
Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

GET /search.jsp?
name=blah&type=1 HTTP/1.0
User-Agent: Mozilla/4.0
Host: www.mywebsite.com
Cookie:
SESSIONID=2KDSU72H9GSA289
<CRLF>

GET request POST request

POST /search.jsp HTTP/1.0
User-Agent: Mozilla/4.0
Host: www.mywebsite.com
Content-Length: 16
Cookie:
SESSIONID=2KDSU72H9GSA289
<CRLF>
name=blah&type=1
<CRLF>

1

Sample HTTP Requests

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Context for application security

Web applications are the technology of choice for business applications

 Platform independent

 Thin client

 Vendors deploying online portals, web application interfaces

 Customer demand for increased convenience

 Mobile application risk is primarily from webservices on the backend

Majority of web applications are developed internally or outsourced to a third
party system integrator

Pressure is common to deliver functionality on time and within budget –
security can be an afterthought

2

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved. Make this more difficult: Lets change the application code once a month.

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

An inconvenient truth

Business
Logic
Flaws

Code
Flaws

Security
Errors

Two weeks of ethical
hacking

Ten man-years of
development

4

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Web application security risks

Blurring
traditional
boundaries

Organizations are exposing internal data and critical
functionality to the public Internet through web application
deployments

Data
privacy

Weak security controls may be exploited by skilled attackers
to access sensitive information or perform unauthorized
activities on your organizations' systems

Impact of a
security
breach

Loss of customer confidence and reputational damage via the
negative publicity associated with a security breach

5

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Web application components

6

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Web Application Security

Host

Apps

Fi
re

w
al

l

Host

Apps Database

Host

Web server App server DB server

Securing the application

Input validation Session mgmt Authentication

Authorization Config mgmt Error handling

Secure storage Auditing/logging

Securing the network

Router

Firewall

Switch

Securing the host

Patches/updates Accounts Ports

Services Files/directories Registry

Protocols Shares Auditing/logging

Fi
re

w
al

l

7

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Web application behaviour

HTTP is stateless and hence requests and responses to communicate between
browser and server have no memory.

Most typical HTTP requests utilise either GET or POST methods

Scripting can occur on:

 Server-Side (e.g. perl, asp, jsp)

 Client-Side (javascript, flash, applets)

Web server file mappings allow the web server to handle certain file types
using specific handlers (ASP, ASP.NET, Java, JSP,CFM etc)

Data is posted to the application through HTTP methods, this data is
processed by the relevant script and result returned to the user’s browser

8

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

POST and GET methods

 “GET” exposes sensitive authentication information in the URL
 In Web Server and Proxy Server logs
 In the http referer [sic] header
 In Bookmarks/Favorites - often sent to others

 “POST” places information in the body of the request and not the URL

Keep sensitive data out of all GET requests

Only submit sensitive data over HTTPS POST

9

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

';

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

$NEW_EMAIL = Request[‘new_email’];
$USER_ID = Request[‘user_id’];

update users set email=‘$NEW_EMAIL’
where id=$USER_ID;

Anatomy of a SQL Injection Attack

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

$NEW_EMAIL = Request['new_email'];
$USER_ID = Request['user_id'];

update users set email='$NEW_EMAIL'
where id=$USER_ID;

SUPER AWESOME HACK: $NEW_EMAIL = ';

update users set email='';

Anatomy of a SQL Injection Attack

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Best Practice: Parameterized Queries

13 13

Parameterized Queries ensure that an attacker is not able to change the intent of a query, even if SQL commands are
inserted by an attacker.

Java EE – use PreparedStatement()

String query = "SELECT account_balance FROM user_data WHERE user_name = ? ";

PreparedStatement pstmt = connection.prepareStatement(query);

pstmt.setString(1, custname); ResultSet results = pstmt.executeQuery();

String query = "SELECT account_balance FROM user_data WHERE user_name = ?";

try

{

OleDbCommand command = new OleDbCommand(query, connection);

command.Parameters.Add(new OleDbParameter("customerName", CustomerName Name.Text));

OleDbDataReader reader = command.ExecuteReader(); // …

}

catch (OleDbException se) {

// error handling

}

Safe C# .NET Prepared Statement Example

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

.NET Parameterized Query

14 14

Dynamic SQL: (Not so Good)

string sql = "SELECT * FROM User WHERE Name = '" + NameTextBox.Text + "' AND
Password = '" + PasswordTextBox.Text + "'";

Parameterized Query: (Nice, Nice!)

SqlConnection objConnection = new SqlConnection(_ConnectionString);

objConnection.Open();

SqlCommand objCommand = new SqlCommand(

 "SELECT * FROM User WHERE Name = @Name AND Password =

 @Password", objConnection);

objCommand.Parameters.Add("@Name", NameTextBox.Text);

objCommand.Parameters.Add("@Password", PasswordTextBox.Text);

SqlDataReader objReader = objCommand.ExecuteReader();

if (objReader.Read()) { ...

