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Abstract—In recent years, a trend of using real-time traffic
data for navigation has developed. Google Navigation and Waze,
for instance, generate traffic data from movement profiles of
smartphones. In this paper we tackle the question to which extent
it is possible for Google and Waze to track the smartphone and
its owner. Furthermore, we show how wireless access points and
smartphones acting like wireless access points can be located
around the world. In addition to the privacy issue, we examine
whether the authenticity of traffic data can be guaranteed.
We demonstrate in practice how hackers can take control of
navigation systems and, in the case of a wide distribution of
floating car data, can actively control the traffic flow. At the end
we present a practical protocol preventing such attacks and at the
same time preserving the user’s privacy. The protocol has been
implemented on different hardware platforms and benchmark
results are given.

I. INTRODUCTION

Today, navigation devices frequently receive traffic reports
on the Traffic Message Channel (TMC) [23]. TMC messages
have several sources: the police, permanently installed sensors
like traffic cameras or inductive loops, and traffic reports
of volunteers. Radio stations transmit traffic information in
the non-audible range of the FM frequency band. TMC is
widespread. However, it has two major drawbacks. On the
one hand, traffic reports are often out of date if they are
processed by the navigation device. The traffic reports are, for
the most part, still edited by humans and are not automatically
generated and sent. On the other hand, the transfer rate of
60bit/s is low, consequently only approximately 10 messages
can be transmitted per minute.
In 2007, the two security researchers Andrea Barisani and
Daniele Bianco conducted a study on the security of TMC,
showing how counterfeited TMC messages can be sent to
navigation devices [3]. The attack is possible because TMC
data is not transmitted in an encrypted way. However, it is
necessary that the navigation devices are in the range of the
transmitter.

In 2007, Google extended Google Maps by adding Google
Live Traffic, the visualization of traffic information in real
time [8]. In contrast to TMC, Google uses position data of

smartphones with the Android operating system [2], which
results in a significantly faster mapping of the traffic flow.
This data is called floating car data (FCD). Position data is
determined by the navigation system or, as in the case of
Google Live Traffic, by the smartphone and is transmitted
to the service provider via a mobile phone connection.
Compared to TMC, this allows the generation of traffic
information in real time.
After activation by the user, the traffic flow on Google Maps
is visualized by the three colors red, orange and green. A
red road points to a traffic jam or stop-and-go traffic, orange
indicates heavy traffic and green points to clear roads. At first
Google was only able to assess the traffic flow on some main
roads in a few cities in the United States. Later other cities
followed and today traffic information is available in many
countries.
In 2007, as part of the Google Street View project, Google
took pictures from the street perspective with the help of
specially equipped vehicles. At the same time, the vehicles
saved position information of wireless routers. Routers can
be clearly identified by their MAC address and SSID [11].
The traffic flow data is not only visualized by Google
Maps but, since 2011, has also been used to optimize route
calculation in Google Navigation [18]. Traffic jams can
therefore be detected in real time and avoided.

Waze is a free GPS application, which also uses FCD
of smartphones in order to generate traffic information [24].
The application can be installed free of charge on all major
smartphone operating systems like Android, IOS, Windows
Mobile, Symbian and BlackBerry. The number of users
is continuously increasing and, end of 2012, amounted to
approximately 36 million users [24]. The application is in
the top 20 of the most often downloaded free apps in the
iTunes Store. In addition to navigation, users can add new
roads and can, for example, report accidents, traffic jams and
speed traps directly via the Waze-App. Every app sends the
user’s position to Waze so that Waze can generate traffic
information in real time. In this case, the position data of
smartphones is also used to optimize the navigation.



Fig. 1. Screenshot mitmproxy
The MASF header is marked red and the compressed protobuf payload is
marked blue

Due to the high growth rates in the smartphone market,
Google and Waze can expand their system and can achieve
a higher accuracy through more smartphones and, therefore,
more sensors in the field. It is expected that, in the future,
traffic data will be available on almost all roads.

A. Requirements

When considering the traffic analysis on the basis of loca-
tion information of smartphones, there are two main require-
ments:
• Privacy: The smartphone owners are interested in a high

degree of privacy. User tracking by service providers such
as Google or Waze is generally considered as undesirable
by the user.

