Scapy BTBB Demo

This demo serves as a brief scapy tutorial but more importantly, it
illustrates the btbb layer in Scapy

it also demonstrates utilities and helpers provided by the library

if you have issues installing the btbb scapy module, please refer
to the documentation at hackgnar.com

library imports

e import everything from scapy for the demo
e import everything from the btbb Scapy module

In [2]: from scapy.all import *
from btbb import *

Open btbb pcap file:

e btbb pcap files for this demo were created with Kismet and Ubertooth
e = these can also be created by other means such as USRP and Kismet, etc

In [3]: btbb pcaps = PcapReader('small.pcapbtbb')

Read one packet from the pcap file:

e btbb packet is read pcap file and instantiated as Scapy packet

In [4]: pkt = btbb pcaps.read packet()

Packet sample:

e nothing special about this packet. Looks like a typical Ethernet packet
e btbb packets are layered on top of the ethernet layer much like the wireshark btbb layout
¢ when nothing is present in the btbb layer, these look exactly like ethernet packets

mTel Al ae-/ N

11l [D]: PKT.SHOW()

###[Ethernet |###
dst
src

type

00:00:00:00:00:00
00:00:00:ed:1d:9c
Oxfffo

Interactively iterate through packets:

¢ we can run the following over and over to look though packets

In [6]: pkt

pkt.show()

In [7]: pkt.summary()

Oout[7]:

btbb pcaps.read packet()

'00:00:00:ed:1d:9c > 00:00:00:00:00:00 (Oxfff0)'

Conditionally iterate though btbb pcap file:

¢ iterate though the pcap file

e display summary data for all packets
o display detailed data if a btbb payload exists

In [8]: for pkt in btbb pcaps:

00:
00:
00:
00:
00:

print pkt.summary()
if pkt.haslayer('BtbbPayload'):

00:
00:
00:
00:
00:

pkt.show()
break

00:
00:
00:
00:
36:

ed:
ed:
ed:
ed:
ed:

1d:9c
1d:9c
1d:9c
1d:9c
1d:9c

vV V.V V

>

00:
00:
00:
00:
00:

00:
00:
00:
00:
00:

BtbbPacket / BtbbPayload

###[Ethernet
dst

sSrc

type

###[btbb ###
#H#[meta (#HH

CLK
Channel
Padding
known address bits= 32 (NAP unknown)

1 #H##
00:00:00:00:
00:00:36:ed:
= Oxfffo

00:
00:
00:
00:
00:

00:
1d:

00:
00:
00:
00:
00:

00
9c

0x7000000L

39L
OL

00:
00:
00:
00:
00:

00
00
00
00
00

(0xX£f££0)
(0xX£f££0)
(0xf££0)
(0xX£f££0)
(Oxf£f£f0) / Btbb / BtbbMeta /

known clock bits= 6

###[packet (###
type

LT ADDR

SEQN Flag
ARQON Flag
FLOW_Flag

HEC
###[payload |###

= DH1/2-DH1

= 0x1L
1L
oL
1L
= 0xc9

header length= 3L
header flow= 1L
header LLID= OL
= '"\x0e\x13\xdl'

body

CRC

Packet list

= 0x6209L

¢ instantiate the rest of the packets into a list of packets

In [9]:

In [10]:

btbb pkt list = btbb pcaps.read all()

print len(btbb pkt list)
for item in btbb pkt list[:5]:
print item.summary()

456

00:00:36:ed:1d:9¢c > 00:00:00:00:

BtbbPacket
00:00:36:ed:1d:9c
BtbbPacket
00:00:36:ed:1d:9c
BtbbPacket
00:00:36:ed:1d:9c
BtbbPacket
00:00:36:ed:1d:9c
BtbbPacket

>

>

Write btbb pcap files:

00:00:00:00:

00:00:00:00:

00:00:00:00:

00:00:00:00:

00:

00:

00:

00:

