
The Sandbox Roulette: 
are you ready to gamble? 

Rafal Wojtczuk rafal@bromium.com 

Rahul Kashyap rahul@bromium.com  



• Environment designed to run untrusted (or 
exploitable) code, in a manner that prevents 
the encapsulated code from damaging the 
rest of the system 

• For this talk, we focus on Windows-based 
application sandboxes 

• This talk is not about bugs in sandboxes, but 
rather an architectural discussion on their pros 
and cons (well mostly limitations)    

 

What is a sandbox? 



• Type 1: OS enhancement based (Sandboxie, 
Buffer Zone Pro etc.) 

• Type 2: Master/slave model (Adobe ReaderX, 
Chrome browser) 

 

Sandbox types 



• A lot of commonly 
used code reliant on 
kernel components  

• Large exposure to 
kernel interfaces 

 

Digression: Windows OS internals 



• Current popular OS’s are large and exploitable 

• 25 CVE items for Windows kernel in 2012 

• 30 CVE items for win32k.sys in Feb 2013 only 

• To what degree does a sandbox limit the 
exposure of the kernel to exploitation? 

– Note there are known cases of Windows kernel 
bugs exploited in the wild, e.g. Duqu [10] 

Digression - kernel security status 



• Sandboxed app: dear kernel, please open a file 
for me, the file name is at address X 

• Kernel: X points to “allowed_file.txt” string; 
here goes a file handle for you 

• Sandboxed app: dear kernel, please open a file 
for me, the file name is at address Y 

• Kernel: Y points to “secret_file.txt” string; you 
are a sandboxed app, I will not let you access 
this file 

How kernel enforces access control 



• Sandboxed app: dear kernel, please draw the text “Hello 
world” for me please, using the true type font stored at 
address X 

• Kernel: You are a sandboxed app, but using a font is a 
benign operation which you need to function properly 

• Kernel: OK, just a moment, I need to parse this font 

• While processing the font, kernel corrupts its own 
memory because the parser code in the kernel is buggy 

• Because of memory corruption, kernel starts executing 
code at X, which allows the app to do anything it wants 

How kernel exploits work (example) 



TYPE 1: OS ENHANCEMENT BASED 
SANDBOX 



• Example: Sandboxie [1] 

• Custom kernel driver modifies Windows 
behavior, so that change to protected system 
components is prevented 

• Use cases: Most of such sandboxes are used 
for controlled execution of applications.  

• Sandboxie is widely used for malware analysis  

 

Type 1 Sandbox: Sandboxie 



Picture copied from http: //vallejo.cc/48  (not an official Sandboxie material) 



• The problem – sandboxed code has direct 
access to almost full OS functionality 

• Almost all kernel vulnerabilities are 
exploitable from within this sandbox 

• This sandbox has no means to contain 
malicious kernel-mode code (because they 
both run at the same privilege level) 

 

OS enhancement based sandbox 



• User Mode Scheduler Memory Corruption, CVE-2012-
0217 

• Allows to run arbitrary code in kernel mode 
• If running in sandboxie container, the usual SYSTEM-

token-steal shellcode is not enough to break out of the 
sandbox 

• Need to use the unlimited power of kernel mode to 
either 
– Disable sandboxie driver 
– Migrate to another process, running outside of the 

container 

 

Exhibit A: MS12-042 



• User Mode Scheduler Memory Corruption, CVE-2012-
0217 

• Allows to run arbitrary code in kernel mode 
• If running in sandboxie container, the usual  SYSTEM-

token-steal shellcode is not enough to break out of the 
sandbox 

• Need to use the unlimited power of kernel mode to 
either 
– Disable sandboxie driver 
– Migrate to another process, running outside of the 

container 

 

Exhibit A: MS12-042 



• Demo 

• Recommendation: Use Type 1 category 
sandboxes inside a VM for malware analysis 

 

Sandboxie bypass demo 



• Example: BufferZone Pro [8] 

• Similar in principle to Sandboxie 

– Although by default also prevents data theft 

• The same MS12-042 exploit works against 
BufferZone Pro 

• Demo 

 

Type 1 Sandbox: rZone Pro 



TYPE 2: MASTER/SLAVE TYPE 
SANDBOX 



• Two processes - master and slave, talking over 
IPC channel 

• Slave is confined using OS access control 
facilities  

• Master mediates access to resources 

Type 2 Sandbox 



Picture taken from http://dev.chromium.org/developers/design-documents/sandbox 



• Slave runs with low privileges 

– restricted token 

– job object 

– desktop object 

– integrity level 

Chrome sandbox on Windows 



• How exhaustive is the OS-based confinement, 
according to the documentation [2]? 

– Mounted FAT or FAT32 volumes – no protection 

– TCP/IP – no protection 

– Access to most existing securable resources 
denied 

– Everybody agrees it is good enough… 

• … assuming the kernel behaves correctly 

 

 

Chrome sandbox on Windows 



Chrome sandbox in action 



• How resistant is Master to a malicious Slave? 

