leOK hai;

ey o PR [

The Sandbox Roulette
_are you ready to amble?

‘\.u.

o 1 \.i ¢
. *"\f \

‘x h_g
‘ Ny
).\' W
\

‘Bromium”

What is a sandbox?

* Environment designed to run untrusted (or
exploitable) code, in a manner that prevents
the encapsulated code from damaging the
rest of the system

* For this talk, we focus on Windows-based
application sandboxes

e This talk is not about bugs in sandboxes, but
rather an architectural discussion on their pros
and cons (well mostly limitations)

leok hat

=l =201=

Sandbox types

* Type 1: OS enhancement based (Sandboxie,
Buffer Zone Pro etc.)

* Type 2: Master/slave model (Adobe ReaderX,
Chrome browser)

Digression: Windows OS internals

Y Processe: Servi Applica s

* Alot of commonly
used code reliant on
cernel components

Subsystemn DLLs

threads

e Large exposure to
kernel interfaces

CAfe
File Sys.

blggk hat

=l =201=

Digression - kernel security status

* Current popular OS’s are large and exploitable

e 25 CVE items for Windows kernel in 2012

30 CVE items for win32k.sys in Feb 2013 only

 To what degree does a sandbox limit the
exposure of the kernel to exploitation?

— Note there are known cases of Windows kernel
bugs exploited in the wild, e.g. Duqu [10]

leok hat

=l =201=

How kernel enforces access control

Sandboxed app: dear kernel, please open a file
for me, the file name is at address X

Kernel: X points to “allowed _file.txt” string;
here goes a file handle for you

Sandboxed app: dear kernel, please open a file
for me, the file name is at address Y

Kernel: Y points to “secret_file.txt” string; you
are a sandboxed app, | will not let you access
this file

leok hat

=l =201=

How kernel exploits work (example)

Sandboxed app: dear kernel, please draw the text “Hello

world” for me please, using the true type font stored at
address X

Kernel: You are a sandboxed app, but using a font is a
benign operation which you need to function properly

Kernel: OK, just a moment, | need to parse this font

Because of memory corruption, kernel starts executing
code at X, which allows the app to do

leok hat

=l =201=

TYPE 1: OS ENHANCEMENT BASED
SANDBOX

Type 1 Sandbox: | Wﬁf@ a9 |“

Example: Sandboxie [1]

Custom kernel driver modifies Windows
behavior, so that change to protected system
components is prevented

Use cases: Most of such sandboxes are used
for controlled execution of applications.

Sandboxie is widely used for malware analysis

Sandboxie is Copyright © 2004-2012 by Ronen Tzur. All rights reserved.

Sandboxie.com I

This site has been viewed]195,235,310|times since June 2004

leok hat

=l =201=

Picture copied from http: //vallejo.cc/48 (not an official Sandboxie material)

RESOURCE
ACCESS

WObjectTypes

Token
Process

Sandboxie Driver

~user

\ mode

J t FTBEEBS
*._hooked -~

Resource access

Sandboxie user mode

Resource:access hooks dil ShieDII

io controles

Controlled resource
dCCess

wind2k NtUserCallHwndParamLock
wind2k_NiUserDestroyWindow
wind2k_NtUserShowWindows
winiZk NiUsersendlnput

b|(agk T

=4 2013

OS enhancement based sandbox

 The problem — sandboxed code has direct
access to almost full OS functionality

e Almost all kernel vulnerabilities are
exploitable from within this sandbox

e This sandbox has no means to contain
malicious kernel-mode code (because they
both run at the same privilege level)

leok hat

=l =201=

Exhibit A: MS12-042

User Mode Scheduler Memory Corruption, CVE-2012-
0217

Allows to run arbitrary code in kernel mode

If running in sandboxie container, the usual SYSTEM-
token-steal shellcode is not enough to break out of the
sandbox

Need to use the unlimited power of kernel mode to
either
— Disable sandboxie driver

— Migrate to another process, running outside of the
container

leok hat

=l =201=

Sandboxie bypass demo

* Demo

e Recommendation: Use Type 1 category
sandboxes inside a VM for malware analysis

leok hat

=l =201=

Type 1 Sandbox: [Hfisizl m

 Example: BufferZone Pro [8]

e Similar in principle to Sandboxie
— Although by default also prevents data theft

