu
* # apt-get install libapache-mod-security

Web Admin Panels

e cPanel
Pros
— Easy Installation

Cons
— May not be the latest version

{5 ModSecurity TIS

Select Installation Folder

The installer will install ModSecurity IIS to the following folder.

To install in this folder, click "Next". To install to a different folder, enter it below or click "Browse".

Folder:

ChProgram Files (x86)\ModSecurity IIS) Browse. .

Disk Cost...

Install ModSecurity IS for yourself, or for anyone who uses this computer:

Q) Everyone

Justme

et

LUSA 2013

e Download Source Archive

— $ wget http://www.modsecurity.org/download/modsecurity-
apache_2.7.0.tar.gz

 Download from Repository

— svn export https://mod-security.svn.sourceforge.net/svnroot/mod-security/
m2/trunk modsecurity-trunk

 Dependencies

— Required
Apache Portable Runtime (APR)
APR-Util
Mod_unique_id
PCRE
libxml2
— Optional
* Luab5.1
* libcurl

Configure

— $./configure

New Performance Options for v2.7.0
— --enable-pcre-jit

— --enable-lua-cache
Make

— S make

Make Install

— S sudo make install
Activate in httpd.conf

— LoadFile /usr/lib/libxml2.so

— LoadFile /usr/lib/liblua5.1.so

— LoadModule security2_module modules/mod_security2.so

httpd.conf:

Include modsecurity.conf

web.config:

<Modsecurity enabled=“true”
configFile=“modsecurity.conf” />

nginx.conf:
ModSecurityConfig modsecurity.conf
ModSecurityEnable On

LUSA 201=3

Prevent path traversal
SecRule REQUEST URI |ARGS

Prevent XSS atacks (H
injection)

SecRule REQUEST URI |ARGS

Very crude filters to p
injection attacks

SecRule REQUEST_URIIARGS
"delete[[:space:]]+from"

SecRule REQUEST_URIIARGS
"insert[[:space:]]+into"

SecRule REQUEST URI |ARGS

Related Projects Roadmap

Overview

ModSecurity ™ is a web application firewall engine that provides very little protection on its own. In order to become
useful, ModSecurity ™ must be configured with rules. In order to enable users to take full advantage of ModSecurity ™
out of the box, Trustwave's SpiderLabs is sponsoring and maintaining a free certified rule set for the community. Unlike
intrusion detection and prevention systems, which rely on signatures specific to known vulnerabilities, the Core Rules
provide generic protection from unknown vulnerabilities often found in web applications, which are in most cases
custom coded. The Core Rules are heavily commented to allow it to be used as a step-by-step deployment guide for
ModSecurity ™.

Donate funds to OWASP earmarked for ModSecurity Core Rule Set Project.

Core Rules Content
In order to provide generic web applications protection, the Core Rules use the following techniques:

HTTP Protection - detecting violations of the HTTP protocol and a locally defined usage policy.

Real-time Blacklist Lookups - utilizes 3rd Party IP Reputation

Web-based Malware Detection - identifies malicious web content by check against the Google Safe Browsing API.
HTTP Denial of Service Protections - defense against HTTP Flooding and Slow HTTP DoS Attacks.

Common Web Attacks Protection - detecting common web application security attack.

Automation Detection - Detecting bots, crawlers, scanners and other surface malicious activity.

Integration with AV Scanning for File Uploads - detects malicious files uploaded through the web application.
Tracking Sensitive Data - Tracks Credit Card usage and blocks leakages.

Trojan Protection - Detecting access to Trojans horses.