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Java Prepared Statement

15 15

Dynamic SQL: (Injectable)
String sqlQuery = “UPDATE EMPLOYEES SET SALARY = ‘ +

 request.getParameter(“newSalary”) + ‘ WHERE ID = ‘ +
 request.getParameter(“id”) + ‘”;

PreparedStatement: (Not Injectable)
double newSalary = request.getParameter(“newSalary”) ;
int id = request.getParameter(“id”);
PreparedStatement pstmt = con.prepareStatement("UPDATE EMPLOYEES

 SET SALARY = ? WHERE ID = ?");
pstmt.setDouble(1, newSalary);

pstmt.setInt(2, id);

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Best Practice: Parameterized Queries

16 16

unsafeHQLQuery = session.createQuery("from Inventory where
productID='"+userSuppliedParameter+"'");

Unsafe HQL Statement Query (Hibernate)

Query safeHQLQuery = session.createQuery("from Inventory where productID=:productid");

safeHQLQuery.setParameter("productid", userSuppliedParameter);

Safe version of the same query using named parameters

Language specific recommendations:
  Java EE – use PreparedStatement() with bind variables

  .NET – use parameterized queries like SqlCommand() or OleDbCommand() with bind variables

  PHP – use PDO with strongly typed parameterized queries (using bindParam())

  Hibernate - use createQuery() with bind variables (called named parameters in Hibernate)

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Best Practice: Parameterized Queries

17 17

string sql = "SELECT * FROM Customers WHERE CustomerId = @CustomerId";
SqlCommand command = new SqlCommand(sql); command.Parameters.Add(new
SqlParameter("@CustomerId",
System.Data.SqlDbType.Int));
command.Parameters["@CustomerId"].Value = 1;

ASP.NET

Create
Project.create!(:name => 'owasp')
Read
Project.all(:conditions => "name = ?", name)
Project.all(:conditions => { :name => name })
Project.where("name = :name", :name => name)
Update
project.update_attributes(:name => 'owasp')
Delete
Project.delete(:name => 'name')

RUBY – Active Record

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Best Practice: Parameterized Queries

18 18

<cfquery name = "getFirst" dataSource = "cfsnippets">

 SELECT * FROM #strDatabasePrefix#_courses WHERE intCourseID =

 <cfqueryparam value = #intCourseID# CFSQLType = "CF_SQL_INTEGER">

</cfquery>

Cold Fusion

my $sql = "INSERT INTO foo (bar, baz) VALUES (?, ?)";

my $sth = $dbh->prepare($sql);

$sth->execute($bar, $baz);

Perl - DBI

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

General Access Control Model

Authentication Authorization

Principal Action Protected
system Guard

19

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Hard Coded Roles

if ((user.isManager() ||

user.isAdministrator() ||

user.isEditor()) &&

user.id() != 1132))

{

 //execute action

}

How do you change the policy
of this code?

20

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Best Practice: Code to the Activity

if (AC.hasAccess(“article:edit:12”))

{

 //execute activity

}

Code it once, never needs to change again

Implies policy is centralized in some way

Implies policy is persisted in some way

Requires more design/work up front to get right

21

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Best Practice: Centralized ACL
Controller

Define a centralized access controller

 ACLService.isAuthorized(ACTION_CONSTANT)

 ACLService.assertAuthorized(ACTION_CONSTANT) throws
AccessControlException()

Access control decisions go through these simple API’s

Centralized logic to drive policy behavior and persistence

May contain data-driven access control policy information

22

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Using a Centralized Access Controller

In
Presentation
Layer

if (isAuthorized(VIEW_LOG_PANEL))
{

 <h2>Here are the logs</h2>
 <%=getLogs();%/>

}

In Controller

try (assertAuthorized(DELETE_USER))
{

 deleteUser();
}

23

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Best Practice: Verifying policy server-side

Force authorization checks on ALL requests

 JS file, image, AJAX and FLASH requests as well!

 Force this check using a filter if possible

Keep user identity verification in session

Load entitlements server side from trusted sources

24

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

SQL Integrated Access Control

Example Feature
 http://mail.example.com/viewMessage?

msgid=2356342

This SQL would be vulnerable to tampering
 Select * from messages where messageid =

2356342

Ensure the owner is referenced in the query!
 Select * from messages where messageid =

2356342 AND messages.message_owner =
<userid_from_session>

25

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Data Contextual Access Control

26

Data Contextual / Horizontal Access Control API examples:
 ACLService.isAuthorized(“car:view:321”)
 ACLService.assertAuthorized(“car:edit:321”)

Long form:
 is Authorized(user, Perm.EDIT_CAR, Car.class, 14)

Check if the user has the right role in the context of a specific object

Protecting data a the lowest level!

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

What is XSS besides being a misnomer?

Cross-site Scripting (XSS)

Attacker driven JavaScript

Most common web vulnerability

Easy vulnerability to find via auditing

Easy vulnerability to exploit

Certain types of XSS are very complex to fix

Difficult to fix all XSS for a large app

Easy to re-introduce XSS in development

Significant business and technical impact potential

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

XSS Attack Payload Types

Session hijacking

Site defacement potential

Network scanning

Undermining CSRF defenses

Site redirection/phishing

Data theft

Keystroke logging

Loading of remotely hosted scripts

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

XSS Variants

 Data provided by a client is immediately used by server-side
scripts to generate a page of results for that user.

 Search engines

Reflected/
Transient

 A page's client-side script itself accesses a URL request
parameter and uses this information to dynamically write
some HTML to its own page

 DOM XSS is triggered when a victim interacts with a web
page directly without causing the page to reload.

 Difficult to test with scanners and proxy tools – why?

