THE DEPUTIES ARE STILL CONFUSED
RICH LUNDEEN

Hi my name is Rich

* | have a twitter @webstersprodigy
* | have a website http://webstersprodigy.net

What is the same origin policy?

Simple answer: content from one website should
not (usually) be able to access or modify content
on another website

— Even with frames, tabs, etc.

— A lot of web vulnerabilities happen when websites
inadvertently allow cross site access

Crypto Rule #1 — never invent your own
Does this rule apply to all security?

Unfortunately, this is easier said than done... (for
crypto too)

Between the browser tabs

* Advanced CSRF Attacks
— Forcing cookies
— OAuth
— Other interesting issues
* Clickjacking
— BekEf clickjacking module
— X-FRAME-OPTIONSs Edge Cases

CSRF: Detectability Easy

Consider anyone
who can trick
your users into
submitting a
request to your
website. Any
website or other
HTML feed that
your users access
could do this.

Exploitability
AVERAGE

Attacker creates
forged HTTP
requests and tricks
a victim into
submitting them
via image tags,
XSS, or numerous
other

techniques. If the
user is
authenticated, the
attack succeeds.

Impact
MODERATE

Attackers can
cause victims to
change any data
the victim is
allowed to change
or perform any
function the victim
is authorized to
use.

CSRF takes advantage of web
applications that allow attackers to
predict all the details of a particular
action.

Since browsers send credentials like
session cookies automatically, attackers
can create malicious web pages which
generate forged requests that are
indistinguishable from legitimate ones.
Detection of CSRF flaws is fairly easy via
penetration testing or code analysis.

Consider the
business value of
the affected data
or application
functions.
Imagine not being
sure if users
intended to take
these actions.
Consider the
impact to your
reputation.

Cookie Forcing CSRF

* There are tons of quirks to the same origin
policy

* |t's possible to GET or POST to any domain
(basis for traditional CSRF)

e Lesser known: writing cookies is often much
easier than reading them

Recap: Writing Cookies

The path on the server in which the cookie will be available on. If set to /', the cookie will be
available within the entire domain. If set to '/foo/’, the cookie will only be available within the

/foo/ directory and all sub-directories such as /foo/bar/ of domain. The default value is the
current directory that the cookie is being set in.

domain

The domain that the cookie is available to. Setting the domain to ‘'www.example.com' will make
the cookie available in the www subdomain and higher subdomains. Cookies available to a lower
domain, such as ‘example.com’ will be available to higher subdomains, such as

'www.example.com'. Older browsers still implementing the deprecated » RFC 2109 may require
a leading . to match all subdomains.

Some reference: Sze Chuen Tan

Recap: Writing Cookies

* From we can set a cookie with
— name: csrf_token
— value: is_swear this_is_a_nonce
— domain: .bank.com

e secure.bank.com would now receive the
cookie

Recap: Writing Cookies

Can https://secure.bank.com differentiate

between cookies it sets vs. cookies set from
2

Recap: Writing Cookies

 Web frameworks most often (almost always) take
the first cookie value when multiple cookies are
given with the same name

can overwrite cookies for
https://securebank.com (no duplicate cookies)

 All browsers have a limit to the number of
cookies in the cookie jar

* |t's common to add or modify cookies based on
the DOM or request (cookie injection)

Recap: Writing Cookies

* To drill thisin, it’s often possible to write
cookies, even though reading them is hard:

— XSS in a neighbor domain
— MiTM (usually even with HSTS)
— Cookie injection

Double Submit Cookies

if (Request.QueryString["CsrfToken"] ==
Request.Cookies["CsrfTokenCookie"].Value)

{
}

/*Perform Authenticated Write Operation*/

Cookies Apply to other CSRF Things!

e What is the CSRF token tied to?

— The CSRF token must be tied to something unique, or
one user can replay another user’s information

— This is usually a session cookie, or sometimes (worse)
a static piece of information like a userlID

 What if the framework ties the CSRF token to the
default sessionlID, but then custom auth is used?

 This is most common with ‘custom auth’ or
‘stateless’ apps

.NET MVC CSRF Protection

This is very good

It checks:

— sessionToken is correct

— The cookie is tied to the POST parameter
— The token is tied to the user

— The user is properly logged in

— An expiration

But...
Where does the user/session come from???

.NET MVC CSRF Protection

 MVC CSRF protection works fine by default.

— The information is derived from the sessionlID
cookie automatically

— The sessionlD cookie is used to track users by
default

 What if you auth another way?

.NET MVC CSRF Protection

demo

Generically, what can we learn from
this?

e Where is this most common?
— Custom auth with standard web framework

* Test methodology

— Much easier to test than exploit (but CSRF will break
your heart)

— Figure out how the parameter nonce is tied to a
cookie, and replace the values between users

* Exploit

— Again: MiTM, cookie injection, neighbor XSS (in the
demo we used neighbor XSS)

Let’s look at other Frameworks

* Does this only apply to .NET MVC? Of course
not.

