
1

ModSecurity as Universal Cross-platform
Web Protection Tool

Ryan Barnett

Greg Wroblewski

Abstract
For many years ModSecurity was a number one free open source web application firewall for

the Apache web server. At Black Hat USA 2012 we have announced that right now ModSecurity

is also available for IIS and nginx servers, making it a first free cross-platform WAF for all three

major web server platforms. In this paper we explain how ModSecurity can be plugged in on IIS

and nginx and we show how it can be used in early detection of attacks and mitigation of

vulnerabilities affecting web infrastructure. We also explain how virtual patching works and

how Microsoft Security Response Center will use it to mitigate attacks and vulnerabilities in

Microsoft products.

Protecting Web Applications is Challenging
Both web applications and web server platforms that run them, are a big source of security

vulnerabilities. While most of security vulnerabilities can be fixed, developers and organizations

face significant problems when following the typical process of fix-verify-test-deploy approach:

Lack of
Resources

27%

3rd Party Code
23%

Outsourced Code
16%

Insufficient
Technical Skill

13%

Insufficient
Contract Scope

11%

Cost is Too High
10%

Source Code Fix Challenges

Source: OWASP Web Application Virtual Patching Survey

2

An alternative solution to full scale fixing is usage of security layers separating trusted

environment from untrusted input and user interactions. In the world of web applications such

solutions are usually called web application firewalls (WAF). Among the many WAF products

available, the ModSecurity module became the most popular choice in the space of open

source projects.

Why ModSecurity?
As it was described in [9]: “While there are other web application firewall applications,

ModSecurity is uniquely qualified as the premier option. This is mainly attributed to two factors.

First, ModSecurity is an open source, free web application firewall. The fact that there is no cost

associated with its use is primarily why it is the most widely installed WAF with more than

10,000 installations woldwide. Second, it boasts a robust rules language and has a number of

unique capabilities (outlined below) which allows it to mitigate complex vulnerabilities.” The

advantages of using ModSecurity have been described in numerous publications (see [9] for

more examples).

From the beginning of the project until 2012, ModSecurity was only available as an extension

module for Apache web server. While the share of Apache was always highest among the most

popular web server platforms, in recent years it became clear that if one would like to protect

majority of web applications infrastructure, one would have to support two other popular

platforms: Microsoft IIS and nginx.

Apache
61%

IIS
15%

nginx
11%

Other
13%

Web Server Platform Marketshare

Source: Netcraft: July 2012 Web Server Survey

3

ModSecurity 2.7.0 – First Multi-platform Release
The discussions about bringing ModSecurity to other web server platforms have started a few

years ago, and eventually a community effort made it possible to make ModSecurity version

2.7.0 a first multi-platform release.

There are many advantages of having a uniform security solution covering three most popular

web servers. The most obvious one is common format of the definitions specifying web

application security policies and protection rules for the entire organization or web data center:

Thanks to a robust design of the porting layer architecture, the major changes between

platform-specific versions of the module are limited to operating system or server-specific

behavior. For an example, Apache server administrator on a Linux box would typically install the

module with the distribution of the OS or compile it using sources from:

http://sourceforge.net/projects/mod-security/files/modsecurity-

apache/2.7.0-rc2/

while Windows Server 2008 administrator would use single-file standard MSI installer to extend

IIS server on his box with ModSecurity module, downloading it from:

http://sourceforge.net/projects/mod-security/files/modsecurity-iis/2.7

.0-rc2/ModSecurityIIS_2.7.0-rc2.msi

Availability of the module for IIS platform will let Microsoft Security Response Center start

publishing ModSecurity rules for vulnerabilities in Microsoft products. It can be also expected,

that IIS/ASP/ASP.NET/nginx specific ModSecurity rule sets will be created by community effort,

just like it happened for other web application security areas.