DOM based
XSS

 Data provided by a client is first stored persistently on the
server (e.g., in a database, filesystem), and later displayed
to users

 Bulletin Boards, Forums, Blog Comments

Stored/
Persistent

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Reflected XSS

$ $

1. Hacker sends link
to victim.
Link contains XSS
payload

2. Victim views page via
XSS link supplied by
attacker.

3. XSS code executes on
victims browser and sends
cookie to evil server

4. Cookie is stolen. The
Attacker can hijack the
Victims session.

Victim

Hackler

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Persistent/Stored XSS

2

3

4

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

DOM-Based XSS

2
3

1

4

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

XSS Defense by Data Type and Context

Data Type Context Defense
String HTML Body HTML Entity Encode
String HTML Attribute Minimal Attribute Encoding
String GET Parameter URL Encoding
String Untrusted URL URL Validation, avoid javascript: URL’s, Attribute encoding,

safe URL verification

String CSS Strict structural validation, CSS Hex encoding, good design
HTML HTML Body HTML Validation (JSoup, AntiSamy, HTML Sanitizer)
Any DOM DOM XSS Cheat sheet
Untrusted
JavaScript

Any Sandboxing

JSON Client parse time JSON.parse() or json2.js

Safe HTML Attributes include: align, alink, alt, bgcolor, border, cellpadding, cellspacing,
class, color, cols, colspan, coords, dir, face, height, hspace, ismap, lang, marginheight,
marginwidth, multiple, nohref, noresize, noshade, nowrap, ref, rel, rev, rows, rowspan,
scrolling, shape, span, summary, tabindex, title, usemap, valign, value, vlink, vspace, width

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Best Practice: Validate and Encode
User Input

String email = request.getParameter("email");
out.println("Your email address is: " + email);

String email = request.getParameter("email");
String expression =
"^\w+((-\w+)|(\.\w+))*\@[A-Za-z0-9]+((\.|-)[A-Za-z0-9]+)*\.[A-Za-z0-9]+$";

Pattern pattern = Pattern.compile(expression,Pattern.CASE_INSENSITIVE);
Matcher matcher = pattern.matcher(email);
if (macher.maches())
{

 out.println("Your email address is: " + StringEscapeUtils.escapeHtml(email));
}
else
{

 //log & throw a specific validation exception and fail safely
}

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Danger: Multiple Contexts

HTML Body HTML
Attributes

<STYLE>
Context

<SCRIPT>
Context URL Context

Different encoding and validation techniques needed for different contexts!

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

These class of widgets submit HTML via request parameters, simple
validation not enough

HTML Input

Clients side widgets like TinyMCE and CKEditor

Bold, Bullet Points, Color, etc

Users can edit content beyond plain text

PHP HTML Purifier

Validate user-driven HTML on the server with an HTML policy engine

Java OWASP AntiSamy or HTML Sanitizer

Java JSoup

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

HTML Encoding stops XSS in this context!

Sample test attack payload:

Reflective XSS attack example:

Untrusted data may land in a UI snippet like the following:

<div><%= request.getParameter(“error_msg”) %></div>

example.com/error?
error_msg=<script>alert(document.cookie)</script>

XSS in HTML Body

example.com/error?error_msg=You cannot access that file.

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

HTML Attribute Context

 Aggressive escaping is needed when placing untrusted data into typical
attribute values like width, name, value, etc.

 This rule is NOT ok for complex attributes likes href, src, style, or any event
handlers like onblur or onclick.

 Escape all non alpha-num characters with the &#xHH; format

 This rule is so aggressive because developers frequently leave attributes
unquoted

 <div id=DATA></div>

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Javascript Context

39

Escape all non alpha-num characters with the \xHH format

<script>var x=’<%= encodeForJS(DATA) %>';</script>

You're now protected from XSS at the time data is assigned

What happens to x after you assign it?

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

URL Parameter Escaping

40

Escape all non alpha-num characters with the %HH format

<a href=“/search?data=<%=DATA %>”>

Be careful not to allow untrusted data to drive entire URL’s or URL
fragments

This encoding only protects you from XSS at the time of rendering
the link

Treat DATA as untrusted after submitted

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

CSS Pwnage Test Case

41

<div style="width: <%=temp3%>;"> Mouse over </div>

temp3 =
ESAPI.encoder().encodeForCSS("expression(alert(String.fromChar
Code (88,88,88)))");

<div style="width: expression\28 alert\28 String\2e
fromCharCode\20 \28 88\2c 88\2c 88\29 \29 \29 ;"> Mouse over
</div>

 Pops in at least IE6 and IE7.

lists.owasp.org/pipermail/owasp-esapi/2009-February/000405.html

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

CSS Context: XSS Defense

42

Escape all non alpha-num characters with the \HH format

text</style>

Do not use any escaping shortcuts like \”

Strong positive structural validation is also required

If possible, design around this “feature”

 Use trusted CSS files that users can choose from

 Use client-side only CSS modification (font size)

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Dangerous Contexts

43

There are just certain places in HTML documents where you cannot place
untrusted data

 Danger: <a $DATA>

There are just certain JavaScript functions that cannot safely handle untrusted
data for input

 Danger: <script>eval($DATA);</script>

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

OWASP ESAPI for Java

44

ESAPI library
provides powerful
encoding via
ESAPI.encoder():

 String encodeForHTML(String input)

 String encodeForHTMLAttribute(String input)

 String encodeForJavaScript(String input)

 String encodeForURL(String input)

 String encodeForCSS(String input)

 And more! (LDAP, XML, OS, etc)

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

ESAPI Output Encoding

45

<style>

bgcolor: <%=ESAPI.encoder().encodeForCSS(data) %>;

</style>

Hello, <%=ESAPI.encoder().encodeForHTML(data) %>!