* Most languages/frameworks tie CSRF
mitigations to the default session

* The cookie tossing CSRF issue is most common
when using custom authentication

Forms .NET

WWW.0wasp.org
Viewstate (ASP.NET)

ASP_NET has an option to maintain your ViewState. The ViewState indicates the status of a page when submitted to the serve
as a CSRF defense, as it is difficult for an attacker to forge a valid Viewstate. It is not impossible to forge a valid Viewstate sinc
to the ViewState, it then makes each Viewstate unigue, and thus immune to CSRF

To use the ViewStateUserKey property within the Viewstate to protect against spoofed post backs. Add the following in the Onl

B

“Non-Exploitable” XSS

e | see this a lot

 But remember... we can frequently write
cookies

m [Gunther]

Another lame self-XSS found on a website
owned by Google. 6th one I've found in 2

months. Got to stop finding lame ones.
xDDD
4~ Repl) Retweet W Favorite ®ee

“Non-Exploitable” XSS example

e Say an XSS exists in a CSRF protected POST
request:

 How could we exploit this?
e SharePoint disclaimer:

— This could equally apply to other places where we
have cookie tossing

— SharePoint is a good/easy example, because by design
you have script execution in your separate domain
attacker.sharepoint.com

self-xss in xxx.sharepoint.com/some_section/
vulnerablepage.aspx

attacker.sharepoint.com
>

)

: .
\\Q 2 ‘ 1) set cookies as attacker to sharepoint.com
8 W\ path= /some_section/vulnerablepage.aspx

3>

2) Make POST request to /some_section/vulnerablepage.aspx
as attacker

3) Script executing in the context of victim.sharepoint.com
make request to /different/password.html (note cookie scope)

\ 2 4
victim.sharepoint.com

g

Single Sign On

* e.g. NTLM, Kerberos, Basic, etc.
— But mostly NTLM with extended protection or
Kerberos, since the others have worse problems

* |t should be obvious that this is so easy to get
wrong.

* By it’s nature, SSO auth is separate from
cookies, but out-of-box CSRF mitigations must
use cookies

OAuth2 and OpenlID

User’s Your App’s Facebook
Browser Server-side Code API

GET REDIRECT

Click on “Login with
Facebook” button

Sent to
REDIRECT
User accepts dialog and is sent to
with parameter included

GET

with

Joauth/authorize
parameter

RESPONSE

access_token

Facebook Login Diagram

OAuth?2

 What’s the impact of CSRF here?

 CSRF Mitigations are covered in the itself

e “state” parameter should be used
— Non guessable value
— User agent’s authenticated state

— Kept in a location accessible only to the client (i.e.
cookies, protected by the same-origin policy)

Tying Accounts Together

stackexchange.com

StackExchange v user1995278 logout chat meta about

-
StackExcha nge Al Sites Hot Questions Filtered Questions Top Users Newsletters

user1995278

These logins grant access to your account on any Stack Exchange site; add as many as you need

Email last used

besttest42@gmail.com 2 mins ago

Stack C
Q&Aforp OpeniD last used

Stack Exchange (change password) 2 mins ago

add more logins...

Attack Ideas

* The first attack | thought of:

— Toss cookies into victim (stackoverflow)

— The cookies used for auth may not be tied to the
nonce sent to the identifier

— Associate the attacker’s account with the victim’s
account and win!

e But there are a lot of cookies for each site
* |t turns out there’s usually an easier way

— but the above will probably be a problem for a while

OAuth2 Facebook Attack

Create an attacker Facebook account

Grant the accessing application (stackoverflow)
permissions to attacker Facebook

Victim is logged in to stackoverflow

A malicious site does the following

— Logs victim in to attacker’s Facebook by using CSRF on
the Login

— POSTs to the account association request
— Attacker Logs out of other sessions

OAuth2 Attack

demo

Logging into an Attacker Account

* To login to Facebook, the referer cannot be
set

* There are several ways we can POST cross
domain and strip the referer

— HTTPS -> HTTP (note HTTPS -> HTTPS does send
the referer, even cross domain)

— CORS POST request

— <meta> refresh to data (kotowicz has a blog post
on this)

OAuth2 Attack

stackoverflow.com

StackExchange v

|=] stackoverflow

user1995278 iessinfo edit dele

website)
. (your about me is curr|
location

. . clic edit
email besttest42@gmail.com
real name

age

member for

1 visited 1 day. 1 consecutive
reputation seen

profile views 0

summary

0 Answers Reputation

You have not ar d any questions You have no rey

0 Questions 0 Tags

You have not asked any qu You have not participat

Account

0 Badges

You have not earned a

stackexchange is just an example

* |s this just stackexchange?
— This is every application | tested

woot.com

account.woot.com

woot! tech! home! sport! kids! shirt! wine! sellout!’ Coumess deals!

woot!