* The same MS12-042 exploit works against
BufferZone Pro

* Demo

bli@ok hat

=l =201=

TYPE 2: MASTER/SLAVE TYPE
SANDBOX

Type 2 Sandbox

 Two processes - master and slave, talking over
IPC channel

e Slave is confined using OS access control
facilities

* Master mediates access to resources

@ "PDF

(7 o~ ~T A~
~((V1 _‘
s\ Or'] Adobe

leok hat

=l =201=

Picture taken from http://dev.chromium.org/developers/design-documents/sandbox

Broker
Interception
Manager

IPC Client

0]
=
=
)
=]
£

Policy Engine
Client

Interceptions

IPC Client

Policy Engine
Client

Interceptions

=L 201=

Chrome sandbox on Windows

* Slave runs with low privileges
— restricted token
— job object
— desktop object
— integrity level

blg)ok hat

=l =201=

Chrome sandbox on Windows

e How exhaustive is the OS-based confinement,
according to the documentation [2]?
— Mounted FAT or FAT32 volumes — no protection
— TCP/IP — no protection

— Access to most existing securable resources
denied
— Everybody agrees it is good enough...

e ... assuming the kernel behaves correctly

leok hat

=l =201=

Chrome sandbox in action

EEEﬂt Filter I|:||:||E. thiljr'lﬂ

Help
E-AIESEN)

PID I"'I|:u=|—:|tinr| iesult Dietail

‘wsernetscan dll ACCESS DENIED Desired Acc
usernetscan . dl SUCCESS Desired Acc
—Ll Ju-—-r','H:rm-Infn ...C
ool ;L'- reateFile M I|:||:l|:l...
ikl —LI"’n—- ateFileMapp...C:

2856 .n..|M 'Load Image

’ . .-‘1'-.|::r|:| Rd
! Ao |F':|:|

=rs wserinetscan . dll SUCCESS
? FlLE LOCKED WI..

Mame: “lUsers‘wuser...
. SyncType: SyncTy..
Sync Type: Sync T"...
Image Base: (bch...

sershuserinetscan.dll

blggk hat

=l =201=

Chrome sandbox on Windows

e How resistant is Master to a malicious Slave?

— This is what other authors focused on

e How resistant is OS to a malicious Slave?

— We focus on the last aspect

leok hat

=l =201=

Master/slave type sandbox on
Windows, Adobe Reader

erties I
Performance Performance Graph Disk and Network GPL Graph Threads
- T ﬂIIE:n:a'irl:lnrnent I Job T Strin;l:‘- i O bs erve
1000) LOW”
integrity
- level

Mandatory, Restricted
Mang
Mandatery, Restricted

y, Restricted
“(This Organization
on Users

YNTERACTINVE
LM Authentication

Flags

ge Default Enabled

Master/slave type sandbox on
Windows, Adobe Reader

* Exhaustive previous related work on
methodology of attacking the Master [3], [4]

* The first case of Adobe sandbox vulnerability
exploited in the wild reported in Feb 2013 [9]
— This escape possible because of a bug in Master

* Are kernel vulnerabilities exploitable from
within Adobe Reader sandbox?

leok hat

=l =201=

aster/slave type sandbox on
Windows, Chrome browser

- _. Observe
rmance GFaEl::-.-irnrurnent and Network _ SPUG Str;:;ﬁads “ untruste d "
integrity
level

y, Restricted

Group SID: n/fa

P.. Flags

Master/slave type sandbox on
Windows, Chrome browser

* Slave deprivileged even more than stated in
chrome sandbox documentation

— “Untrusted” integrity level
— Particularly, access to FAT32 filesystem denied

blg)ok hat

=l =201=

Master/slave type sandbox on
Windows, Chrome browser

* Well-known cases of successful attacks against
the master (shown at Pwnium[5],
Pwn2own[6])

* The attacks against the master are complex
and relatively rare

bIon hat

=l =201=

Master/slave type sandbox on
Windows, Chrome browser

* Slave can still exploit a kernel vulnerability

 Some vulnerabilities are not exploitable by Slave

— If need to create a process
— If need to alter specific locations in the registry