<script>

var uName='<%=ESAPI.encoder().encodeForJavaScript(data) %>';

</script>

<div id='<%=ESAPI.encoder().encodeForHTMLAttribute(data) %>'>

<a href="/mysite.com/editUser.do?userName=<%=
ESAPI.encoder().encodeForURL(data) %>">Please click me!

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Basic XSS Defense Summary

46

Cross-Site Scripting (XSS)

 Harmful JavaScript artificially introduced into your web app

All user input must be validated!

All user input must be encoded or sanitized specific to each context
before being displayed back to the browser!

Plenty of Web 2.0 vectors to consider such as JSON parsing and DOM
XSS (See Advanced XSS Defense Module)

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

DOM Based XSS Defense

DOM Based XSS is a complex risk

Suppose that x landed in …
<script>setInterval(x, 2000);</script>

For some Javascript functions, even JavaScript
encoded untrusted data will still execute!

47

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Direct
execution

n  eval()
n window.execScript()/function()/setInterval()/setTimeout(),

requestAnimationFrame()
n  script.src(), iframe.src()

Build HTML/
JavaScript

n  document.write(), document.writeln()
n  elem.innerHTML = danger, elem.outerHTML = danger
n  elem.setAttribute(“dangerous attribute”, danger) –

attributes like: href, src, onclick, onload, onblur, etc.

Within
execution
context

n  onclick()
n  onload()
n  onblur(), etc

 Source: https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet

Dangerous JavaScript Sinks

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Some Safe JavaScript Sinks

Setting a
value

n  elem.innerText(danger)

n  formfield.val(danger)

Safe JSON
parsing n  JSON.parse() (rather than eval())

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

jQuery API’s

Dangerous jQuery 1.7.2 Data Types
CSS Some Attribute Settings

HTML URL (Potential Redirect)

jQuery methods that directly update DOM or can execute JavaScript
$() or jQuery() .attr()
.add() .css()
.after() .html()
.animate() .insertAfter()

.append() .insertBefore()

.appendTo() Note: .text() updates DOM, but is safe.

jQuery methods that accept URLs to potentially unsafe content
jQuery.ajax() jQuery.post()
jQuery.get() load()

jQuery.getScript()

Don’t send untrusted data to these methods,
or properly escape the data before doing so

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

jQuery – But there’s more…

More danger
  jQuery(danger) or $(danger)

  This immediately evaluates the input!!
  E.g., $("")

  jQuery.globalEval()

  All event handlers: .bind(events), .bind(type, [,data], handler()), .on(), .add(html)

Same safe examples
  .text(danger), .val(danger)

Some serious research needs to be done to identify all the safe vs. unsafe
methods
  There are about 300 methods in jQuery

 Source: http://code.google.com/p/domxsswiki/wiki/jQuery

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Client Side Context Sensitive Output Escaping

Context Escaping Scheme Example

HTML Element (&, <, >, ") à &entity;
(', /) à &#xHH;

$ESAPI.encoder().
encodeForHTML()

HTML Attribute All non-alphanumeric
< 256 à &#xHH

$ESAPI.encoder().
encodeForHTMLAttribute()

JavaScript All non-alphanumeric
< 256 à \xHH

$ESAPI.encoder().
encodeForJavaScript()

HTML Style All non-alphanumeric
< 256 à \HH

$ESAPI.encoder().
encodeForCSS()

URI Attribute All non-alphanumeric
< 256 à %HH

$ESAPI.encoder().
encodeForURL()

 Note: Nested contexts like HTML within JavaScript, and decoding before encoding to prevent double encoding are other issues not specifically
addressed here.

Encoding methods built into a jquery-encoder:
https://github.com/chrisisbeef/jquery-encoder

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

JQuery Encoding with JQencoder

Contextual encoding is a crucial technique needed to stop all types of XSS

jqencoder is a jQuery plugin that allows developers to do contextual
encoding in JavaScript to stop DOM-based XSS
 http://plugins.jquery.com/plugin-tags/security
 $('#element').encode('html', UNTRUSTED-DATA);

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

“Secure” DOM XSS/AJAX Workflow

Initial loaded page should only be static content

Load JSON data via AJAX or via embedded JSON

Only use the following methods to populate the DOM

 Node.textContent

 document.createTextNode

 Element.setAttribute

Caution: Element.setAttribute is one of the most dangerous JS methods

Caution: If the first element to setAttribute is any of the JavaScript event
handlers or a URL context based attribute
("src", "href", "backgroundImage", "backgound", etc.) then XSS will pop

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Best Practice: DOM Based XSS
Defense I

Untrusted data should only be treated as displayable text

JavaScript encode and delimit untrusted data as quoted strings

Use document.createElement("…"), element.setAttribute("…","value"),
element.appendChild(…), etc. to build dynamic interfaces

Avoid use of HTML rendering methods

Make sure that any untrusted data passed to eval() methods is
delimited with string delimiters and enclosed within a closure or
JavaScript encoded to
N-levels based on usage and wrapped in a custom function

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Best Practice: DOM Based XSS
Defense II

Limit the usage of dynamic untrusted data to right side operations.
And be aware of data which may be passed to the application which
look like code (eg. location, eval()).