• Authenticity: The service provider is interested in the
correctness of the data. “Malicious smartphones” sending
wrong location data should be excluded from the calcu-
lation of the traffic flow. Incorrect traffic data influences
the route planning and thus the user’s navigation. If the
data is used for navigation by a huge number of users,
hackers can significantly affect the traffic flow.

In the next section, we explain the Google protocol and in
section III the Waze protocol. We evaluate the two protocols
in section IV and show to which degree the requirements
“privacy” and “authenticity” are met. In section V we present
a protocol which fulfills the privacy and authenticity re-
quirement. The protocol has been implemented on different
hardware platforms and benchmark results are given before
we draw conclusions in section VI.

II. GOOGLE PROTOCOL

The analysis of the protocol transmitting location
information to Google to measure traffic density, is not
easily possible. After installing a packet sniffer on a “rooted”

Android smartphone, we notice that the data is transmitted
encrypted to https://www.google.com/loc/m/api
over TLS. In order to nevertheless be able to eavesdrop the
data sent from our mobile phone, we perform a man-in-the-
middle (MITM) attack, in which we insert ourselves into the
communication between smartphone and Google. A Google
Nexus S smartphone with Android 4.0.4 is used for all other
investigations. The smartphone does not necessarily have to
be “rooted”.
With the help of the program mitmproxy one can realize
a MITM attack [1]. If a connection from the smartphone
to Google is established via TLS, mitmproxy forwards the
request to Google but, instead of the Google certificate,
returns a self-signed certificate to the smartphone. This allows
mitmproxy to read the plaintext data. The proxy behaves in
a transparent way and the Google servers cannot distinguish
between communicating with the smartphone and with the
proxy.
The Android system must accept the self-signed certificate,
therefore, is has to be installed as a root certificate in the
system. In contrast to older versions, Android version 4
allows subsequent installation of root certificates without
much effort. The easy configuration of a system-wide
proxy server to redirect the data over mitmproxy on mobile
connections has been possible since Android 4.

The code for transmitting location information is not
included in the open source code of Android 4. Since
the current position of the smartphone is sent to Google,
Google wants to prevent smartphone manufacturers from
incorporating the functionality without regarding the Google
privacy policy [15]. Google provides the code on request.
Luckily, the source code is available for older Android
versions under the Apache License version 2.0 and is publicly
available.

The protocol is a request/response protocol. In the request
message, the smartphone sends Google status information
of the GPS, wireless and mobile unit. On the one hand, the
data amount depends on the units activated by the users, on
the other hand on the configuration of the smartphone. If
the smartphone, for example, does not have a GPS receiver
and if Wi-Fi is enabled, only information about the wireless
access points and radio cells in the surrounding area will be
transferred. If Google is able to calculate the approximate
location out of this data, the location is sent to the phone in
the response message. A later explicit positioning by the user
is accelerated, because although the positioning by GPS is
more accurate, it can take several minutes without knowing
the approximate location. Especially in urban environments,
it is possible to locate the smartphone up to a few meters
over Wi-Fi (without GPS) due to the high density of wireless
networks and taking into account the signal strength.

Figure 1 shows a mitmproxy packet dump with location
information sent to Google. The protocol is primarily based
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Fig. 2. MASF request message

on MASF (Mobile Application Sensing Framework). Figure
2 and 3 show a MASF message for request and response
messages. Strings are UTF-8 encoded. Since the length of a
string can be variable, it is stored in the first two bytes.
The request and response MASF header is described below.
The payload of a message is encoded in the MASF Protocol
Buffers format. A payload analysis is made in section II-C.

A. MASF Request Header

Figure 2 shows the message format for MASF request
queries sent to Google. The first three bytes are constant,
followed by a string giving the name of the app, the app
version as well as the platform ID and the distribution channel.
The values are separated by commas. A typical string we
have seen is location,-1,android,android,en_US.
Each MASF request header contains an eight-byte cookie
that clearly identifies the phone. The encoding field always
has the string “g” in our observations.