http://sourceforge.net/projects/mod-security/files/modsecurity-apache/2.7.0-rc2/
http://sourceforge.net/projects/mod-security/files/modsecurity-apache/2.7.0-rc2/
http://sourceforge.net/projects/mod%1esecurity/files/modsecurity%1eiis/2.7.0%1erc2/ModSecurityIIS_2.7.0-rc2.msi
http://sourceforge.net/projects/mod%1esecurity/files/modsecurity%1eiis/2.7.0%1erc2/ModSecurityIIS_2.7.0-rc2.msi

4

ModSecurity for IIS
Although the source code of ModSecurity’s IIS components is fully published and the binary

building process is described (see mod_security/iis/winbuild/howto.txt), it is highly not

recommended to build the module for non-research or non-development purpose.

A standard MSI installer of ModSecurity for IIS is available from SourceForge files repository of

ModSecurity project and in the future designated maintainers will be keeping it updated with

latest patches and minor versions of the module.

The installation process on IIS is very simple and straightforward. Once installed, the module

can be uninstalled. The module binary and schema files are installed in Windows directories,

while the mlogc tool is installed in Program Files folder.

The IIS installer does not interfere with currently running web applications. This implies that the

installation process must be followed by an application pool restart or recycling in order to load

the new module into the application pool process. For the RC2 version of the module the

restart/recycle step is also highly recommended each time a ModSecurity configuration file has

been changed:

5

After successful load of the module into the application pool process a series of informational

events is recorded in the application event log. These are the same header lines that are sent to

the log file of the Apache web server:

Runtime messages and notifications generated during operational phase, both coming from the

user-defined rules and system specific events or errors, are sent to the same application event

log repository.

6

To apply a ModSecurity configuration file to a web application or a path, one has to use IIS

configuration schema extension, like in the example below:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <system.webServer>
 <ModSecurity enabled="true"
configFile="c:\inetpub\wwwroot\test.conf" />
 </system.webServer>
</configuration>

The c:\inetpub\wwwroot\test.conf config file is a regular ModSecurity configuration

containing the same directives as used on the Apache web server.

ModSecurity for nginx
The extensibility model of the nginx server does not include dynamically loaded modules, thus

ModSecurity must be compiled with the source code of the main server. Since nginx is available

on multiple Unix-based platforms (and also on Windows), for now the recommended way of

obtaining ModSecurity for nginx is compilation in the designated environment.

The first step in obtaining nginx server with built-in ModSecurity module is building of

standalone library containing full ModSecurity with a set of intermediate API (this layer is a

common base for IIS version, nginx version, and server-less command line version of

ModSecurity). It is recommended to follow the general steps of preparing build environment

for ModSecurity and then follow with three simple commands:

~/mod_security# ./configure
~/mod_security# cd standalone
~/mod_security/standalone# make

Once the standalone library is built successfully, one can follow with building the nginx server,

following the steps from the nginx build tutorial:

~/nginx-1.2.0# ./configure --add-module=../mod_security/nginx/modsecur
ity
~/nginx-1.2.0# make
~/nginx-1.2.0# make install

The last command performs server installation on the local machine, which can be either

customized or omitted with built binaries packaged or moved to alternative server.

7

After installation and server start, ModSecurity header lines should appear in nginx’s

error.log file:

The ModSecurity configuration file must be linked in nginx.conf file using two directives

defined by nginx’s ModSecurity extension module:

8

Examples of Virtual Patching
A virtual patching can be defined as a security policy enforcement layer which prevents the

exploitation of a known vulnerability. In the scenario with ModSecurity module extending basic

functionality of web servers, ModSecurity rules are the enforcement layer specification, which

is executed and enforced by the module loaded into the server processes. Using two recent

vulnerabilities as an example we show how this layer can be specified in an environment with

IIS server running with ModSecurity.

CVE-2011-3414

In December 2011 vulnerability has been discovered in ASP.NET allowing attackers to cause

excessive processor load on most ASP.NET web applications:

A denial of service vulnerability exists in the way that ASP.NET Framework handles specially crafted

requests, causing a hash collision. An attacker who successfully exploited this vulnerability could send a

small number of specially crafted requests to an ASP.NET server, causing performance to degrade

significantly enough to cause a denial of service condition.