Limit access to properties objects when using object[x] access
functions

Don’t eval() JSON to convert it to native JavaScript objects. Instead
use JSON.toJSON() and JSON.parse()

Run untrusted script in a sandbox (ECMAScript object sealing, HTML 5
frame sandbox, etc)

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Best Practice: Sandboxing

 Object.seal(obj)

 Object.isSealed(obj)

 Sealing an object prevents other
code from deleting, or changing
the descriptors of, any of the
object's properties

JavaScript Sandboxing
(ECMAScript 5) iFrame Sandboxing (HTML5)

 <iframe
src="demo_iframe_sandbox.htm"
sandbox="”></iframe>

 Allow-same-origin, allow-top-
navigation, allow-forms, allow-
scripts

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Best Practice: Content Security Policy

Anti-XSS W3C standard

Must move all inline script and style into external scripts

Add the X-Content-Security-Policy response header to instruct the browser
that CSP is in use
 Firefox/IE10PR: X-Content-Security-Policy
 Chrome Experimental: X-WebKit-CSP
 Content-Security-Policy-Report-Only

CSP 1.1 Draft 19 published August 2012
 https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-

specification.dev.html

Define a policy for the site regarding loading of content

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Best Practice: Content Security Policy

Externalize
all Java-
Script
within web
pages

 No inline script tag
 No inline JavaScript for onclick or other handling

events
 Push all JavaScript to formal .js files using event

binding

Define
Content
Security
Policy

 Developers define which scripts are valid
 Browser will only execute supported scripts
 Inline JavaScript code is ignored

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Content Security Policy by Example

Source:
http://www.html5rocks.com/en/tutorials/security/content-security-
policy/

Site that loads resources from a content delivery network and does
not need framed content or any plugins

X-Content-Security-Policy: default-src https://cdn.example.net;
frame-src 'none'; object-src 'none'

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Attacking Sensitive Transactions

Cross-Site Request Forgery (XSRF/CSRF)

 Attacks the trust a web application has for authenticated users

 Browser instances share cookies

 Users typically browse multiple sites simultaneously

 Attackers can abuse the shared cookie jar to send requests as the
authenticated user

Once authenticated, users are trusted throughout the lifetime of their
session

Applications do not require users to re-authenticate when executing
sensitive transactions

61

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Anatomy of an CSRF Attack

This form will generate requests that resemble the following

GET http://www.example.com/Transfer.asp?acct=##&amount=##

Consider a consumer banking application that contains the
following form

<form action=“http://site.com/Transfer.asp” method=“POST” id=“form1”>
 <p>Account Num: <input type=“text” name=“acct value=“2345”/
></p>
 <p>Transfer Amt: <input type=“text” name=“amount” value=“10000”/
></p>
</form>
<script>document.getElementById(“form1”).submit();</script>

62

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Cross-Site Request Forgery

63

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Anatomy of an CSRF Attack

<img src= “http://
example.com/
Transfer.asp?acct=attacker&
amount=100000” />

64

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

What is the Result?

When the tag loads, the attacker’s web site will send a request
to the consumer banking application

The user’s browser will attach the appropriate cookie to the attacker’s
forged request, thus “authenticating” it

The banking application will verify that the cookie is valid and process
the request

The attacker cannot see the resultant response from the forged
request

 Does that matter?

65

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Defenses

Request that cause side effects should use the POST method

 Alone, this is not sufficient

Validation of HTTP REFERER header (not recommended)

 Tracking valid refererring pages may be problematic

 Easy to spoof

Require users to re-authenticate

Cryptographic Tokens

66

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Challenge-Response

Challenge-Response is another defense option for CSRF

The following are some examples of challenge-response options.

 CAPTCHA

 Re-Authentication (password)

 One-time Token

While challenge-response is a very strong defense to CSRF (assuming
proper implementation), it does impact user experience.

For applications in need of high security, tokens (transparent) and
challenge-response should be used on high risk functions.

67

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Synchronizer Token Pattern

“Hidden”
token in
HTML

Value defined by server when page is rendered. Value is stored in session.
Consider leveraging the java.security.SecureRandom class for Java
applications.

Upon Submit, token is sent with form.

Token value must match with value in session.

Attacker would not have token value. (XSS attack could get token is page
was vulnerable to XSS)

<form action="/transfer.do" method="post"> <input type="hidden" name="CSRFToken"
value="OWY4NmQwODE4ODRjN2Q2NTlhMmZlYWEwYzU1YWQwMTVhM2JmNGYxYjJiMGI
4MjJjZDE1ZDZjMTVi MGYwMGEwOA=="> … </form>
See also
https://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project

https://www.owasp.org/index.php/PHP_CSRF_Guard
https://www.owasp.org/index.php/.Net_CSRF_Guard

68

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Other CSRF Defenses

Require users
to re-
authenticate

Amazon.com does this *really* well

Double-cookie
submit
defense

Decent defense, but not based on randomness;
based on SOP

69

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Basic Cryptographic Mechanisms

  Cryptographic Hash Functions (aka, Message Digests)

 What they are

 Desired properties

 Common uses

  Ciphers

 Symmetric ciphers

 Asymmetric ciphers

  Digital signatures

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Basic Cryptographic Mechanisms VERSION 2