There are two types of request messages. In the case
of a simple request message, the “block” field corresponds
to the value 0x0100. In this case, the payload data is not
compressed. The payload data is only transmitted in a
compressed way above a certain payload size. In this case
the “block” field is set to 0x0101.
In both types a unique ID is stored in the message. Messages
can be temporarily correlated through this continuous
sequence number. Apart from the length indications, the
remaining fields are constants.

B. MASF Response Header

Figure 3 shows a MASF response message sent from
the Google server to the smartphone. Each response mes-
sage consists of either type “plain” (0x8100) or “multipart”
(0x8101). In our analysis, we only observe the first type.
We limit ourselves to this one. As in the case of the request
message, each response message has an ID field in order to

temporaily correlate the response messages. The status code
indicates whether an error has occurred. In general, the value
is 0x00c8 = 200, which corresponds to “No error occurred”.
Depending on the packet size, the payload data is compressed.
If the encoding field is the string “g”, the payload data is
compressed using gzip. If the payload data is not compressed,
the field corresponds to an empty string.

C. Payload

message LatLngMsg
required fixed32 Lat = 1;
required fixed32 Lng = 2;

message LocationProfileMsg
optional LatLngMsg LatLng = 1;
optional int32 Accuracy = 3;
optional int64 Timestamp = 6;
optional int32 LocType = 8;
optional int32 Altitude = 10;
optional fixed32 Speed = 16;
optional bool PluggedIn = 17;

message CellMsg
required int32 Lac = 1;
required int32 Cellid = 2;
optional int32 Mnc = 3;
optional int32 Mcc = 4;
optional int32 Rssi = 5;
optional int32 RadioType = 10;

message WifiDeviceMsg
required string MAC = 1;
optional string SSID = 2;
optional int32 Rssi = 4;

Fig. 4. Protocol Buffer template for request and response messages

Google uses Protocol Buffers (protobuf) to encode the
payload data. Protocol Buffers is a data format developed by
Google to serialize data structures [14]. In contrast to XML,
Protocol Buffers in general can achieve a usually higher
processing speed and data density because it is designed as a
binary format. The protocol has been open source since July
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Fig. 3. MASF response message

message RequestMsg
message PlatformProfileMsg

required string Version = 1;
optional string Platform = 2;
optional string PlatformKey = 3;
optional string Locale = 5;

message CellularPlatformProfileMsg
optional int32 RadioType = 1;
optional string Carrier = 2;
optional int32 HomeMnc = 4;
optional int32 HomeMcc = 5;

optional CellularPlatformProfileMsg CellPlatformProfile = 6;

required PlatformProfileMsg PlatformProfile = 1;
message RequestElementsMsg

message CellularProfileMsg
required CellMsg PrimaryCell = 1;
required int64 Timestamp = 2;

optional CellularProfileMsg CellularProfile = 1;

message WifiProfileMsg
required int64 Timestamp = 1;
repeated WifiDeviceMsg WifiDevice = 2;

optional WifiProfileMsg WifiProfile = 2;

optional LocationProfileMsg LocationProfile = 3;

repeated RequestElementsMsg RequestElements = 4;

Fig. 5. Protocol Buffers template for request messages

message ResponseMsg
required int32 Status = 1;
message LocReplyElementMsg

required int32 Status = 1;
optional LocationProfileMsg Location = 2;

message DeviceLocationMsg
optional LocationProfileMsg Location = 1;

optional CellMsg Cell = 2;

optional WifiDeviceMsg WifiDevice = 3;

repeated DeviceLocationMsg DeviceLocation = 3;

repeated LocReplyElementMsg LocReplyElement = 2;
optional string PlatformKey = 3;

Fig. 6. Protocol Buffers template for response messages

2008 and is released under the 3-clause BSD license.
Figure 4 and 5 shows the Protocol Buffers template to encode
the payload data for requests and figure 4 and 6 the one for
response messages. The figures show only a selection of the
most important elements for the sake of clarity. Each element
has a key word, a “wire type” (data type), an identifier and
an ID. The ID is specified after the equal sign and identifies
the element in the data stream. The keywords option
and required indicate whether the element is optional or
mandatory. Elements with the keyword repeated can occur
more than once or not at all. Elements of type int32 or
int64 are represented as Varints. Varints are a method for
encoding integer variables by one or more bytes in a space
saving way.
Elements are grouped into messages (messages). However,
an element can also be a message so that hierarchical
structures can be constructed. Elements of type string
represent UTF-8 encoded strings.