The hash collision issue required attacker to send a large (typically 1MB or 4MB) POST request

to the server, with tens of thousands of arguments with specially crafted names. There are at

least four ways to mitigate this kind of attack:

 Restrict the request body size.

 Restrict the number of arguments.

 Identify repetitive payloads.

 Check arguments names against PoC data.

The approach checking for the presence of repetitive payload is the most sophisticated one and

it can be implemented in ModSecurity using the following chain of rules:

SecRule &ARGS "@ge 1000" "chain,id:1234,phase:2,t:none,deny,msg:'Possib
le Hash DoS Attack Identified.',tag:'http://blogs.technet.com/b/srd/ar
chive/2011/12/27/more-information-about-the-december-2011-asp-net-vuln
erability.aspx?Redirected=true'"

 SecRule REQUEST_BODY "^\w*?=(.*?)&\w*?=(.*?)&\w*?=(.*?)&\w*?=(.*?)&"
"chain,capture"

 SecRule TX:1 "@streq %{tx.2}" "chain,setvar:tx.hash_dos_match=+1"

 SecRule TX:2 "@streq %{tx.3}" "chain,setvar:tx.hash_dos_match=+1"

 SecRule TX:3 "@streq %{tx.4}" "chain,setvar:tx.hash_dos_match=+1"

 SecRule TX:HASH_DOS_MATCH "@eq 3"

9

When this rule is loaded into an IIS server configuration and the attack is launched on the

protected path, Windows application event log will record an access denied message from

ModSecurity:

At the same time attacker will see HTTP response 403, stopping the attack before it reaches

ASP.NET vulnerable component.

CVE-2012-1859

In July 2012 Microsoft patched a classic case of reflected cross-site scripting vulnerability in

Microsoft SharePoint 2010. For the attacks to exploit the vulnerability it was enough to trick

user into clicking on a malicious URL, like the one below:

http://sharepoint/_layouts/scriptresx.ashx?culture=en-us&name=SP.JSGri

d.Res&rev=laygpE0lqaosnkB4iqx6mA%3D%3D§ions=All<script>alert(‘Hack

ed!!!’)</script>z

The script injected by attacker could gain access to the entire data set available to the victim

through the hacked SharePoint server.

One possible way to block this attack is a whitelist approach: let the URL with sections

argument that does contain only valid characters pass through, while block all other URLs.

Below is a ModSecurity rule implementing this approach for alphanumeric characters:

SecRule REQUEST_FILENAME "@contains /_layouts/scriptresx.ashx"
"chain,phase:1,block,msg:'SharePoint Sections Param Violation -
Illegal Chars"

10

 SecRule ARGS:sections "!@rx ^\w+$"

The rule included through ModSecurity config file into the SharePoint web.config file,

generates the following event when any invalid character (indicating possible attack attempt) is

discovered in corresponding SharePoint URL:

Summary
In the presence of widespread vulnerabilities and attacks on web applications the need for

robust, universal, portable, flexible and easy to use defensive tools is more than obvious. With

ModSecurity module becoming the first open source multi-platform web application firewall,

entire IT security community gains a powerful support for both reactive and proactive efforts of

protecting the web and Internet users. We also hope that this development will be a seed for

further research in the area of web security research.

Project Contributors
The following people have contributed to the multi-platform effort of ModSecurity:

 Microsoft – ModSecurity Port for IIS

o Greg Wroblewski – Senior Security Developer

o Suha Can – Security Researcher / Developer

 Trustwave - ModSecurity

11

o Ziv Mador – Director of Security Research

o Ryan Barnett – Security Researcher Lead

o Breno Pinto – ModSecurity Researcher & Developer

 Open community - Security Port for Nginx

o Alan Silva - Software Engineer at Alcatel-Lucent

Acknowledgments:

We would like to thank members of the Microsoft’s IIS team: Wade Hilmo and Nazim Lala, for

their support and help in solving many technical problems.