ACCOUNT

Your Account Manage Connections

Amazon

We, for one, welcome our new corporate overlords. No really, we're part of
Stuff You Bought Amazo

Purchase

Account Settings Blippy

Use Blippy to tell the world about all of Woot purchases. What do
you mean, "even the embarrassing ones

Email Pr
Shipping &

Facebook

You can sign in with your Facebook account and use your Facebook
profile picture as your avatar - as long as you promise to shut up about
your farm

Google

This obscure little startup wanted to be in on the login fun, too. We
thought they were cute, so we'll let you sign in with your Google account
whatever that is

Twitter
Sign in with your Twitter account and use your Twitter avatar here, too
See how much fun life can be when you're not limited to 140 charact

imdb.com

imdb.com

News v~ Trailers + Community + IMDbPro -~ Apps ~

AN amazoncom cempany.

T Amazon France LOVEFIL Z0o rele

Amazon Germany Amazon Italy Ar ce W
Buy Movies on Watch Movies Cellphones &
Wireless Plans

DVD & Blu-ray

Amazon Affiliates
Buy Movies on
DVD & Blu-ray Online

Watch Mov
TV Online

Unlimited Streaming Buy Movies on
of Movies & TV DVD & Blu-ray

Logging out of Attacker Account

Active Sessions)
Current Session

Location:

Device Type:

Last Accessed: Today at 11:27am
Location:

Device Type:

Last Accessed:
Location:

Device Type:

Last Accessed:

Location:

Device Type:

Hiding the CSRF

* Protecting against Ul redressing is even in the
spec, so just creating a frame isn’t ideal

Attack Rating

The risk here is large — let’s look at that picture
again
Often many ways to login

— Just ONE of these trusted identifier sites is enough to
take over an account FOREVER

— These can be hidden in the Ul

Once added, you often cannot even remove the
logins, or the new account can remove old
accounts

No need to retype your old password!

Attack Rating

e Let’s compare this to a classic XSS in a
consumer page without using this?
* |f | found an XSS in feedburner.google.com

— Would this matter for Google accounts? Probably
not that much

— But this is really important for everyone who
trusts google.com as an identity provider

How do we fix this?

* Who's bug is this?
e |t can be fixed on the consumer side

— state parameter properly tied to the sessionlD

— |t seems not many people understand this, as not one
application | looked at did this

e Can it be fixed on the IDP side?

— |If we make the identity provider login CSRF proof, is
this a non-issue?

— Separate the flow for login versus “associate
account”?

— oauth attack against other id providers

Other Common CSRF Things

* Change the request method and remove the
nonce

— the ispostback problem. set VIEWSTATE=

— try submitting CSRF nonce from another user

— Why not add a CSRF nonce to every request?
* Non-Changing Tokens

— The demos aren’t exciting, but... the fired worker
scenario

CSRF Mitigations

* Only use POST requests to change state, and
all POST requests require an unguessable CSRF
token

* CSRF tokens are cryptographically tied to the

session ID cookie (which must be tied to auth)

— This goes for cross domain requests like OAuth
too

Whitepaper Content

* Clickjacking
* NTLM Relaying

BeEf Clickjacking Module

192.168.138.129

Hooked Browsers
| Online Browsers
-192.168.138.129 a Log Commands

Log Current Browser

© 89 192168.138.1

) Offiine Browsers -
“Jicodepretty.com] Browser (27) s date Description: Allows you to perform basic mutti-ciick clickjacking. The iframe follows the mouse, so anywhere the user clicks on the page will be over x-pos,y-pos. The optiof

| Chrome Extensions (7) user ciicks, allowing the page can give visual feedback. The attack stops when y-pos is set to a non-numeric values (e.g. a dash)
8127004 ~)Debug (3)
) 192.168.138.1) Explots (34) For a demo, visit [demos/clickjacking/cickjack_attack himl with the default settings (based on browser they may have to be adjusted)

Module Tree Module Results History Clickjacking

e st (c) iFrame Src 92.168.138.129:3000/demos/clickjackinglclickjack_victim.html
% 192.168.138.1 _1IPEC (6)
192.168.138.1 _I Metasploit (0)
% 192.168.138.1
192.168.138.1

JMisc (6) Security
] Network (8) restricted (IE)

] Persistence (4)
£ 192.168.138.1] Phonegap (10)
192.168.138.1 4 {2 Social Engineering (8)

* 192.168.138.1 Clickjacking Click Delay
(ms)

Sandbox.

Show Attack:

192.168.138.1 Clopy

Fake Flash Update iFrame Width: | 16
Google Phishing
Simple Hijacker
TabNabbing — CLICK 1
@ Lcamtuf Download JS $("#overlay1").data("overlay").close();

@ Pretty Theft

= 192.168.138.1
iFrame Height: | 10

20

55
LICK 2
$(".more-quotes").trigger("click”).

void(0)

X-FRAME-OPTIONS Edge Cases

Documents Calendar Sites Groups Mobile More »

Images Mail
Google Apps for webstersprodigy.net

Search accounts

bstersprodigy.net » Evil Attacker . . .
Assign roles for admin: Evil Attacker

Roles

ser Information Resolved settings Roles & Privileges
Super Admin

Confirm Assignment

Igned roles

Assign more roles

ples assigned to this user

esolved Privileges

That’s alll

Please complete the Speaker Feedback Surveys

Here’s my contact info again:

@webstersprodigy
richard.lundeen@gmail.com