Figure 5 indicates that a request message may contain
zero or more elements of type RequestElementsMsg.
Each request element contains, depending on the smartphone
features and the availability of location information, one or
more of the three profiles Cellular, Wifi and Location
(GPS). If, for example, there is no position data available
from the GPS receiver, the message does not contain a
Location profile.
Each request message contains a platform profile, which
includes information about the phone model and the
installed Android operating system (e.g. platform =>
android/google/soju/crespo:4.0.4/IMM76D/
299849:user/release-keys). The Platform Key is a
pseudonym to track the smartphone.
Google returns a status code and, if possible, the current
geographical position of the smartphone. Optionally, the
response message contains the geographic location of
individual wireless access points and radio towers. Therefore,
the user benefits from a faster determination of the position.
A response message can contain a Platform Key, thus Google
is able to change this key.

III. WAZE PROTOCOL

The Waze Protocol for transmitting location information is a
simple request/response protocol such as the Google protocol.
The complete source code is released under the GNU General
Public License v2 and is freely available. In contrast to the
Google protocol, position data is transmitted in the clear. We
also use the program mitmproxy for recording the data stream.
Since Waze ignores the global proxy settings, we use the app
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Fig. 7. Waze request message

ProxyDroid [16] on a “rooted” Android 4.0.4 smartphone to
record the packets from the Waze app with mitmproxy.
The transmitted data is encoded as an ASCII string in the Waze
protocol. A message can contain multiple blocks, which are in-
troduced by keywords. A keyword is usually supplemented by
parameters, which are separated by commas. Figure 7 shows
an example of a data packet. The keywords are emphasized in
blue. The number of blocks varies from message to message,
figure 7 only shows an excerpt. The keywords Location,
GPSPath and UID are important for our purposes. The
current position of the smartphone is sent to Waze using the
first keyword. GPSPath transmits a complete GPS path with
several location points and UID transmits the credentials.
Waze very much follows a community approach. Therefore,
the user usually registers himself before using the app. The
transmission of login information such as user name and
password is encrypted using TLS. If the user starts the app, the
login information is transferred to the Waze server. The user
gets a server ID and a cookie from the server. All subsequent
messages sent to the Waze server contain the ID and the
cookie, both of which are introduced by the keyword UID.

IV. EVALUATION

We evaluate the Google and Waze protocol regarding pri-
vacy and authenticity. On the one hand, we deal with the
question to which extent a user tracking is possible by Google
and Waze. On the other hand, we investigate how an attacker
can send false location information to Google or Waze to
influence the traffic flow analysis.
As part of our investigations, we visualize the location in-
formation and find a serious flaw in the Network Location
Provider Protocol (see section IV-C).

A. Privacy

To evaluate the tracking of both protocols, we drive a
circular route. We do our measurements at night when there
is little traffic. Therefore, a high average speed is reached.
Wi-Fi is enabled and the smartphone is connected to an

external GPS receiver via Bluetooth, which is necessary to
have a stable GPS signal during the test drive.

Figure 8 shows the results if no user apps are running
on the phone and only the Android system sends location
data to Google. The driving direction is clockwise. The
dashed line indicates the route driven. The distance between
two lines indicates the speed (smaller distances suggest a
lower speed). The blue and red curves are the results of two
test runs. If the measuring points are connected, they are sent
in one message.
In general, a high tracking accuracy can be noticed.
When driving at higher speeds, larger gaps between two
measurement points can be interpolated by knowing the route
characteristics and the time stamps of the data points. The
measurement points get closer together when we decrease the
traveling speed, which increases the tracking accuracy.

If the Waze app runs in the background, the Waze data
represents the GPS track almost accurately in figure 8. As
in the case of the Google protocol, data points are collected
and transferred as a bundle. The resolution is adjusted to the
current speed. When driving at high speed, more measurement
points are taken per time interval than when driving at a
lower speed.