Resources
[1] ModSecurity home page: http://www.modsecurity.org/

[2] OWASP Core Rule Set for ModSecurity:

https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Proj

ect

[3] MSRC blog: http://blogs.technet.com/b/srd/

[4] Trustwave SpiderLabs blog: http://blog.spiderlabs.com/

[5] Trustwave Commercial Rule Set for ModSecurity:

https://www.trustwave.com/modsecurity-rules-support.php

[6] http://blog.modsecurity.org/files/enough_with_default_allow_r1_draft.pdf

[7] http://www.modsecurity.org/documentation/Securing_Web_Services_with_ModSecuri

ty_2.0.pdf

[8] http://www.modsecurity.org/documentation/Ajax_Fingerprinting_and_Filtering_with_

ModSecurity_2.0.pdf

[9] https://www.blackhat.com/presentations/bh-dc-09/Barnett/BlackHat-DC-09-Barnett-

WAF-Patching-Challenge-Whitepaper.pdf

About Authors

Ryan Barnett

Trustwave's SpiderLabs Research Team
(rbarnett-at-trustwave.com)

Ryan Barnett joined SpiderLabs after a decade in computer

security. As Research -Surveillance Team Leader, he leads the

SpiderLab team which specializes in application defense. This

includes SPAM filtering, network IDS/IPS and web application

firewalls. His main area of expertise is in application defense

http://www.modsecurity.org/
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
http://blogs.technet.com/b/srd/
http://blog.spiderlabs.com/
https://www.trustwave.com/modsecurity-rules-support.php
http://blog.modsecurity.org/files/enough_with_default_allow_r1_draft.pdf
http://www.modsecurity.org/documentation/Securing_Web_Services_with_ModSecurity_2.0.pdf
http://www.modsecurity.org/documentation/Securing_Web_Services_with_ModSecurity_2.0.pdf
http://www.modsecurity.org/documentation/Ajax_Fingerprinting_and_Filtering_with_ModSecurity_2.0.pdf
http://www.modsecurity.org/documentation/Ajax_Fingerprinting_and_Filtering_with_ModSecurity_2.0.pdf
https://www.blackhat.com/presentations/bh-dc-09/Barnett/BlackHat-DC-09-Barnett-WAF-Patching-Challenge-Whitepaper.pdf
https://www.blackhat.com/presentations/bh-dc-09/Barnett/BlackHat-DC-09-Barnett-WAF-Patching-Challenge-Whitepaper.pdf

12

research.

Barnett is renowned in the industry for his unique expertise.

He has serves as the Open Web Application Security Project

(OWASP) ModSecurity Core Rule Set Project Leader and Project

Contributor on the OWASP Top Ten and AppSensor Projects.

He is a Web Application Security Consortium (WASC) Board

Member and Project Leader for the Web Hacking Incident

Database (WHID) and the Distributed Web Honeypot Projects.

He is also a Certified Instructor at the SANS Institute.

Barnett is regularly consulted by industry news outlets like

Dark Reading, SC Magazine and Information Week. He is the

author of Preventing Web Attacks with Apache (Addison-

Wesley Professional, 2006.) Key industry events he has

addressed include Blackhat, SANS AppSec Summit and the

OWASP Global Summit.

Greg Wroblewski

Microsoft
(gwroblew-at-microsoft.com)

Greg Wroblewski, PhD, CISSP, is a senior security researcher at

Microsoft's Trustworthy Computing Security group. Over the

last 8 years he worked in many areas of security response,

presenting part of his work at BlackHat 2007. At Microsoft he

focuses on security problems in on-line services, detection of

attacks and pentesting. In the past he was responsible for the

technical side of patches in over 50 Patch Tuesday bulletins as

well as hardening products like Windows and Office 2007.

Recently he lead development effort to port ModSecurity

module to IIS and nginx servers.