Cryptographic
Hash Functions
(aka, Message
Digests)

What they are

Desired properties

Common uses

Ciphers
Symmetric ciphers

Asymmetric ciphers

Digital
signatures …

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Uses for Cryptographic Mechanisms

Hash
Functions Integrity, authentication, digital signatures

Symmetric
Ciphers Confidentiality, authentication protocols

Asymmetric
ciphers Confidentiality (especially key exchange), digital signatures

Digital
signatures Integrity, authentication, non-repudiation, attestation

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Uses for Cryptographic Mechanisms

Crypto-
graphic

Mechanisms

Hash Functions Integrity, authentication, digital
signatures

Symmetric
Ciphers

Confidentiality, authentication
protocols

Asymmetric
ciphers

Confidentiality (especially key
exchange), digital signatures

Digital
signatures

Integrity, authentication, non-
repudiation, attestation

VERSION 2

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Cryptographic Hash Functions:
What Are They?
 Hash function is a computationally efficient function mapping arbitrary

length bit strings to some fixed-length binary string called hash-values or
message digests.

 These are many-to-one mapping functions; may be thought of as compression
functions.

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Cryptographic Hash Functions:
Common Uses and Types

To provide data integrity (detection of tampering)

To provide digital signatures in a more efficient
manner

To store passwords or pass phrases

Two types: Unkeyed (AKA, Message Integrity Code)
and keyed (Message Authentication Code)

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

HMACs

Defined in RFC 2104, which defines HMAC for various
message digest algorithms.

Defined as:

 H(K XOR opad, H(K XOR ipad, M))

where,

 ipad = the byte 0x36 repeated B times

 opad = the byte 0x5C repeated B times

 for a B byte message M.

If optimized, HMAC-md_alg can be computed almost
efficiently as md_alg.

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Encryption / Decryption:
Threat Sources

Intruders and eavesdroppers in communication

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Types of Ciphers

 Use same key for encryption and
decryption.

 Come in two main types:
 Block ciphers: Operate on block

(several characters, typically 8 or
16 octets) at once.

 Stream ciphers: Operate on a
single bit (or occasionally byte) at
a time.

 NOTE: Block ciphers may operate
as stream ciphers, depending on
the “cipher mode”.

Symmetric Ciphers Asymmetric Ciphers (AKA,
public/private key)

 Two keys; one for encryption, one
for decryption (or more
commonly, one private, one
public).

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Basic Steps for Encryption

Choose a cipher algorithm

Choose a key size

Choose a cipher mode

Choose a padding scheme

Key management
 Key Generation
 Handling crypto keys

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Recommended Cipher Algorithms

Symmetric
Block
Cipher

 AES (a no-brainer)

Symmetric
Streaming
Cipher

 A protocol: TLS 1.2 or SSHv2

 AES in streaming cipher mode (e.g., CTR, OFB)

Asymmetri
c Cipher

 Encryption: RSA or ECC

 Signing: RSA or DSA

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

A Word About Key Size

Compare to DES with approx. 7.2 x 1016 keys

AES encrypts and decrypts w/ 3 standard key lengths:

 128-bit key length corresponding to approx. 3.4 x 1038 keys

 192-bit key length corresponding to approx 6.2 x 1057 keys

 256-bit key length corresponding to approx. 1.1 x 1077 keys

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Recommendations for Cipher
Key Size

Good resource: http://www.keylength.com/

AES:
  128-bit is more than adequate for 95% of the choices
 Use 256-bit if you must or if you are ultra-paranoid

RC4 (if you must)
  128-bit should suffice and often is max supported

RSA or DSA
  At least 1024-bit modulus recommended
  2048-bit now preferred by NIST

ECC
  It's much more complicated; lots of nuances.

 At least 224-bits
 Follow NIST recommendations in FIPS 186-3

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Details on Cipher Modes

What is a cipher mode?

Cover strengths and weaknesses
of common cipher modes.

Cover cryptographic attacks
specific to cipher modes.

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Details on Cipher Modes

An operation, generally performed on block ciphers, that is used to
strengthen the security of the resulting ciphertext

Using the cipher “as-is” with no additional block operations is known
as “Electronic Code Book” or ECB mode

For the next few slides discussing cipher modes, (+) will be used to
indicate an advantage and (-) will be used to indicate a disadvantage

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Cipher Modes – A Summary

Cipher
Mode

Supports
Authenticity?

Acts as
Stream
Cipher? Notes

ECB No No Very weak; avoid if possible; FIPS 140-1

CBC No No ESAPI default. FIPS 140-1

CFB No Yes FIPS 140-1

OFB No Yes FIPS 140-1

CTR No Yes

CCM Yes Yes Only defined for ciphers with 128-bit block size; slow(er): 2
cipher operations required. NIST & FIPS approved.

GCM Yes Yes Only defined for ciphers with 128-bit block size; efficient: 1
cipher operation plus 128-bit multiply required. NIST & FIPS
approved.

CWC Yes Yes Never reuse {key, IV} pair. Probably more efficient than CCM.

EAX Yes Yes Mostly used w/ Full Disk Encryption (AEAD)

CMAC Yes No Authenticity only. No encryption. Block cipher equivalent of
HMAC.

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

When To Use Padding

Use padding when:

 You are programming to use block cipher in a non-streaming mode
(e.g., CBC, GCM) and must accept input of a variable length.