00:

00

00

00

00

00

(0x£££0)
(0x£££0)
(0x£££0)
(0x£££0)

(0XEE£0)

e we can also write btbb packets back to new pcap files if we like

In [11]:

In [12]:

pcapbtbb writer =

/ Btbb

/ Btbb

/ Btbb

/ Btbb

/ Btbb

PcapWriter('new pcap file.pcapbtbb')
pcapbtbb writer.write(btbb pkt list)

!1s -1i new pcap file.pcapbtbb

100727NnA1 ey s ~

1

T mImAe ~4+AFF

1£/AN0 T.a1

1in 21

a A

BtbbMeta /

BtbbMeta /

BtbbMeta /

BtbbMeta /

BtbbMeta /

In [13]:

In [14]:

1407 /74VdE —LW—=L—==L—=—

new pcap file.pcapbtbb

new btbb pkts =

pkts =

412
00:00:36:ed:1d:9c > 00:

BtbbPacket
00:00:36:ed:1d:9c
BtbbPacket
00:00:36:ed:1d:9c
BtbbPacket
00:00:36:ed:1d:9c
BtbbPacket
00:00:36:ed:1d:9c
BtbbPacket

1 LaippclL

SDLall

14U49VO0 JUUL 1V <4144

PcapReader ("new pcap file.pcapbtbb")
new_btbb pkts.read all()
print len(pkts)
for i in pkts[:5]:
print i.summary()

>

00:

00:

00:

00:

new_btbb pkts.close()
btbb pcaps.close()

Btbb Pcap File Stream:

00:

00:

00:

00:

00:

00:

00:

00:

00:

00:

00:

00:

00:

00:

00:

00:

00:

00:

00:

00:

00

00

00

00

00

(0x£££0)
(0x£££0)
(0X£££0)
(0x£££0)

(0xf££0)

e Generic way to stream data from bluetooth baseband hardware
¢ Relies on the fact that they have a way to write btbb pcap files
¢ Allows for interactive real time packet monitoring

In [15]:

Out[1l5]:

In [16]:

In [17]:

log dir =
latest file
latest file
latest file

"path/to/kismet/logs"
= I1ls -tl S$log dir|head -1
= log dir + '/' + latest file[0]

'path/to/kismet/logs/kismet-log.pcapbtbb’

btbb stream

for pkt in btbb stream.stream(output='packet'):
print pkt.summary ()

= BtbbPcapStreamer (latest file)

Btbb

Btbb

Btbb

Btbb

Btbb

BtbbMeta /

BtbbMeta /

BtbbMeta /

BtbbMeta /

BtbbMeta /

00:
00:
00:
00:
00:
00:
00

00:
00:
00:
00:
00:
00:
:00:

00:
00:
00:
00:
00:
00:

36

ed:
ed:
ed:
ed:
ed:
ed:
ted:

1d:
1d:
1d:
1d:
1d:
1d:
1d:

9¢c
9¢c
9¢c
9¢c
9¢c
9¢c
9¢c

VVVVYVVYV

00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:

00
00
00
00
00
00
00

(OXE££0)
(0XE££0)
(0xE££0)
(0xf££0)
(0xE££0)
(0xE££0)

(0xfff0) / Btbb / BtbbMeta /

BtbbPacket / Btbbprayload

00:00:36:ed:1d:9c > 00:00:00:00:00:00 (Oxfff0) / Btbb / BtbbMeta /
BtbbPacket

00:00:36:ed:1d:9¢c > 00:00:00:00:00:00 (0xfff0) / Btbb / BtbbMeta /
BtbbPacket

00:00:36:ed:1d:9c > 00:00:00:00:00:00 (Oxfff0) / Btbb / BtbbMeta /
BtbbPacket

00:00:36:ed:1d:9c > 00:00:00:00:00:00 (Oxfff0) / Btbb / BtbbMeta /
BtbbPacket

00:00:36:ed:1d:9¢c > 00:00:00:00:00:00 (Oxfff0) / Btbb / BtbbMeta /
BtbbPacket

00:00:36:ed:1d:9c > 00:00:00:00:00:00 (Oxfff0) / Btbb / BtbbMeta /
BtbbPacket

In [20]: btbb stream.close()

