
Hybrid defense: how to

protect yourself from

polymorphic 0-days
Svetlana Gaivoronski

PhD student

Dennis Gamayunov

Senior researcher

Lomonosov Moscow State University

• Motivation

• The state-of-the-art

• Proposed approach

• Demorpheus

• Evaluation

Summary

Why should one care about

0days at all
Isn’t it 2013 out there?

Memory corruptions, 0 days,

shellcodes

Nowdays... CONS

• Old exploitation technique, too old for

Web-2.0-and-Clouds- Everywhere-

World (some would say...)

• According to Microsoft’s 2011 stats*,

user unawareness is #1 reason for

malware propagation, and 0-days are

less than 1%

• Endpoint security products deal with

known malware quite well, why

should we care about unknown?..
 * http://download.microsoft.com/download/0/3/3/0331766E-3FC4-44E5-B1CA-

2BDEB58211B8/Microsoft_Security_Intelligence_Report_volume_11_Zeroi

ng_in_on_Malware_ Propagation_Methods_English.pdf1

http://download.microsoft.com/download/0/3/3/0331766E-3FC4-44E5-B1CA-
http://download.microsoft.com/download/0/3/3/0331766E-3FC4-44E5-B1CA-
http://download.microsoft.com/download/0/3/3/0331766E-3FC4-44E5-B1CA-
http://download.microsoft.com/download/0/3/3/0331766E-3FC4-44E5-B1CA-
http://download.microsoft.com/download/0/3/3/0331766E-3FC4-44E5-B1CA-
http://download.microsoft.com/download/0/3/3/0331766E-3FC4-44E5-B1CA-
http://download.microsoft.com/download/0/3/3/0331766E-3FC4-44E5-B1CA-
http://download.microsoft.com/download/0/3/3/0331766E-3FC4-44E5-B1CA-

Nowdays... PROS

• Hey, Microsoft, we’re all excited

with MS12-020

• Heyyy, Sun!.. Oracle, sorry.

We’re even more excited with

 CVE-2013-0422, thaanks

Memory corruption vulns are still there ;-)

• Tools like Metasploit are widely used by pentesters and blackhat

community

• Targeted attacks of critical infrastructure - what about early detection?

• Endpoint security is mostly signature-based, and does not help with

0-days

CTF Madness

• Teams write 0-days from
scratch

• Game traffic is full of
exploits all the time

• Detection of shellcode
allows to get hints about
your vulns and ways of
exploitation…

Team
1

Team
2

Team
3

Team
4

Team
5

Privacy and Trust in Digital Era

Recent privacy issues with social

networks and cloud providers:

• LinkedIn passwords hashes leak

• Foursquare vulns

• What’s next?..

We share almost all aspects of our

lives with digital devices (laptops,

cellphones and so on) and Internet:

• Bank accounts

• Health records

• Personal information

May be risk of 0-days will fade

away?

Despite the fact of significant efforts to improve code

quality, the number of vulnerabily disclosures continues

to grow every year…

• Modern software market for mobile and

social applications is too competitive

for developers to invest in security

• Programmers work under pressure of

time limitation; managers who prefer

quantity and no quality, etc.

The state-of-the-art

Types of shellcode detection

Text

Static analysis Dynamic analysis

Hybrid analysis

• Static

– signature matching

– CFG\IFG analysis

– NOP-sled detection

– APE

• Dynamic

– emulation

– automata analysis

Techniques

slow solution

Virtues and shortcomings

Static methods Dynamic methods

+ Complete code coverage

+ In most cases work faster

+ More resistant to obfuscation

- The problem of metamorphic

shellcode detection is undecidable

 - The problem of polymorphic

shellcode detection is NP-complete

 - Require some overheads

 - Consider a few control flow paths

 - There are still anti-dynamic

analysis techniques

• Methods with low computation complexity have high FP

rate

• Methods with low FP have high computation complexity

• They are also have problems with detection of new types of

0-day exploits

• None of them is applicable for high

throughput data channels

Conclusion?