You can skip padding when:

 You are using a block cipher in streaming mode (e.g., OFB, CFB) or
using a streaming cipher (e.g., RC4).

 Your plaintext data is always a fixed length or an even multiple of
the cipher block size.

When in doubt, use padding.

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Recommended Padding Schemes

Symmetric block ciphers

 PKCS7 (RFC 5652)
 PKCS5 padding is the same as PKCS7, but technically limited to

ciphers with 64-bit block size.

 SSL3Padding

Use “no padding” option only when applicable.

Asymmetric block ciphers

 OAEPWithSHA-256AndMGF1Padding

 Note: PKCS1 padding should be avoided!

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Some Final Recommendations

Symmetric block ciphers

 Use random IV for each encryption.

 128-bit AES in GCM mode and no padding (AES/GCM/NoPadding,
available in Bouncy Castle)

 128-bit AES in CBC mode and PKCS5 padding (AES/CBC/
PKCS5Padding) and HMAC over IV+ciphertext

 ESAPI 2.0 default, with HMAC added to ensure authenticity

Here are some good overall recommendations:

Asymmetric block ciphers

 RSA/ECB/OAEPWithSHA-256AndMGF1Padding with > 1024-bit
modulus.

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

What's Wrong with ECB Mode?

Original Tux image
Tux image
encrypted with
ECB mode

Tux image
encrypted with
any other cipher
mode

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Aside: Padding Oracle Attack (1/2)

What is it?

 First described in 2002 in context of IPSec by Serge Vaudenay

 Attack on CBC mode of operation where “oracle” leaks info whether
or not padding of the ciphertext is correct.

 “Oracle” typically is either different error messages / exceptions
being returned or timing side-channel attack.

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Aside: Padding Oracle Attack (2/2)

So what’s the harm?

 Allows adversary to decrypt (and encrypt) data without knowledge
of the secret key.

 Is efficient: Works without a large “work factor”

Reference: Brian Holyfield’s NYC OWASP presentation:

http://blog.gdssecurity.com/storage/presentations/
Padding_Oracle_OWASP_NYC.pdf

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Asymmetric Ciphers (1/3)

Different key to encrypt and decrypt
 Generally can encrypt with either key and decrypt with either key.
 Choose one key to be private and the other to be public

Partly addresses the key distribution problem

Efficiency
 Much slower than symmetric ciphers, so frequently used with

symmetric ciphers.
 Longer the key, the slower the algorithm works

Chosen & adaptive plaintext attacks always feasible, since public key
always available

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Asymmetric Ciphers (2/3)

Algorithms generally based on concept of “trap door” functions
found
in number theory
 Problem difficult (time-consuming) to solve if key piece of the

puzzle missing.
 Often based on difficult-to-compute inverses

Can provide non-repudiation, which isn’t easily provided by
secret key algorithms

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Asymmetric Ciphers (3/3)

Research driven by problem with key distribution.

 Secret key distribution not scalable. For N parties, O(N2) keys
needed for point-to-point or O(N) for KDC.

 Secret key distribution prohibitive for spontaneous secure
communications between two parties who have previously not met

Original contributors: Ellis and Cocks (GCHQ), and Merkel, Diffie,
Hellman

Later contributors: Rivest, Shamir, Adleman

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Asymmetric Ciphers: Notation

Because multiple keys, generally involving multiple parties, are used
with asymmetric ciphers, cryptographers often use the following
notation

 Alice’s public key: K+A

 Alice’s private key: K-A

 Bob’s public key: K+B

 Bob’s private key: K-B

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Digital Envelopes

Any key
exchange
protocol using a
public-key
cryptosystem to
encrypt a secret
(session) key
for a secret-key
cryptosystem.

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Asymmetric Ciphers:
Key Generation

Dynamic asymmetric key pair generation rare

 Public key must be exchanged with other participants or signed by
some trusted third party.

 Lots of nuances because of relation between public and private
keys. Thus use something like openssl or Java’s keytool

Store private key encrypted with passphrase in key store
(PKCS#12 recommended)

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Asymmetric Ciphers:
Encryption (1/2)

Assumption Alice and Bob both have a public/private key pairs and have
securely provided each other their public keys.

Goal Alice wants to encrypt a symmetric session key, K, to send to
Bob.

How?
Alice encrypt’s session key K using Bob’s public key, K+

B

Bob decrypt’s the ciphertext with his private key, K-B

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Asymmetric Ciphers:
Encryption (2/2)

Use some form of
OAEP padding. Do
not use PKCS#1
(v1.5 or earlier)
padding

Note that with OAEP padding, there is a length limit to
what you may encrypt. Length depends on which
secure hash algorithm you use.

You almost always
will be encrypting
a symmetric
session key and
only using
asymmetric
encryption for key
exchange

Therefore, ECB mode is the proper cipher mode.

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Asymmetric Ciphers: Signing

Assumption Alice and Bob both have a public/private key pairs and have
securely provided each other their public keys.

Goal Alice wants to sign a message M and send it to Bob.

How?
Alice signs message M using Alice’s private key, K-A

Bob validates the signature on M using Alice’s public key, K+A

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Asymmetric Ciphers: Summary

You encrypt using the recipient’s public key

Recipients decrypt using their private keys

You sign using your own private key

You validate using the sender’s public key

Mess this up, and it’s game over.