– This is what other authors focused on 

• How resistant is OS to a malicious Slave? 

– We focus on the last aspect 

Chrome sandbox on Windows 



Master/slave type sandbox on 
Windows, Adobe Reader 

Observe 
“Low” 
integrity 
level 



• Exhaustive previous related work on 
methodology of attacking the Master [3], [4] 

• The first case of Adobe sandbox vulnerability 
exploited in the wild reported in Feb 2013 [9] 

– This escape possible because of a bug in Master 

• Are kernel vulnerabilities exploitable from 
within Adobe Reader sandbox? 

Master/slave type sandbox on 
Windows, Adobe Reader 



Master/slave type sandbox on 
Windows, Chrome browser 

Observe 
“untrusted” 
integrity 
level 



• Slave deprivileged even more than stated in 
chrome sandbox documentation 

– “Untrusted” integrity level 

– Particularly, access to FAT32 filesystem denied 

 

Master/slave type sandbox on 
Windows, Chrome browser 



• Well-known cases of successful attacks against 
the master (shown at Pwnium[5], 
Pwn2own[6]) 

• The attacks against the master are complex 
and relatively rare 

 

Master/slave type sandbox on 
Windows, Chrome browser 



• Slave can still exploit a kernel vulnerability 

• Some vulnerabilities are not exploitable by Slave 
– If need to create a process 

– If need to alter specific locations in the registry 

• win32k.sys still much exposed 

      A vulnerability in win32k.sys can potentially be 
exploited at the browser level, yielding full control 
over the machine directly, without the need to 
achieve code execution in the sandbox first. 

 

 

 

Master/slave type sandbox on 
Windows, Chrome browser 



• TrueType Font Parsing Vulnerability – CVE-
2012-2897 

• Just opening a crafted web page in a 
vulnerable Chrome browser running on a 
vulnerable Windows version results in BSOD 

• Chances of achieving kernel mode code 
execution much better if attacker is able to 
run arbitrary code in the sandbox first 

 

 

 

Exhibit B: MS12-075 



• TrueType Font Parsing Vulnerability – CVE-
2012-2897 

• Just opening a crafted web page in a 
vulnerable Chrome browser running on a 
vulnerable Windows version results in BSOD 

• Chances of achieving kernel mode code 
execution much better if attacker is able to 
run arbitrary code in the sandbox first 

 

Exhibit B: MS12-075 



Exhibit C: MS12-075 
BSOD caused by Chrome browser processing malformed TrueType font 



• TrueType Font Parsing Vulnerability – CVE-
2011-3042 

• Exploited in the wild by Duqu malware, via MS 
Office documents 

• What if one runs the exploit within the 
Chrome sandbox? 

 

 

 

Exhibit C: MS11-087 



• TrueType Font Parsing Vulnerability – CVE-
2011-3042 

• Exploited in the wild by Duqu malware, via MS 
Office documents 

• What if one runs the exploit within the 
Chrome sandbox? 

 

Exhibit C: MS11-087 



Adobe renderer, MS11-087 exploit 



Chrome renderer, MS11-087 exploit 



• Windows Kernel Exception Handler 
Vulnerability, CVE-2011-2018 

 

Exhibit D: MS11-098 



• Windows Kernel Exception Handler 
Vulnerability, CVE-2011-2018 

 

 

Exhibit D: MS11-098 



• Many Windows kernel vulnerabilities have 
been discovered, more is expected in the 
future 

• If a sandbox relies on kernel security, a 
suitable kernel vulnerability can be used to 
break out of the sandbox 

• It is happening now (e.g. MWR Labs at 
Pwn2own) 

Memorize This Slide! 



• Wraps the whole OS in a sandbox 
• OS vulnerabilities nonfatal 
• Hypervisor and supporting environment still an 

attack vector 
• A customized virtualization solution required to 

limit the exposure 
• The amount of functionality exposed by the 

hardened hypervisor to the attacker, although not 
negligible, is orders of magnitude less than the 
equivalent OS functionality 
 

Virtualization based sandbox 



• [1] http://www.sandboxie.com/ 
• [2] http://dev.chromium.org/developers/design-documents/sandbox 
• [3] "A Castle Made of Sand - Adobe Reader X Sandbox" Richard Johnson 
• [4] “Breeding Sandworms” - Zhenhua Liu, Guillaume Lovet 
• [5] http://blog.chromium.org/2012/10/pwnium-2-results-and-wrap-

up_10.html 
• [6] "Pwn2Own 2012: Google Chrome browser sandbox first to fall" 

http://www.zdnet.com/blog/security/pwn2own-2012-google-chrome-
browser-sandbox-first-to-fall/10588 

• [7] Dennis Fisher 
http://threatpost.com/en_us/blogs/its-time-abandon-java-012113 

• [8] BufferZone Pro, http://www.trustware.com/BufferZone-Pro/ 
• [9] arstechnica.com/security/2013/02/zero-day-attack-exploits-latest-

version-of-adobe-reader/ 
• [10] Duqu malware, http://em.wikipedia.org/wiki/Duqu 

References 