Btbb layer helper methods

¢ a sample of some of the helper methods provided by scapy btbb
¢ lets open a new pcap file, read in the packets and define some vars first

In [22]: manuf file='path/to/wireshark/manuf’
!wc -1 $manuf file

20805 path/to/wireshark/manuf

In [23]: btbb pcaps = PcapReader('small.pcapbtbb')
pkts = btbb pcaps.read all()

In [24]: for i in range(10):
print i , pkts[i].summary()

0 00:00:00:ed:1d:9¢c > 00:00:00:00:00:00 (Oxfff0)
1 00:00:00:ed:1d:9c > 00:00:00:00:00:00 (Oxf£ffO0)
2 00:00:00:ed:1d:9c > 00:00:00:00:00:00 (O0xfff0)
3 00:00:00:ed:1d:9¢c > 00:00:00:00:00:00 (Oxfff0)
4 00:00:00:ed:1d:9¢c > 00:00:00:00:00:00 (Oxfffo0)
5 00:00:00:ed:1d:9¢c > 00:00:00:00:00:00 (OxfffO0)
6 00:00:36:ed:1d:9c > 00:00:00:00:00:00 (0xfff0) / Btbb / BtbbMeta

BtbbPacket / BtbbPayload

7 00:00:36:ed:1d:9c > 00:00:00:00:00:00 (0xfff0) / Btbb / BtbbMeta
BtbbPacket

8 00:00:36:ed:1d:9c > 00:00:00:00:00:00 (Oxfff0) / Btbb / BtbbMeta
BtbbPacket

9 00:00:36:ed:1d:9c > 00:00:00:00:00:00 (O0xfff0) / Btbb / BtbbMeta
BtbbPacket

Vendor lookup:

¢ can lookup vendor based on a bluetooth address

¢ can lookup vendor based on packet

¢ vendor determination is more accurate when both nap and uap are known
e when only a uap is know, a list of possible vendors and associated nap is returned
¢ if your wireshark manuf file is not in a default location you must specify as seen below

In [25]:

out[25]:

In [26]:

In [27]:

out[27]:

In [28]:

out[28]:

Distinct bluetooth address lookup:

e distinct bluetooth addresses can be looked up
o useful for quickly determining what devices are in a list of packets
¢ useful for passing to other tools/modules for analysis, exploitation, etc

In [29]:

out[29]:

get vendor('00:11:36:ed:1d:9c’', manuf file=manuf file)

[('00:11:36",

possible vendors = get vendor(pkts[6],manuf file=manuf file)

'Goodrich')]

len(possible vendors)

60

possible vendors[:10]

[('00:
('00:
('00:
('00:
('00:
('00:
('00:
('00:
('00:
('00:

00

bt _addrs
bt addrs

['00:
'00:
'00:
'00:
'00:

00:
00:
00:
00
00:

01:
02:
03:
04:
05:
06:
07:
09:
OA:

:36',

00
00
36

36',
36",
36",
36',
36",
36",
36',
36",
36",

:c3
:db:
ted:
:d2:
00:

59
ff

'Atari'),
'Cybertan'),

'Init'),

'ZetesTec'),
'ElansatT'),
'DanamCom'),
'JedaiBro'),
'Datavide'),
'Ipetroni'),
'SynelecT')]

get btaddress(*pkts)

tec:46"',

cl:fa',
1d:9c’',

:84:d49"',
tcd:ab']

e example of sending btaddr info to the pybluez bluetooth name lookup method

In []: import bluetooth
for addr in bt addrs:
print bluetooth.lookup name(addr)

