
Harnessing GP²Us
Building Better Browser Based Botnets

Marc Blanchou

• What is it about?

– Harnessing GPUs with browser-based botnets for
distributed and cheaper cracking

• Why should I care?

– You’re doubtful that the GPU can ever be harnessed
for general-purpose computation in a browser

– You think that only “advanced attackers” can break
your crypto or the crypto of the products you use

Introduction

• Introduction

• Better browser-based botnets

• Get permanent code execution in the browser

• Communication

• Leveraging the GPU from within the browser

• What for?

• Examples?

• Conclusion

Agenda

• Senior Security Consultant at iSEC Partners

• I mainly do application security

• Past experience as a game developer

– Worked on game engines and GPU optimizations

• Based in San Francisco

Who am I?

INTRODUCTION

• Cracking

– General-purpose computing

– Needs parallel computations

• GPU vs CPU

• FPGA?

Basics

Nvidia.com

GPU Farm?

Bitcoinminer.com

• GPU Parallelism is almost
doubling every year

• Way faster evolution
than CPU

Evolution GPU-CPU
Chapter 1. Introduction

2 CUDA C Programming Guide Version 4.2

Figure 1-1. Floating-Point Operations per Second and

Memory Bandwidth for the CPU and GPU

NVidia CUDA/OpenCL C programming guide

• ‘Renting’ GPU power

• Cluster GPU Quadruple Extra Large Instance

– 33.5 EC2 Compute Units (2 x Intel Xeon X5570, quad-core)

– 2 x NVIDIA Tesla “Fermi” M2050 GPUs

– 2.10$ to 2.60$ hourly

• NVIDIA Tesla limitations for cracking

• Expensive?

EC2 Instances?

• Definition

• What for?

• Real practicality for general purpose computing?

• “ZeroAccess” botnet

– “2.7 millions annually in bitcoin mining” (Sophos)

Botnet?

• New on-chip graphics on recent CPUs

• Intel Ivy Bridge (2011) and Intel HD 4000
– Great support for recent techno
– Relatively decent computing power
– Low power consumption / heat – (discreet!)

• Intel Haswell (2013) and GT3/GT2
– “Haswell is a graphics monster” ‘Semi Accurate’

– ~2.5x as fast as HD 4000x for GT3 while keeping low power use

• Intel Skylake (2015)
– Potentially a fully flexible graphics pipeline?

Not everyone has powerful
graphic cards, though

• PC sales are diminishing

• Market got bigger
– Have to attack more systems

• Expensive?
– Yes for recent and patched systems

(the ones with better GPUs, generally)

Traditional Botnet?

0-days estimations per platform by “the Grugq” - Forbes

• Difference with classic botnet

– Price

– Potentially multiplatform

– More difficult to detect

– Different use

– Limitations

Browser Based Botnet

• Difference with classic browser-based botnet

– More flexible, only one task

– With which technologies?

– To crack what?

Browser Based Botnet for Cracking

BETTER BROWSER BASED BOTNETS

• Get permanent code execution in the browser
– Find a way to have code running in clients

• Find a server-side flaw

• Make it persistent by poisoning the client’s cache

• Spread
– To other subdomains

– To different layers

• Keep it alive

• Compute data (password hashes, keys) with GPU

• Communicate with C&C servers

How to achieve this?

GET PERMANENT CODE EXECUTION
IN THE BROWSER

• Code execution of the web: XSS

• But sites are more secure now, right?
– XSS is still overlooked

– Still the most prevalent web vulnerability class

– XSS vulns are still, most of the time, fixed individually

• Is it really cheap?
– Can oftentimes be found with simple scanning tools

– Not every new feature is thoroughly tested

– Example

Several ways to code execution

From WhiteHat Security Website Statistics Report
(https://www.whitehatsec.com/assets/WPstats_summer12_12th.pdf)

• XSS are fixed quickly, though

• Need to craft a permanent XSS for the client

– Through cache poisoning

– Leverage local storage features used by applications
• HTML5 Web Storage feature

– Stores data with no expiration date

– Will not be deleted when the browser closes

– Cannot be restricted to a specific path

• Client-side DBs

• Unified solutions

• Browser extensions

Permanent code execution?

– Files stored as objects literals

– Stores form or profile data
• Can use (useless) client-side encryption

Example?

Example with Garlic

GibberishAES - client-side crypto used by jQuery.handleStorage

Which platforms and how much
space do we get?