Trustwave
Spider

Network Pull Requests 0 Graphs Admin

Ru t (Cl Pr t (Official Ref

https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project

@& Clone in Mac < ZIP HTTP SSH GitRead-Only https://github.com/SpiderLabs/onasp-modsecurity | [B] Read+Write access

h: master ~ Files Commits Branches 2 Tags 2 Downloads

master
Updated regression tests

Ryan Barnett b24847c9cl

owasp-modsecurity-crs

name age message history
a month ago Updating for tags [Ryan Barnett]

12 days ago Updated tag data in SQLi rules [Ryan Barnett]

$./rulestest.pl -s 127.0.0.1:80 tests/*41*

ModSecurity rules test report generated to STDOUT on Wed Oct 17 10:08:28
2012

Produced by rulestest.pl, (c) Trustwave Holdings Inc, 2012

reading tests file rulestest.conf

reading tests file tests/modsecurity crs 41 sgl injection attacks.tests
OK: SQL Comment Sequence Detected (981231) (sig=%E2%80%98%200r%201%3D1--
%$20-,hostname=mysite), status = 403, no events received

OK: SQL Comment Sequence Detected (981231) (sig=SELECT%2F*avoid-spaces*
$2Fpassword$2F**S2FFROMS2F**%2FMembers, hostname=mysite), status = 403, no
events received

OK: SQL Comment Sequence Detected (981231) (sig=%E2%80%98%200r
%201%3D1%23%0A, hostname=mysite), status = 403, no events received

Open Source Web Application Firewall

Home Projects

ModSecurity Core Rule Set (CRS) <-> PHPIDS Smoketest

Current CRS Version - 2.2.0 (using Lua port of PHPIDS Converter code with Centrifuge Generic
Attack Detection)

Please feel free to inject malicious input to stress test the ModSecurity Core Rule Set (CRS). Requests should
be directed to www.modsecurity.org/demo/phpids. You can either do this via the form below or manually.

(] Harmless HTML is allowed

N

$Jd_
black o

LUSA 201=

me

CRS Anomaly Score Exceeded (score 50): IE XSS Filters - Attack Detected

All Matched Rules Shown Below

950901 SQL Injection Attack
Matched script>alert at ARGS:test

981173 Restricted SQL Character Anomaly Detection Alert - Total # of special characters exceeded

Matched "><script>alert(document.cookie)</script> at ARGS:test

981245 Detects basic SQL authentication bypass attempts 2/3
Matched "><script>a at ARGS:test

958001 Cross-site Scripting (XSS) Attack
Matched document.cookie at ARGS:test

958052 Cross-site Scripting (XSS) Attack
Matched alert(at ARGS:test

¢ 9
black o
USA 201=2

e

v B ™ Sites
v i ®http://192.168.168.]
v Bl ™ vicnum POST http://192.168.168.128/vicnum/vicnum5.php HTTP/1.1

® ZAP File Edit View AnaIyseTooIs Help
o O O

A

Header: Text | & Body: Text & NEN =)

.~ Export Messages to File...
= | E]| s = = Export Response to File...
~ Export All URLs to File...
Compare with another Session...
v b ™ Sites HTM
v @ ™ http://192.168.168.128 ‘ -
v @ ™ vicnum POST h%?ﬁ??

" POST:vicnum5S.php(player) B:ZﬁAégﬁtl
Accept: tex
Accept-Lang
DNT: 1
Proxy-Conne
Referer: ht
Cookie: aco

| @ Sites |

¢ 9
USA 201=3

| K3

<alertitem>

<pluginid>40005</pluginid>

<alert>SQL Injection</alert>

<riskcode>3</riskcode>

<reliability>1</reliability>

<riskdesc>High (Suspicious)</riskdesc>

<desc>SQL injection is possible. User parameters submitted will be formulated into a SQL query for database
processing. If the query is built by simple 'string concatenation’, it is possible to modify the meaning of the query by
carefully crafting the parameters. Depending on the access right and type of database used, tampered query can be

used to retrieve sensitive information from the database or execute arbitrary code. MS SQL and PostGreSQL, which
supports multiple statements, may be exploited if the database access right is more powerful.

This can occur in URL query strings, POST paramters or even cookies. Currently check on cookie is not supported
by Paros. You should check SQL injection manually as well as some blind SQL injection areas cannot be discovered by
this check.