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Digital

Signatures

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Digital Signatures: Basic Definitions

Digital signature: A cryptographically unique data string that associates a
message with some originating entity.

A Key Generation Algorithm creates a public and private key for each User
or Entity.

Digital signature generation algorithm: A method for producing a digital
signature when given the senders private key and a message.

Digital signature verification algorithm: A method for verifying the
authenticity of a message when given the senders public key, the message,
and the digital signature.

Digital signature scheme: A signature generation algorithm and an
associated verification algorithm.

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Digital Signature Issues

There are standard attacks and specialized attacks on digital
signatures in general and on specific digital signature schemes in
particular. See Handbook of Applied Cryptography if interested.

Biggest problem is one of impersonation.

 How can Alice verify that Bob’s public key actually belongs to Bob
and vice-versa.

  Several easy attacks (MITM, social engineering, etc.)

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Digital Signatures: Dealing with the
Impersonation Issue (1/3)

Possibilities

Alice and Bob exchange public keys on floppy or other
device in face-to-face meeting.

Alice and Bob use trusted courier service.

Alice and Bob belong to same company and trust their
IT dept to make their keys available as part of PKI.

Alice and Bob exchange over insecure channel (e-
mail?), and then confirm fingerprint out-of-band, over
more trusted medium (phone?).

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Digital Signatures: Dealing with the
Impersonation Issue (2/3)

More
possibilities

Alice and Bob list their public keys on public places:

 Well-known public key servers

 Usenet news groups

 Archived mailing lists or with every e-mail

 Newspaper classified section

 PGP-like “web of trust” (bottom-up approach)

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Digital Signatures: Dealing with the
Impersonation Issue (3/3)

Problems
with these
“solutions”:

 Not scalable

 Not suitable for dynamic interaction between two parties
who have never previously met.

 Not fool-proof; still quite susceptible to social engineering
attacks

Other
problems

 What if Alice’s or Bob’s private key is compromised? What
if Alice or Bob just claim that it was?

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Digital Certificates (1/4)

Digital certificates along with some mutually trusted third party (TTP;
often referred to as Trent in crypto literature) addresses many of the
deficiencies in digital signatures.

In its essence, a digital certificate is an entity’s identity (a DN) and it’s
public key that has been signed by the private key of a TTP (known as
Certificate Authority) trusted by anyone willing to use that certificate.
It is a mechanism for managing risk by transferring liability.

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Digital Certificates: What’s in a
Certificate? (2/4)

Entity’s identifier (called “distinguished name”). E.g., for a computer,
may be fully qualified host name. For person, might be something like:

cn=Kevin W. Wall,ou=IT,o=Qwest,s=oh,c=us

Entity’s public key.

Expiration date

Issuer (Certificate Authority [CA])

Serial #

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Digital Certificates: What Else?
(3/4)

X.509 format

Version (of X.509)

Serial # (unique id to prevent reuse of duplicate X.500
names)

Signature algorithm

Issuer

Validity (i.e., expiration)

Subject’s public key info

Signature

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Digital Certificates: But Wait,
There’s More! (4/4)

Standard
format, X.
509v3 added
a certificate
extensions
field and
defined some
standard
extensions
(critical and
non-critical):

Key and policy information

Subject and issuer attributes

Certification path constraints

Extensions related to certificate revocation lists (CRLs)

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

Digital Certificates: But Wait,
There’s More! (4/4)

Standard format, X.509v3 added a certificate extensions field and
defined some standard extensions (critical and non-critical):

 Key and policy information

 Subject and issuer attributes

 Certification path constraints

 Extensions related to certificate revocation lists (CRLs)

VERSION 2

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

General Steps To Obtaining A
Certificate

Generate public / private key pair. (Optional; but worry if it’s not!)

Create CSR (info required varies by CA) and submit it to CA of your
choice.

Install CA’s root certificate if not already in trusted key store.

Install your certificate. Protect it with a password if that is an option!!!

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

References (1/3)

Bruce Schneier, Applied Cryptography: Protocols, Algorithms,
and Source Code in C, 2nd ed., 1996, John Wiley & Sons, ISBN
0-471-11709-9.

Alfred Menezes, Paul van Oorschot, Scott Vanstone, Handbook of
Applied Cryptography, 1997, CRC Press, ISBN 0-8493-8523-7.
(Online: http://cacr.math.uwaterloo.ca/hac/)

F. L. Bauer, Decrypted Secrets: Methods and Maxims of
Cryptology, 2nd ed., 2000, Springer-Verlag, ISBN 3-540-66871-3.

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

References (2/3)

Various Wikipedia articles on cryptography

C. Ellison and B. Schneier, Ten Risks of PKI: What You're Not Being
Told About Public Key Infrastructure, Computer Security Journal, v 16,
n 1, 2000, pp. 1-7.

 http://www.counterpane.com/pki-risks.html

Eoin Keary & Jim Manico Copyright 2012 – all rights reserved.

References (3/3)

Cryptography Snake-oil FAQ (Matt Curtin, maintainer):

http://www.interhack.net/people/cmcurtin/snake-oil-faq.html

Bruce Schneier, Why Cryptography Is Harder Than It Looks:

http://www.counterpane.com/whycrypto.html

Bruce Schneier’s Crypto-Gram newsletter:

http://www.counterpane.com/crypto-gram.html