Doug DePerry – HTML5 modern web browser perspective

• Why?
– Easier to find XSS on weaker subdomains

– Poison cache of other, more used, more secured subdomains

• Find a XSS on the weakest/newest subdomain of .bigcorp.com

• It is common to use domain-wide cookies, but if not:

• Overwriting cookies of another sub-domain

• Trigger specific XSS on other subdomains
– Easier to find as the cookies are “trusted”

– What if they use an anti-CSRF token in cookie+body?

Spreading to other subdomains

From the Browser Security Handbook (M. Zalewski)

• Via Header Injection (HTTP Response Splitting)
– Overview

– Commonly used files can then be poisoned for a domain

– Code can execute when this file is used

• Increase the scale
– Poison proxy server’s cache?

– Poison the most common JS files

Spreading further

• General misconceptions about JavaScript

• What can you find out about the current user?

– And about what is going on in the browser?

• What else can it do?

– In tabs / popups / windows

– ..and?

• How much can be done in iFrames?

Staying alive?

• Other technologies

• Code execution in Java and Flash?
– More difficult to find

– However, from another (compromised) domain:
• Third party flash applications most of the time are allowed code

execution in the main domain (‘allowscriptaccess’ set to ‘always’)

• No one cares about the ‘unknown’ issuer for signed Java apps

• Cache poisoning
– Flash LSOs

• Browser plugin

Other ways toward code execution

• How?
– Buying Ads running a script
– PPC - CPI

• Will run on another domain, iframed
• This iframe will run on popular websites
• Works well for harnessing GPU power

• Inconvenient

– Can be expensive
– ~cross-platform
– ~persistence

Ads

COMMUNICATION

• Nothing new here but HTML5 made it easier
• Traditional way to bi-directional communication

– Script tag
• JSONP

– Image tag (hack-ish)

• HTML5 way
– Ajax with CORS (Cross-Origin Resource Sharing)

• Allows Ajax calls to read+write on a domain authorizing it

– WebSockets
• Read+write over a persistent TCP socket

• Other (Flash etc.)

Bypassing same-origin policy

• Options

• Classic C&C architecture
– Centralized

– Hybrid P2P

– Other?

• Distribution of passwords
– List of ranges of passwords on public dictionaries

– Ranges of characters

– Keep track of every single client

C&C

Example (static.usenix.org)

USING THE GPU IN A BROWSER

• OpenGL ES 2.0 is used by:

• WebGL
– Embedded into JS

– HTML5 Canvas tag

• Flash
– Since flash player 11

• NaCL

GPU in the browser

• Based on OpenGL

• Use OpenGL Shading Language (GLSL)

• Can use DirectX 9 in Windows with ANGLE

– Used by Chrome and Firefox

Open GL ES

• How?

– Using fragment shaders as a Hash function

• Write to gl_FragColor

– Store computations in a frame buffer object

• Read with readPixels()

– But..

What about General Purpose
Computing?

• Current version of GLSL ES in browsers

– Similar to GLSL < 1.30

– Only 16-bit integers!

• Using a vector with 2 floats is slow

– No bitwise operations!

• ‘Reserved for future use’ in the specs

But?

Does that look fast to you?

Fragment shader code for

• Results:

– Works but very slow

– Hack-ish

• OpenGL ES 2.0 is
very limited

– But it is going to be way
better in OpenGL ES 3.0

..XOR

• Official release of the standard in August 2012

– Already officially supported in Intel Ivy Bridge

• New version of GLSL ES
– Supports 32-bit integers

– No limitations on bitwise operations

– More portable

OpenGL ES 3.0

• Windows and MacOS
• Mobile

– Since Android 2.0/2.2
– iOS

• iPad
• iPhone since 3GS
• iPod Touch 3rd gen)

– Blackberry since OS 7.0
– Nokia and Samsung phones
– Raspberry Pi, WebOS, Archos Internet tablet

• Consoles
– Playstation 3
– Nintendo 3DS

• Smart TVs

OpenGL ES - Cross platform?

• All desktop web browsers
– Except IE – obviously (but there is a plug-in, IEWebGL)

• Mobile
– Android

• Hopefully soon, there is a flag in Chrome beta

– iOS
• Internally supported, only available to iAd developers
• Yes, iAd, to integrate ads to iPhone apps..
• Disabled for the browser

– Blackberry Playbook
– Firefox for mobile
– Opera Mobile
– Nokia N900

• PS3
– Rumored
– Supports only flash 9 for now

WebGL - Cross platform?