In another experiment, the GPS receiver of the smartphone is
disabled so that the current position can only be determined
via the surrounding access points and radio cells. This setup
corresponds more to reality. The smartphone is often in the
pants pocket. As a consequence, GPS reception is limited.
Moreover, GPS is usually turned off to conserve battery life.
Figure 9 shows the visualization of the location information
when GPS is not activated and no app is running. The red,
dashed line indicates the covered distance and a circle with a
time stamp marks a measurement point sent to Google. One
can see that from 10:44 to 11:07 am and from 14:43 to 15:03
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Fig. 8. Evaluation Google protocol [Wi-Fi on, GPS on], map data c© OpenStreetMap contributors, CC BY-SA

pm the urban railway has been used (a large distance in a
short time). In contrast, the distance between approximately
18:15 and 19:00 pm was covered very slowly (on foot). Due
to the low speed, a better tracking is possible.
The figure shows that an Android phone without GPS receiver
sends location information in intervals of 10 to 30 minutes.
An accurate tracking of the user’s movement is not possible.
If the user remains at a fixed location for a long time, this
can be detected. The recorded data shows that, for example,
the phone was in a building of the Hamburg University of
Technology from about 11:20 am to 2:30 pm. Between 3:10
and 5:50 pm the phone can be located at the University of
Hamburg, and between 6 and 6:15 pm in the university’s
dining hall. Due to the high density of cellular and Wi-Fi
towers, one can locate the smartphone even indoors up to a
few meters.
The Waze app requires an activated GPS receiver but the
current location is transmitted directly after starting the Waze
app. User tracking is not possible.

If both Wi-Fi and GPS are turned off, there is no
communication with the Google servers. The same also
applies to Waze.

In order to track an individual user, Google must relate
the messages to each other. We notice that each smartphone
has a unique Platform Key and MASF cookie, both of which
uniquely identify the phone. The Platform Key and cookie do
not change even after rebooting the smartphone. The platform
key is generated during the first start of the smartphone and
the first communication with Google. The 8-byte cookie in
the request MASF header is a random number. Once the
cookie it set, it never changes.
However, even though Google Maps does not run in
the background and is not even launched by the user,
both Android and Google Maps send location data to
Google. The packets captured by us either have the
string location,-1,android,android,en_US or
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Fig. 9. Evaluation Google protocol [Wi-Fi on, GPS off],
map data c© OpenStreetMap contributors, CC BY-SA

location,1115,android,gmm,en_US in the MASF
request header (see string “a” in figure 2). The string gmm
is the acronym for Google Maps Mobile. Both apps use
different platform keys and cookies.
Every MASF message has a sequence number to put messages
in time relation to each other. The sequence number is not
required to track the smartphone because the measurement
points usually contain time stamps.

The Waze app periodically sends messages to the Waze
server. If a GPS receiver is available (and a valid location is
found), a list of GPS coordinates, introduced by the keyword
GPSPath, is transmitted to the Waze server. The keyword
location is responsible for transmitting the current position
of the smartphone to Google. This, for example, is done
when the user starts the app.
If the user has logged in to Waze the position data can be
associated with the user. Each message sent to Waze contains
the unique server cookie and a server ID.

B. Authenticity

In the Google protocol, the TLS tunnel ensures data
integrity so that it is impossible for an attacker to monitor a
foreign phone or to modify data without being detected by
Google. However, TLS is useless if the attacker controls the
beginning of the TLS tunnel. Google cannot guarantee the
authenticity of position data because a better authentication
of smartphones is not desirable due to privacy reasons. The
attacker can randomly select cookie and ID in the MASF
header. A platform key is generated by Google. If no platform
key is included in the request message, Google generates
a new key and sends it back to the phone in the response
message.