* win32k.sys still much exposed

A vulnerability in win32k.sys can potentially be
exploited at the browser level, yielding full control
over the machine directly, without the need to
achieve code execution in the sandbox first.

leok hat

=l =201=

Exhibit B: MS12-075

* TrueType Font Parsing Vulnerability — CVE-
2012-2897

* Just opening a crafted web page in a
vulnerable Chrome browser running on a
vulnerable Windows version results in BSOD

* Chances of achieving kernel mode code
execution much better if attacker is able to
run arbitrary code in the sandbox first

leokheF

=l =201=

BSOD caused by Chrome browser processing malformed TrueType font

FAULTIHG IF:
windZklvGetVertical GSet+4hb
05123k ££37 pu=sh dwvord ptr [edi]
MM_INTEEHAL_CODE: 0

IMAGE_HAME: winidik.svs

DEBUG _FLE IMAGE TIMESTAME: 4ce7200f

MODULE _WAME: windZk

FAULTING _MODULE: 20510000

DEFAULT BUCKET ID: INTEL_ MICROCODE _ZERQ

BUGCHECK STR: 0=G50

FROCESS NHAME: csr==.e=He

CUERENT TRQL: 2

TEAP FRAME: 91f642c8 — (trap O=ffffffffo91fed2=8)

ErrCode = 00000000

eax=00000000 ebx=ffad?3al secxk=00000000 edx=0000{ffff esi=fel?2020 e=di=fel74000
e1p=905123chk esp=91{6433c ebp=91f6d43dc 1opl=0 nv up 2l ng ng na pe nc
c==0008 ===0010 d==0023 e==0023 {==0030 ef 1=00010286
windZk !l vGetVerticalGSet+0=x4b:
905123che ££37 puzh

g==0000

dwvord ptr [edi]

Fezetting default =cope

LAST CONTROL_TRANSFER:

STACE_TEXT:

91f63=14
91f63=64d
91fe4228
91fe642b0
91fe42k0

91fedadc
91f64b24
91f6db5c
91fedclc
91fedc80
91fe4dln
91f64d18
0030=244

82716083
82716b81
g26ch41b
826783d8
905123c6
9052681
90527547
90527264
90527207
9052715d
9062359
906bLZ8a3
906bd413
B26751ea
777670b4
ooooooon

ooooono3d
ooooonod
ooooonsn
ooooooon
ooooooon
f=189010
ff=94188
ff=94188
ooooonol
ooononol
fibbz003
ff=94180
oog7ooon
02334000
02334000
ooooonon

b4db04694
34e=bbhied
t=174000
f=174000
f=174000
tftfebila
noe70oolo
noa?vooln
ffa94180
ffa94180
oooooonn
oooooonn
f=%4=bdd
0006790
0006798
ooooonono

Qoonooes
Qoon13ka
Qooooooo
aoooooon
goooooon
f=95lacd
Q006798
000679=8
91fhdbad
91fndbad
ffa94180
Qooooooo
aoooooon
Qooooooo
Qoooooon
oooooooo

from 82716083 to 226b2110

nt |EtlpBreakWithStatusInstruction

nt | KiBugCheckDebugBrealk+0xlc

nt | KeBugChecl2+0=268hb

nt | MnAcces=sFault+0=zl06

nt | KiTraplE+0=de

windZlklvGetVertical GSet+0xdhb

windZk |bLoadTTF+0x3ab

windZlk ! bLoadFontFile+0x293
windZklttfdSenloadFontFilet+lizdc
windZl IPDEVOBI : . LoadFontFile+l=3c
windZlk lvLoadFontFileViev+l=Z 26

wind 2L /\PUBLIC_PFTOBJ . hloadHenFont=+0=88
windZlk | GredddFontHenEesourceExz+0x8hb
windZk I NtGdiAddFontHenResourceEx+lxzaa
nt |KiFa=stCallEntrv+0=xlZa

ntdll | KiFastSy=tenCal lRet

Exhibit C: MS11-087

* TrueType Font Parsing Vulnerability — CVE-
2011-3042

* Exploited in the wild by Dugu malware, via MS
Office documents

 What if one runs the exploit within the
Chrome sandbox?