• Created by the same company that
created WebGL (Khronos)

OpenCL

www.khronos.org

• Javascript binding for OpenCL

– Made for parallel computing using the GPU

– OpenCL is what is used by most cracking apps

– GPU drivers support OpenCL

WebCL

• Need a browser plug-in for now
– Plug-ins available for Chrome and Firefox

• Made by Nokia, Motorola and Samsung

– Is likely to be ported to browsers
• Is currently being implemented into Firefox

(http://hg.mozilla.org/projects/webcl/)

• Results in the order of the two digits of MH/s with a
decent GPU
– Way faster than any other browser-based tech.

– Would be faster if not running in a plugin

WebCL

• Cracking has to be done when GPU is idle

– Probe with a quick computation every X seconds

– Can be run during the night

• Code is difficult to properly obfuscate

– Easy to debug to see what is going on

• Bottleneck in the node management (C&C)

– Nodes dying etc.

Other challenges

WHAT DOES THAT MEAN?

• A lot of unknown to make proper statistics
• How many clients could be compromised?

– Depends on the targeted site
• .bigsite.com could lead to millions
• .popular-PC-game-site.com

– Thousands of powerful PCs compromised
– Less targeted, probably easier to find flaws

• For how long?
– If permanent code execution in the client, potentially

a pretty long time if cache is never cleared

• How to determine people’s GPU for stats?

So what?

Gaming GPUs?

http://store.steampowered.com/hwsurvey/videocard/

• Let’s try to estimate for statistic purposes

– Standard but decent GPU today may get 20-50MH/s for
WebCL and MD5 computations

– Average GPU in the future?
• Including CPUs with ‘on-chip’ graphics

• WebCL integrated in the browser will be faster too

– Will only talk about pure bruteforce
• Password lists could obviously work better, depending on what is

being cracked

GPUs in the future?

• Let’s take a large estimate with 100k to 10M clients
potentially compromised

– Number of devices per person constantly increases

– .majorSite.com with thousands or millions of users

• Each user has X computer/devices

So..

Number of devices per person?

Computing Hashes?

MD5

SHA-256

Cracking Keys?
PBKDF2 SHA-256 and 1000 rounds

• Example with 100k clients and cracking of MD5
– 1000+ GH/s

• On a larger scale: 1M clients would get 10,000 GH/s

– Fastest FPGAs barely reach the hundreds of GH/s
• ‘Only’ 10k clients to reach the power of an expensive FPGA

– Amazon EC2, ads and exploits are expensive

• Example of complex 10 characters password with MD5

– ~1day to find the password with 4M clients
– $40k with Amazon
– May only take an hour in 5 years

Examples

MASSIVE COMPUTING POWER,
WHAT FOR?

• MD5?

– Yes it is still used..

• SHA-256 is supposed to be safe to use

– Depends how it is used

• Other

– Rounds of hashes

– Hashcash

– Bitcoin

• bcrypt / scrypt

– Not “really” crackable using these methods

– Companies should use it more

• Should also be aware of issues it can add (DoS)

Hashes?

• Symmetric
– Password Based Key Derivation function (PBKDF2)

• FIPS requires a minimum of 1000 iterations

– Weak keys

• Asymmetric
– RSA

• <= 768-bit

– DKIM
• <= 768-bit

– What about 1024-bit?

Keys?

EXAMPLES

• Hash functions

– Single round of a hash function for storing
passwords

• + not using a strong and unique salt

• DKIM

– Spoofing emails

• Z. Harris: lots of companies with 512-768-bit keys

• NTLM (LM)

Examples

On the phone: Poor Keyboards

Yi<Dz*ba1pWn

• Symmetric keys

– Data encrypted with keys derived from a weak
password

• This is very common for local encryption
– Both in servers and in clients

• Password managers

• Secure containers

Examples

CONCLUSION

• Using browser-based botnets can be very effective and cheap for
cracking – but is not possible to fully exploit today
– May be possible sooner than you may think

• OpenGL ES 3.0 and WebCL have not been integrated YET
– OpenGL ES 3.0 may arrive soon

– WebCL will definitely be needed in browsers at some point
• There are plugins and it is already being implemented in Firefox

• In addition to introducing new issues, HTML5 also increases the
severity of other web security issues
– Companies should have a well defined security process to avoid being so

vulnerable to the specific issues mentioned

Conclusion

QUESTIONS?

Marc Blanchou
marc@isecpartners.com