An attacker could send false location information to
Google without being detected and therefore affect the
traffic flow analysis. If, for example, an attacker drives a
route and collects the data packets sent to Google, he can
replay them later with a modified cookie, platform key and
time stamps. The attack can be intensified by carrying out
several delayed transmissions with different cookies and
platform keys to simulate multiple cars. If the attacker adds
noise to the measured values (e.g. to the signal strengths of
wireless access points), uses different source IP addresses,
a distinction between real and fake location information is
no longer possible. Figure 10 exemplifies an attack in which
an attacker creates an artificial traffic jam on highway ramp
Hamburg-Bahrenfeld.
An attack in which the attacker has not previously driven the
route can be realized since Google also accepts data from
smartphones which do not have information of surrounding
wireless access points. This is an important difference to the
attack on TMC by Andrea Barisani and Daniele Bianco [3] in
which the attacker can only take effect locally. In our attack,
an attacker having reduced financial means can manipulate
traffic data worldwide.
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(a) Before the attack (b) Attack with wrong traffic data

Fig. 10. Highway ramp A7 - Hamburg-Bahrenfeld, map data c© Google

As a consequence, an attacker can make people drive into
traffic jams or keep roads clear if traffic data is used for
navigation.

Such an attack scenario can also be applied to Waze.
The attacker can send bogus position data to Waze and thus
affect the navigation of other drivers. The attack becomes
more difficult because the position data is associated with a
user account. If the attacker simulates several vehicles, this
requires several accounts with different e-mail addresses.
However, we found out in our studies that position data can
be transferred to Waze if user authentication is not done.
Therefore, the attacker remains anonymous.

C. Network Location Provider Protocol

We use the Geolocation API in Google Gears to visualize
the data points in figure 9. The signal strengths from
surrounding wireless access points are mapped to geographic
coordinates.
Google Gears is an extension for Web browsers, which makes
it possible for web applications to use new features such as
the Geolocation API. The browser submits, for example, data
from an external GPS receiver, information about surrounding
access points and radio towers to the network location
provider. The network location provider calculates the current
position (and optionally the address) from the data and
sends it back to the browser. At the end of 2011, the Gears
project was stopped as new browsers cover the functionality
in HTML 5. The HTML 5 Geolocation protocol largely
corresponds to the Network Location Provider Protocol,
which is documented in [13]. Request and response messages
are formatted in JSON.

We can figure out that, as in the case of the Google
protocol, Google uses the same database with MAC addresses
to calculate the geographical position. The database is

continuously updated. If, for example, we put the access point
somewhere else, Google “learns” the new position within a
certain time.

In 2011, Samy Kamkar found out that access points
can be located worldwide by using the Geolocation API [19].
Google responded to that and changed the system so that
each request containing Wi-Fi data must at least have two
MAC addresses of nearby access points.
In our studies we find out that it is still possible to locate a
single access point1. If we send Google two MAC addresses,
one of an access point whose geographic position we want
to determine and a MAC address which is unknown to the
system, Google will return the position of the access point in
question.
This is a severe privacy issue. We observe that many people
(unwittingly) publish the MAC address of their access point in
the internet. Therefore, they can be located with an accuracy
of a few meters. If the MAC address of the access point
remains the same, a stalker can e.g. trace his victim even after
the victim has moved to a new place. If a smartphone acts
as an access point (“tethering”) and the attacker knows the
MAC address of the smartphone, it is theoretically possible to
track the smartphone’s owner (e.g. if the person stays longer
abroad). In our tests, Google takes about ten days to add an
unknown access point to its system.

V. SOLUTION

In this section, we present an idea of a zero-knowledge
protocol between a device D (e.g. a smartphone) and a
provider P (e.g. Google), a protocol meeting the requirements
of section I-A.
Zero-knowledge proofs were first introduced in 1985 by
Goldwasser et. al [12] and continuously developed in recent

1In the meantime this bug has been fixed by Google. The MAC addresses
of two nearby access points is necessary to return an accurate position.
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decades. Our solution is based on a modified protocol from
the paper "How to Win the Clone Wars: Efficient Periodic
n-Times Anonymous Authentication" by Camenisch et al. [4].

The main idea of our protocol consists of linking location
information with tickets. A device D once authenticates itself
to its provider P (e.g. Google) and receives a so-called "ticket
dispenser". With the help of this dispenser, D can generate
tickets in order to send authenticated position data to P . P is
able to check the validity of the tickets, but can’t link tickets
to a specific device due to the zero-knowledge techniques
used. Tracking of a single device is prevented.
Each ticket has a time stamp limiting its validity to a fixed
time slot. This restricts the maximum number of valid data
packets per time and device.