</desc>

<uri>http://192.168.168.128/vicnum/vicnum5.php</uri>
<param>player</param>
<attack>test%27INJECTED_PARAM'INJECTED_PARAM</attack>
--CUT--
</alertitem>

¢ 9
USA 201=3

e

p-modsecurity-crs / util

message

19 days ago Updated README [Ryan Barnett]

20 hours ago Updated regression tests [Ryan Barnett]
a month ago Updating for tags [Ryan Barnett]

a month ago Updating for tags [Ryan Barnett]

a month ago Updating for tags [Ryan Barnett]

a month ago Updating for tags [Ryan Barnett]

a month ago Updating for tags [Ryan Barnett]

a month ago Updating for tags [Ryan Barnett]

a month ago Updating for tags [Ryan Barnett]

a month ago Updating for tags [Ryan Barnett]

¢ 9
black ot
USA 201=3

$./zap2modsec.pl -f zap-vicnum.xml

Vulnerability[3] - Type: SQL Injection

Found a SQL Injection vulnerability.

Validating URL: http://192.168.168.128/vicnum/vicnum5.php
URL is well-formed

Continuing Rule Generation

Current vulnerable Param(s): player

SQL Injection (uricontent and param) rule successfully generated and
saved in ./modsecurity crs 48 virtual patches.conf.

kkkkhkhkkkkkk*k END OF SCRIPT RESULTS khkk kA khkhkkkkkkhkhkkx k)%
Number of Vulnerabilities Processed: 5

Number of ModSecurity rules generated: 2

Number of Unsupported vulns skipped: 2

Number of bad URLs (rules not gen): 0

Lt b b b i i b b b b i i b b b b b b b b b b b b i i b b b b b i b b b b b i i b b b i i i b b b Y

OWASP ZAP Virtual Patch Details:
ID: 13

Type: SQL Injection

Vulnerable URL: vicnum/vicnum5.php
Vulnerable Parameter: player

SecRule REQUEST FILENAME "vicnum/vicnum5.php" "chain,phase:
2,t:none,block,msg: 'Virtual Patch for SQL

Injection',id:'13', tag: 'WEB_ATTACK/SQL INJECTION', tag: 'WASCTC/
WASC—19',tag:'OWASP TOP 10/A1',tag:'OWASP AppSensor/CIEl' tag:'PCI/
6.5.2',logdata: '${matched var name}',severlty 2"

SecRule &TX:'/SQL INJECTION.*ARGS:player/' "@gt 0"
"setvar:'tx.msg=%{rule.msg}',setvar:tx. sqgql injection score=+%

{tx.critical anomaly score},setvar:tx. anomaly score=+%
{tx.critical anomaly score}"

In order to integrate DAST/WAF,
the scanner needs to be run as a

service

— Not as a client desktop app

— Need an API Service
* Using Arachni Scanner

Tl @CACHOI

. OTIOﬂ secority scanner eromework
— Developed in Ruby -

— XMLRPC service

Web Client

e Sends web request

e This initiates web
assessment of resource
(e.g. login page)

Web Server w/
ModSecurity
e Use Lua APl to

communicate w/Arachni
RPC

e |nitiate Scan
e Pull Report
¢ Update Protections

¢ 3

blackha¥

LUSA 2013

Arachni Scanning
Host

® RPC Service
» Targeted Assessments
e Generate Reports

 |nitiate an Arachni Scan

SecRule &RESOURCE:ARACHNI SCAN COMPLETED "Qeg 0"
"chain, phase:5,t:none, log, pass"

SecRule &ARGS "@gt 0" "exec:/etc/apache2/
modsecurity-crs/base rules/arachni integration.lua”

e Disable ModScurity for Arachni Scanning
SecRule REMOTE ADDR "@ipMatch 192.168.168.128"
"chain, phase:1,t:none,nolog,pass"

SecRule REQUEST HEADERS:User-Agent
"@beginsWith Arachni/" "ctl:ruleEngine=0ff"

1. 192.168.168.1 - - [05/Apr/2012:11:35:47 -0400] "POST /vicnum/vicnum5.php
HTTP/1.1"™ 200 1022 "http://192.168.168.128/vicnum/" "Mozilla/5.0
(Macintosh; Intel Mac OS X 10.6; rv:11.0) Gecko/20100101 Firefox/11.0”

Lua: Executing script: /etc/apache2/modsecurity-crs/base rules/
arachni integration.lua

Arachni:
Arachni:
Arachni:
Arachni:
Arachni:
Arachni:

player:

Arachni:

Host: 192.168.168.128

Filename: /vicnum/vicnum5.php

URL to scan is: http://192.168.168.128/vicnum/vicnumb.php
Request Method is: POST

Arg Name: player and Value: test.