Proposed approach

Shellcode schema

NOP-sled

DECRYPTOR

ENCRYPTED

PAYLOAD

NOP

DECRYPTOR

PAYLOAD

RA

• We are given the set of shellcode detection

algorithms characterized by:

– execution time

– FP and FN rate

– classes coverage

• Let’s try to construct optimal data flow graph:

– execution time and FP are optimized

– classes coverage is complete

Why not?

Shellcode static features
Generic features Specific features

 - Correct dissasembly int chain at

least of K instructions;

 - Number of push-call patterns

exceeds threshold;

 - Overall size does not exceed

threshold;

 - Operands of self-modifying and

indirect jmp are initialized;

 - Cleared IFG contains chain with

more than N instructions;

 - Correct disassembly from each

and every offset;

 - Conditional jumps to the lower

address offset;

 - Ret address lies within certain

range of values;

 - MEL exceeds threshold;

 - Presence of GetPC;

 - Specific type of last chain

instruction; Last instruction in the

chain ends with branch instruction

with immediate or absolute

addressing targeting lib call or

valid interruption

Shellcode dynamic features

Generic features Specific features

 - Number of near reads within

payload exceed threshold R

 - Number of unique writes to

different memory location exceeds

threshold W

 - Control at least once transferred

from executed payload to

previously written address

 - Execution of wx-instruction

exceeds threshold X

Shellcode classes. Main idea

Class K1 Class K2 Class K3

. . .
feature 1 feature 2 feature n

Example. Multibyte NOP-

equivalent sled
Correct disassembly

from each and every

byte offset
Multibyte instructions

Specific

features

Shellcode

class

Correct disassembly

into chain of at least K

instructions

Overall size does not

exceed certain

threshold

Common

features

• Contain simple NOP-sled of 0x90 instruction

which does not affect control flow, and only

increases program counter

• Contain one-byte NOP-equivalent sled

• Contain multi-byte NOP-equivalent sled

• Contain four-byte aligned sled

• Contain trampoline sled

• Contain trampoline sled, obfuscated by injection

NOP-equivalent instruction

• Contain static analysis resistant sled

• Contain GetPC code

• …

List of activator-based classes

• Contains plain, unobfuscated shellcodes

• Shellcodes with data obfuscation

• Shellcodes obfuscated with instruction reordering

• Shellcodes obfuscated by replacing instructions

with other instructions with same operational

semantics

• Shellcodes obfuscated with code injection

• Metamorphic shellcodes, using two levels of

metamorphism: algorithm level and opcode level

• …

List of payload-based classes

• Self-unpacking shellcodes

• Self-ciphered shellcodes

• Non-self-contained shellcode

• …

• Shellcodes with invariant ranges of return address

zone

• Shellcodes with obfuscated return address

List of decryptor/RET-based

classes

Demorpheus

Shellcode detection library

Hybrid shellcode detector

Building classifier

• Select different combination of classifier

which provides complete coverage of

shellcode classes

• Select combination, optimal in terms of FP

and time complexity

Selecting classifiers for the

next layer

Evaluation

Evaluation

Evaluation: numbers

Data set

Linear Hybrid

FN, *100% FP, *100%
Throughpu

t, Mb\sec
FN, *100% FP, *100%

Throughpu

t, Mb\sec

Exploits 0.2 n/a 0.069 0.2 n/a 0.11

Benign

binaries
n/a 0.0064 0.15 n/a 0.019 2.36

Random data n/a 0 0.11 n/a 0 3.7

Multimedia n/a 0.005 0.08 n/a 0.04 3.62

Visualization of evaluation

Visualization of evaluation

• 0-days exploits detection and filtering at

network level

• CTF participation experience

Use-cases

How does it work?

• Demorpheus
– https://gitorious.org/demorpheus

• Svetlana Gaivoronski

– s.gaivoronski@gmail.com
– GPG: 0xBF847B1F37E6E634

• Dennis Gamayunov
– gamajun@cs.msu.su

– GPG: 0xA642FA98

Where to find?

mailto:s.gaivoronski@gmail.com
mailto:gamajun@cs.msu.su