A. Zero-Knowledge Proofs of Knowledge

With the help of a proof of knowledge, a prover P can
convince a verifier V of the fact that he knows a solution for
a mathematical hard problem. On the one hand, an honest P
can always convince V (completeness property); on the other
hand, a dishonest P will fail to convince V with overwhelming
probability if he attempts to cheat without knowing the correct
solution (soundness property). A zero-knowledge proof of
knowledge ZPK is a proof of knowledge where V obtains no
further information from P other than the fact that P knows
the solution of the underlying mathematically hard problem.
This implies that executing the a zero-knowledge proof for the
same secret twice, V cannot find out that the same secret has
been used (“unlinkability”).
This paper follows the notation of Camenisch and Stadler [5]
to describe zero-knowledge proofs of knowledge. E.g.:

ZPK [(ω) : x = gω ] (1)

In ZPK (1) P proves to V the knowledge of the secret value
w where w fulfils the relationship x = gw. Secrets are marked
in Greek characters. x and g are public values. Determining
w by only knowing x and g is a mathematical hard problem
in the groups given.

ZPKs are usually implemented by Σ-protocols, which
are based on the Schnorr protocol [20], an interactive,
challenge-response protocol. To achieve a high level of
security the protocol has to be executed several times, which
decreases protocol performance. The Fiat-Shamir heuristic
[10] [17] and the random oracle model can be used to execute
the protocol in a non-interactive way so that a ZPK becomes
a signature proof of knowledge (SPK). Several predicates
can be concatenated by logical AND/OR operators to model
more complex proofs.

B. Protocol

The protocol consists of three sub-protocols.

1) Initialization: The provider P creates two cyclic groups
G and G with generators 〈g〉 = 〈g̃〉 = 〈h〉 = g and
〈g〉 = 〈g̃〉 = 〈h〉 = G, respectively.
The group G = Z∗n is an RSA group of quadratic residues
modulo n = p · q with two safe primes p = (2p′ + 1) and
q = (2q′ + 1). The order of the group is p′q′ and unknown
to D. The provider proves in zero-knowledge that n is a
special RSA modulus, and that the generators of the RSA
group are quadratic residues modulo n [7].
The group G = Z∗p is a multiplicative group of order q. We
choose the modulus p as a safe prime with p = 2q + 1.

The device D generates the secret key skD ∈R Zq and
calculates pkD = gskD mod q.
As a consequence, the public key of P is (g, g̃,h, g, g̃, h, p, q)
and the one of D is pkD. The secret key of P is the
decomposition of the RSA modulus, i.e. p and q.

2) Get Dispenser: The protocol consists of three steps (cf.
figure 11).
First, device D authenticates itself to provider P to get a
ticket dispenser. In the Google Live Traffic scenario, the
authentication could be carried out through a Google account,
for example. We assume that the following communication can
be carried out over a secure and authenticated channel (e.g.
SSL / TLS).
After the device has been authenticated, the dispenser function
fg,s is generated. According to Dodi and Yampolskiy fg,s is
a pseudo-random function [9] and defined as:

S = fDYg,s (c) = g
1

(s+c) ; s, c ∈ Z∗q (2)

In the second step of the protocol, the initialization value s is
negotiated without P knowing s. Therefore D generates the
commitment C ′ containing the secret key skD and a random
value s′ and sends them back to P . A SPK ensures that D
really knows the values. The provider responds with a random
value r′ from which both parties calculate a commitment C.
In the last section of the protocol, D and P run the CL
protocol [6]. With the help of the CL protocol P signs it secret
key skD and the initialization value s of the pseudo-random
function fg,s without knowing the two values. This step is
important to prevent a later identification of D by P .

3) Data Submission: (Encrypted) position data m can be
only transmitted to the provider once in a time slot (e.g. every
15 minutes). Therefore we assign each 15-minute-interval
to a timestamp c starting from a fixed point in time. If the
starting point is, for example, the 01/01/13, then the time
slot 0:00 to 00:15 am is assigned to value c = 1, the interval
from 0:15 to 0:30 am is assigned to value c = 2, etc..