Updated ARGS table is: ---

test

Updated Cookies table is: --- {}

Arachni: Yaml output of vectors is: ---
- inputs:
player: test

type:

form

method: POST
action: http://192.168.168.128/vicnum/vicnum5.php

, [2012-04-05T711:33:32.006918 #3771] INFO -- System: RPC Server started.

, [2012-04-05T11:33:32.007164 #3771] INFO -- System: Listening on 192.168.168.128:44604
, [2012-04-05T11:35:47.390623 #3746] INFO -- Call: dispatcher.dispatch [192.168.168.128]
, [2012-04-05T11:35:47.419363 #3748] INFO -- Call: modules.load [192.168.168.128]

Arachni - Web Application Security Scanner Framework v0.4.1 [0.2.5]
Author: Tasos "Zapotek" Laskos <tasos.laskos@gmail.com>
<zapotek@segfault.gr>
(With the support of the community and the Arachni Team.)

Website: http://github.com/Zapotek/arachni
Documentation: http://github.com/Zapotek/arachni/wiki

[2012-04-05T11:35:47.451187 #3748] Call: plugins.load [192.168.168.128]
[2012-04-05T11: : .447358 #3837] System: RPC Server started.
[2012-04-05T11:35:47.453383 #3837] System: Listening on 192.168.168.128:61420
[2012-04-05T11:35:47.459832 #3748] Call: opts.set [192.168.168.128]
[2012-04-05T11:35:47.487119 #3748] Call: framework.run [192.168.168.128]

Re-retrieving collection prior to store: resource

Wrote
Wrote
Wrote
Wrote
Wrote
Wrote
Wrote
Wrote
Wrote
Wrote
Wrote
Wrote
Wrote
Wrote
Wrote
Wrote
Wrote
Wrote
Wrote

variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:

name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name

Persisted collection

" expire KEY", value "1333644233".

"KEY", value "192.168.168.128 /vicnum/vicnum5.php".
"TIMEOUT", wvalue "3600".

" key", value "192.168.168.128 /vicnum/vicnum5.php".

" name", value "resource".

"CREATE TIME", value "1333640632".

"UPDATE COUNTER", value "1".

"min pattern threshold", wvalue "50".

"min traffic threshold", value "100".

"arachni_ scan_initiated", value "1".

"arachni_ instance_info port", value "30118".
"arachni_instance_info_token", value "c5ab2feb9072ed8e7737£7d526e7b254".
"traffic counter", value "1".

"request method counter POST", value "1".

"NumOfArgs counter 1", value "1".

"args names_counter player", value "1".
"ARGS:player length 4 counter", value "1".
"ARGS:player alpha counter", value "1".

"LAST UPDATE TIME", value "1333640633".

(name "resource", key "192.168.168.128 /vicnum/vicnum5.php").

192.168.168.1 - - [05/Apr/2012:11:35:47 -0400] "POST /vicnum/vicnumb5.php
HTTP/1.1"™ 200 1022 "http://192.168.168.128/vicnum/" "Mozilla/5.0
(Macintosh; Intel Mac OS X 10.6; rv:11.0) Gecko/20100101 Firefox/11.0"

192.168.168.128 - - [05/Apr/2012:11:35:48 -0400] "POST /vicnum/
vicnum5.php HTTP/1.1" 200 1107 "-" "Arachni/0.4.1"

192.168.168.128 - - [05/Apr/2012:11:35:48 -0400] "POST /vicnum/
vicnum5.php HTTP/1.1" 200 1022 "-" "Arachni/0.4.1”

192.168.168.128 - - [05/Apr/2012:11:35:48 -0400] "POST /vicnum/

vicnumb.php HTTP/1.1" 200 1022 "-" "Arachni/0.4.1"