leok hat

=l =201=

Adobe renderer, MS11-087 exploit

AcroRd32.exe:2980 Properties 8 48

Image |pPerformance | Performance Graph | Disk and Network | Threads | TOPJIP | Security | Environment | Job Strings

Image File
7 Adobe Reader
S
Adobe Systems Incorporated
Version: 11.0.1.36
Build Time: Tue Dec 13 10:42:53 2012

Path:
C:\Program Files\Adobe \Reader 11.0'Reader\AcroRd32.exe . |E@|Dre |

Command line:

“C:\Program Files\Adobe\Reader 11.0\Reader \AcroRd32.exe™ —channel=2924, 1, 146606291 §—type =rendere ¥ C: sers\user\Downloads\sample, pdf™
Current directory:

C:\WUsersiuser),
Autostart Location:

nfa

Parent: AcroRd32.exe(2924 I
| Verify |

User:

Started: |Bring to Front |

Comment: | | | Kill Process |

Data Execution Prevention (DEP) Status: DEP (permanent)

Address Space Load Randomization: Enabled

Cancel

=4 2013

Chrome renderer, MS11-087 exploit

& chrome.exe:592 Properties #

Image | Performance | Performance Graph | Disk and Network | Threads | TCP/IP | Security | Environment | Job Strings

Image File
=~ Google Chrome
L
- Google Inc,
Version: 24.0,1312.57
Build Time: Fri Jan 25 16:44:26 2013
Path:
C:\Program Files\Gooale\Chromeapplicationchrome. exe |E@|Dre |

Command line:

“C:\Program Files\Google\ChromeWapplicationichrome. exe) -lang=en-U5 —force-fieldtrials =CacheSensitivity Analysis Mo /EnableStage 3D /e
Current directory:

C:'Program Files\Google\Chrome\Application24.0, 1312, 57,

Autostart Location:

nfa

Farent: chrome.exe 1] _

| Verify |
User: MT ALTHORITY\SYSTEM —_—
Started: 8:42:31PM 2/18/2013

Comment: | | | Kill Process |

|§ring to Fr-:unt|

Data Execution Prevention (DEP) Status: DEP (permanent)

Address Space Load Randomization: Enabled

Cancel

=4 2013

Exhibit D: MS11-098

 Windows Kernel Exception Handler
Vulnerability, CVE-2011-2018

o dword ptr [ebx+!

INTEL_CPU_MICROCODE_ZERO

ptr [ebh=+3].e=1

L =

=L 201=

his |fde¢~ate..;,":..,.,l :
/ d{u"ﬂ‘ "T"'“b"(' e
oo

Many Wlndows kernel vulnerabilities have
been discovered, more is expected in the

future
If a sandbox relies on kernel security, a

suitable kernel vulnerability can be used to
oreak out of the sandbox

t is happening now (e.g. MWR Labs at
Pwn2own)

A

leck hat

=l =201=

Virtualization based sandbox

Wraps the whole OS in a sandbox
OS vulnerabilities nonfatal

Hypervisor and supporting environment still an
attack vector

A customized virtualization solution required to
limit the exposure

The amount of functionality exposed by the
hardened hypervisor to the attacker, although not
negligible, is orders of magnitude less than the
equivalent OS functionality

leok hat

=l =201=

References

[1] http://www.sandboxie.com/

[2] http://dev.chromium.org/developers/design-documents/sandbox
[3] "A Castle Made of Sand - Adobe Reader X Sandbox" Richard Johnson
[4] “Breeding Sandworms” - Zhenhua Liu, Guillaume Lovet

[5] http://blog.chromium.org/2012/10/pwnium-2-results-and-wrap-
up_10.html

[6] "Pwn20wn 2012: Google Chrome browser sandbox first to fall"
http://www.zdnet.com/blog/security/pwn2own-2012-google-chrome-
browser-sandbox-first-to-fall/10588

[7] Dennis Fisher
http://threatpost.com/en_us/blogs/its-time-abandon-java-012113

[8] BufferZone Pro, http://www.trustware.com/BufferZone-Pro/

[9] arstechnica.com/security/2013/02/zero-day-attack-exploits-latest-
version-of-adobe-reader/

[10] Duqu malware, http://em.wikipedia.org/wiki/Duqu

leok hat

=l =201=