The device D calculates the actual ticket S from the
actual timestamp c and the initial value s and proves in
zero-knowledge the validity of both the ticket and the
CL-signature from the “Get Dispenser” protocol (cf. figure
12).
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Device D Provider P

s′ ∈R Zq
C ′ = gskD g̃s

′
hr1 mod p r′ ∈R Zq

C = C ′g̃r
′

mod p
s = s′ + r′ mod q

C = C ′g̃r
′

mod p

mutual authentication

C ′, SPK[(α, β, γ) : C ′ = gαg̃βhγ ]

r′

run CL-protocol to get a signature for (skD, s)

Fig. 11. Protocol run to get dispenser from P

Device D Provider P

S = Fg,s(c) = g
1

s+c mod p
CD = gskDhr1 mod p
Cs = gshr2 mod p

If proofs are correct and c cor-
responds to the current time,
accept data and store (S, c) in
database.

D proves to have a valid CL sig-
nature of (skD, s) from P

SPK[(α, β, γ, δ) : S = gα ∧ g = (Csg
c)αhβ ∧

Cu = gγhδ](m), CD, Cs, S, c, m

Fig. 12. Protocol run to submit position data from D to P

If D behaves correctly, P accepts the position data m and
stores (S, c) in a database. In the case of a new run of the
protocol, D has to wait until the current time corresponds
to the next timestamp c and is thus accepted by P . If c is
the same, the ticket S is the same. As a consequence, S
and the potential attack is recognized. The zero-knowledge
proofs prevent the counterfeiting of tickets. Owing to random
components in the commitments and zero-knowledge proofs,
protocol runs cannot be linked by P (unlinkability).

C. Performance

We have implemented our protocol on a server system (Intel
Xeon X3460, @ 2.8 GHz, 8 GB RAM, x64) and an Android
smartphone (Nexus S) to measure the performance. The bit
length of the RSA modulus n and p is 1024bit. We use the
MPIR 2.6.0 library to implement arithmetic operations. The
results in table I show that the protocol is already feasible
with standard hardware today.
It should be noted that our implementation still leaves room for

improvement. In addition to general optimization techniques
(e.g. look-up tables, specialized hardware, etc.), the computa-
tion can be distributed to multiple processor cores.
The smartphone calculations can mostly be pre-calculated in
the background (e.g. when the phone is not currently in use).
This can, for example, also happen while the smartphone is
recharged to save battery.

D. Discussion

Even if, the protocol prevents the provider from linking
protocol runs and tracking single devices, it is still possible
that data packets can be linked by their IP address. It is
important that after authentication (e.g. after executing the
"Get-Dispenser" protocol) the smartphone waits for an IP
address change before executing the "Submission" protocol.
In general, a mobile data connection is more often
disconnected than a DSL connection. This is especially
the case if the phone is moved and radio cells are changed. In
addition, several providers (at least in Germany) automatically
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TABLE I
PERFORMANCE COMPARISON

Get Dispenser (D) Get Dispenser (P) Submission (D) Submission (P)

Nexus S 112 ms 73 ms 318 ms 154 ms
Intel Xeon X3460 5 ms 3 ms 14 ms 7 ms

disconnect the connection after a few hours. If a connection
is reestablished, the smartphone is usually assigned to a
new IP. Furthermore, anonymity networks such as Tor [22]
[21] can disguise the IP address. Thereby, it is possible to
simultaneously achieve full privacy and authenticity.

The protocol can be extended. It is possible to identify
users trying to send the provider data several times within
the same time slot [4]. The validity of the ticket dispenser
can be also limited. As a consequence, the device is forced to
re-authenticate itself, for example every week. The accounts
of attackers sending too many messages, can be removed
from the system in the next run of the "Get-Dispenser"
protocol.

VI. CONCLUSION

We have evaluated the Google and Waze protocol regarding
privacy and authenticity. The anonymity of the user is not
assured. In many cases a tracking is possible. In contrast,
attackers can anonymously manipulate the traffic analysis and
actively influence the navigation software. The attack can be
carried out worldwide, requires no special equipment and is
not overly expensive. The rapid development in the smart-
phone and automotive sector indicates the trend to consider
real-time information for navigation. It is only a matter of
time until hackers actively perform such an attack. We present
a solution which increases the user’s privacy and at the same
time prevents attacks manipulating the traffic analysis.
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