192.168.168.128 - - [05/Apr/2012:11:35:48 -0400] "POST /vicnum/
vicnumb.php HTTP/1.1" 200 1116 "-" "Arachni/0.4.1”

192.168.168.128 - - [05/Apr/2012:11:35:48 -0400] "POST /vicnum/
vicnum5.php HTTP/1.1"™ 200 1100 "-" "Arachni/0.4.1"

192.168.168.128 - - [05/Apr/2012:11:35:48 -0400] "POST /vicnum/
vicnum5.php HTTP/1.1"™ 200 1081 "-" "Arachni/0.4.1”

192.168.168.128 - - [05/Apr/2012:11:35:48 -0400] "POST /vicnum/
vicnum5.php HTTP/1.1" 200 1082 "-" "Arachni/0.4.1”

Arachni: Previous scan was initiated, checking scan status.
Arachni: Port info: 30118 and Token info: c5ab2feb9072ed8e7737£7d526e7b254
Arachni: Scan completed - calling for report.
Arachni: Yaml Results:
- cwe: '79'
description: "Client-side code (like JavaScript) can\n be injected
into the web application which is then returned to the user's browser.\n
can lead to a compromise of the client's system or serve as a pivoting point for
other attacks."
references:

ha.ckers: http://ha.ckers.org/xss.html
Secunia: http://secunia.com/advisories/9716/

variations: []

_hash: d241855ec9dd4694f6eaf28e28a0913f

mod name: XSS

var: player

elem: form

url: http://192.168.168.128/vicnum/vicnum5.php
cvssv2: '9.0'

method: POST

Wrote variable: name "min pattern threshold", value "50".
Wrote variable: name "min traffic threshold", value "100".
Wrote variable: name "arachni scan initiated", value "1".
Wrote variable: name "arachni instance info port", wvalue "30118".

Wrote variable: name "arachni instance info token", value
"c5ab2feb9072edB8e7737£7d526e7b254".

Wrote variable: name "traffic counter", wvalue "2".

Wrote variable: name "request method counter POST", value "2".
Wrote variable: name "NumOfArgs counter 1", value "2".

Wrote variable: name "args names counter player", value "2".
Wrote variable: name "ARGS:player length 4 counter", value "2".
Wrote variable: name "ARGS:player alpha counter", wvalue "2".
Wrote variable: name "LAST UPDATE TIME", value "1333640642".
Wrote variable: name "xss vulnerable params", value "player".
Wrote variable: name "sqli vulnerable params", value "player".

Wrote variable: name "arachni_ scan completed", value "1".

Persisted collection (name "resource", key "192.168.168.128 /vicnum/

SecRule TX:/XSS-ARGS:/ ".*" "id:'999003', chain, phase:
2,t:none,msg:'XSS Attack Against Known Vulnerable
Parameter.', logdata: 'S {matched var}'"

SecRule MATCHED VARS NAMES "-ARGS: (.*)S"
"chain, capture"

SecRule TX:1 "@within %
{resource.xss vulnerable params}"

SecRule TX:/SQL INJECTION-ARGS:/ ".*"

"id:'999004"',chain,phase:2,t:none,msg: 'SQLi Attack Against
Known Vulnerable Parameter.',6 logdata:'%{matched var}'"

SecRule MATCHED VARS NAMES "-ARGS: (.*)S"
"chain, capture"

SecRule TX:1 "@within
{resource.sqgli vulnerable params}"

e On-Demand Arachni Scan Initiated

192.168.168.128 - - [05/Apr/2012:11:43:54 -0400]
"POST /vicnum/vicnumb5.php HTTP/1.1" 200 1022 "-"
"Arachni/0.4.1"

 Report Pulled and Vulnerability Data Identified

[(05/Apr/2012:11:44:02 --0400] [192.168.168.128/
sid#b819f888] [rid#b98cf7£8] [/vicnum/vicnumb.php]
[9] Set wvariable

"RESOURCE.sgli vulnerable params" to "player".

* Time-to-Fix
— 8seconds ©

Inspect Outbound HTML for the following elements:
— Href, form action

— frame, iframe

— Location response header (http 3xx status)

— PostBack
— Hidden fields, etc

Inject HMAC tokens to validate data.
— Prevents data manipulation.

Working with HMAC (RFC 2104) algorithm.
Don’t need to change the application.

| Client | | Aegllcatlon |

1. Initial HTTP Requestt

>
(2. Application HTTP Response

3.Response with Hashed links

4. HMAC URI Request

5. Authorized HTTP Request
>

6. Forbidden HTTP Request

7. Application HTTP Response

Data to be checked Data to be authenticated

T f\
black""at

LUSA 2013

SecEncryptionkEngine On
SecEncryptionParam "hmac”
SecEncryptionKey "rand" "KeyOnly”

SecEncryptionMethodrx "HashHref”
“product 1d”

SecRule REQUEST URI
"@validateEncryption product id"
"phase:2,1d:1001,deny"

Response body before MACing:

<html dir="LTR" lang="br"><head>
<title> ModSecurity Test Crypto </title>

NEW
</meta></head></html>
\—]

V

Response body After MACing: _
<html dir="LTR" lang="br"><head>

<title> ModSecurity Test Crypto </title>

<a href=
http://192.168.0.101:80/catalog/index.php?
product_id=71&0sCsid=12345&hmac=371fd57625df12abcd5646352ffd8432>NEW

</head></html>

& d_ ,
l Data Authenticated

| U o N SN SR p—

* Automation to identify injection points
— NetSparker
— Arachni
— Sqglmap
— Havij

 Manual testing to develop working SQLi payloads
— An iterative process of trial and error

Send initial payloads and observe DB responses

Use obfuscation tactics (comments, encodings, etc...)
Send payload and observe DB response

Repeat steps 2 - 3

div 1 union%23%0Aselect 1,2,current_user
div 1 union%23foo*/*bar%0Aselect 1,2,current_user

div 1 union%23foofoofoofoo*/*bar%0Aselect
1,2,current_user

div 1 union%23foofoofoofoofoofoofoofoofoofoo*/*bar

%0Aselect 1,2,current_user

div 1 union
%23foofoofoofoofoofoofoofoofoofoofoofoofoofoofoofo
ofoofoofoofoofoofoofoofoofoofoofoofoofoofoofoofoof
oo*/*bar%0Aselect 1,2,current_user

Time-to-Hack Metric Speed Hacking | Filter
Evasion

Avg. # of Requests 170
Shortest # of Requests 36

Avg. Duration (Time) 5 hrs 23 mins

Shortest Duration (Time) 46 mins

LUSA 2013

Blacklist filtering will only slow down determined attackers

Attackers need to try many permutations to identify a
working filter evasion

The OWASP ModSecurity Core Rules Set’s blacklists SQLi
signatures caught several hundred attempts before an

evasion was found

Questions
* How can we use this methodology to our advantage?

 What detection technique can we use other than regular
expressions?

* RegEx detection is binary

— The operator either matched or it didn’t

— Need a method of detecting attack probability
e Bayesian analysis has achieved great results in Anti-SPAM efforts for email
 (Can’t we use the same detection logic for HTTP data?

— Data Source

* Email — OS level text files

* HTTP — text taken directly from HTTP transaction
— Data Format

* Email — Mime headers + Email body

* HTTP — URI + Request Headers + Parameters
— Data Classification

* Non-malicious HTTP request = HAM
* HTTP Attack payloads = SPAM

 OSBF-Lua by Fidelis Assis

— Orthogonal Sparse Bigrams with Confidence Factor (OSBF)

— Uses space characters for tokenization (which means that it
factors in meta-characters)

— Very fast
— Accurate classifiers
— http://osbf-lua.luaforge.net/

 Moonfilter by Christian Siefkes

— Worapper script for OSBF
— http://www.siefkes.net/software/moonfilter/

* |Integrate with ModSecurity’s Lua API

Train as HAM

Attack Detected?
(Using the OWASP
ModSecurity CRS)

Train as SPAM

\

.

bl(’clk' at

LUSA 2013

Non-malicious user data does not trigger any blacklist rules
Lua script trains OSBF classifier that payloads are HAM

Lua: Executing script: /etc/httpd/modsecurity.d/bayes_train_ham.lua

Arg Name:
Arg Name:
Arg Name:
Arg Name:
Arg Name:
Arg Name:
Arg Name:
Arg Name:
Arg Name:
Arg Name:
Arg Name:
Arg Name:

ARGS:txtFirstName and Arg Value: Bob.
ARGS:txtLastName and Arg Value: Smith.
ARGS:txtSocialScurityNo and Arg Value: 123-12-9045.
ARGS:txtDOB and Arg Value: 1958-12-12.
ARGS:txtAddress and Arg Value: 123 Someplace Dr..
ARGS:txtCity and Arg Value: Fairfax.

ARGS:drpState and Arg Value: VA.
ARGS:txtTelephoneNo and Arg Value: 703-794-2222.
ARGS:txtEmail and Arg Value: bob.smith@mail.com.
ARGS:txtAnnuallncome and Arg Value: $90,000.
ARGS:drpLoanType and Arg Value: Car.
ARGS:sendbuttonl and Arg Value: Submit.

Low Bayesian Score: . Training payloads as non-malicious.

LUSA 2013

1. Attacker sends malicious payloads during initial testing phase
Payloads are caught by our blacklist rules
Lua script trains OSBF classifier that payloads are SPAM

[Thu Nov 03 15:21:08 2011] [error] [client
712.192.214.223] ModSecurity: Warning. Pattern match
"M o at TX:981231-WER ATTACK/SQL INJECTION-
ARGS:artist. [file "/etc/httpd/modsecurity.d/crs/
base rules/modsecurity crs 48 bayes analysis.conf"]
[line "1"] [data "Completed Bayesian Training on
SQLi Payload: (@@new
unionf#sqglmapsqglmapsqlmapsqglmapsqglmapsqlmapsglmapsqlm
apsqlmapsqlmapsqlmapsqlmapsqlmapsqglmapsqglmapsqglmapsq
1\\x0aselect 1,2,database#tsglmap\\x0a()."] [hostname
"www.modsecurity.org"] [uri "/testphp.vulnweb.com/
artists.php"] [unique 1d "VCqglxsCo8AoAADYJV3kKAAAAH"]

* Previous evasion payload is now caught

[Thu Nov 03 15:28:18 2011] [error] [client 72.192.214.223]
ModSecurity: Warning. Bayesian Analysis Alert for ARGS:artist with
payload: "@@new
union#sqglmapsglmapsglmapsglmapsglmapsglmapsglmapsglmapsglmapsglmapsglm
apsglmapsglmapsglmapsglmapsglmapsgl\nselect 1,2,database#sglmap

\n()" [file "/etc/httpd/modsecurity.d/crs/base rules/
modsecurity crs 48 bayes analysis.conf"] [line "3"] [msg "Bayesian
Analysis Detects Probable SQLi Attack."] [data '"Score:
{prob=0.99999999965698 ,probs={0.99999999965698,3.4301898614548e-10},cl
ass=\\x22/var/log/httpd/spam\\x22,pR=5.5841622861233,reinforce=true}"]
[severity "CRITICAL"] [tag "WEB_ATTACK/SQL_INJECTION"] [tag "WASCTC/
WASC-19"] [tag "OWASP TOP 10/Al1l"] [tag "OWASP AppSensor/CIE1l"] [tag
"PCI/6.5.2"] [hostname "www.modsecurity.org"] [uri "/
testphp.vulnweb.com/artists.php"] [unique id
"bcJEIMCo8AOAADY1SXMAAAAT"] -

http://www.modsecurity.org/documentation/
— Wiki Reference Guide
ModSecurity Handbook (Free Getting Started Guide)

— https://www.feistyduck.com/books/modsecurity-handbook/
gettingStarted.html

Community User Mail-list
— http://lists.sourceforge.net/lists/listinfo/mod-security-users

Twitter

— http://twitter.com/modsecurity

Bug Reporting (Jira)

— https://www.modsecurity.org/tracker/

* Ryan Barnett
— rbarnett@trustwave.com
— Twitter: @ryancbarnett

* ModSecurity

— security@modsecurity.org
— Twitter: @modsecurity

