
A Stitch In Time Saves NineA Stitch In Time Saves NineA Stitch In Time Saves NineA Stitch In Time Saves Nine::::
A Case Of Multiple OS Vulnerability

Rafal Wojtczuk rafal@bromium.com

Summary

This paper is an analysis of CERT Vulnerability Note VU#649219 , a multiple 64bit OS privilege

escalation vulnerability, (re)discovered by the author in April 2012. The nature of the vulnerability

and the exploit techniques are covered. A short introduction to x86_64 exception handling is

included as a primer in order to clarify the details.

Vulnerability description

CERT Vulnerability Note VU#649219 [1] is titled “SYSRET 64-bit operating system privilege escalation

vulnerability on Intel CPU hardware”. While the actual included description is vague, the root cause

of the vulnerability is: On some 64bit OSes, untrusted ring3 code can force the kernel to execute

sysret instruction that would return to a non-canonical address. On Intel CPUs, this results in an

exception raised while still in ring0. This exception cannot be handled safely.

The nature of the vulnerability is discussed in more detail further in the paper; here we will focus on

the high level overview.

Known vulnerable systems (reminder: only 64bit versions running on Intel CPUs are affected):

• Xen with PV guests

• Windows 7 and Windows 2008 R2

• FreeBSD

• NetBSD

Known non-vulnerable systems

• Apple OSX

• OpenBSD >=5.0 (fixed in July 2011)

• Linux kernel >=2.6.15.5 (fixed in 2006)

While the OpenBSD developers fixed the last remaining exploitation vector accidentally, during code

cleanup [2], it seems that Linux developers had a good understanding of the situation. The relevant

patch [3] describes explicitly the unexpected environment that the #GP handler executes in upon an

exception in sysret instruction. However, the author has not found a clear public remark that the

Linux kernel was vulnerable to privilege escalation. The impact is not specified in Linux commits or

CVE-2006-0744 [4] description, and the relevant Bugtraq ID 17541 [5] states the issue is DoS only.

Also, the aforementioned documents provide no indication that the problem is very low level, and

not Linux-specific. This is likely the reason why developers of other operating systems have not

noticed the issue, and they remained exploitable for six years.

Note: Affected vendors released patches around 12 June 2012.

Crash course on ring transitions on x86_64

In this section, we only outline the most relevant facts, required to understand the nature of the

vulnerability. Readers interested with an exhaustive description of exception and syscall handling on

x86_64 should resort to Intel’s Software Developer’s Manual [6].

In all the diagrams, the red color means usermode memory, the green color means kernel memory.

When an exception is raised and CPU is in ring 0, the exception record is pushed on the current

stack:

More precisely, a mechanism is available (Interrupt Stack Table, IST) that allows the specification of a

dedicated stack area even for exceptions triggered in ring 0. However, in compliance with SDM

suggestions, all OSes use IST only for catastrophic events (#MC, #DF, #NMI), and all other exceptions

behave as described above.

If an exception is raised when CPU is in ring 3, “stack switch” occurs – first, RSP is set to a dedicated

kernel stack, and then the exception record is pushed onto it:

Stack switch is a necessary security measure. The most obvious problem is: If the stack pointer is

invalid (e.g. points to unmapped memory) at the exception time, and if there was no stack switch,

the CPU would attempt to store the exception record in an invalid location. Note that usermode

code can set RSP to any value before executing an instruction that throws an exception.

On the other hand, when code is executed in ring 0, the stack pointer is trusted by the CPU to be

sane. We will see later that executing an exception handler with a user-controlled stack leads to

privilege escalation.

Interestingly, when the syscall instruction is executed (which results in transition to ring0 as well), no

stack switch occurs:

The syscall instruction does not use stack at all - it stores the return address, equal to the address of

the syscall instruction plus two, in RCX register. Still, in order to call normal C code, that actually uses

stack for local variables and activation records, the syscall handler must set the stack pointer to a

kernel stack. Therefore, the lifecycle of a syscall handler is:

1. Save the usermode-provided RSP somewhere

2. Set RSP to a kernel stack

3. Perform the requested service

4. Set RSP to the saved usermode value

5. Execute the sysret instruction

Still, both the prologue and the epilogue of a syscall handler (more precisely, instructions marked as

red above) execute in ring 0, with a user-provided, untrusted stack. This means, there must be no

hardware interrupt or exception during this time.

The syscall instruction does not block interrupts by itself. However, its specification indicates that the

RFLAGS register is masked with the IA32_FMASK MSR register. Therefore, all OSes must specify an IF

flag in IA32_FMASK MSR in order to prevent interrupts in the syscall handler prologue/epilogue. But

that’s not enough – the NMI interrupt is not affected by RFLAGS IF bit. Therefore, for security

reasons, the NMI handler must use the IST mechanism (note SDM does not mention security as the

reason to use IST). Fortunately, it seems all OSes adhere to these requirements.

So, what about exceptions? The assignments to RSP should not normally result in any exception. The

only remaining item is the sysret instruction itself. The below excerpt from the AMD specification

states that on a properly configured system, “sysret” cannot throw any exception:

Surprisingly, the Intel specification is slightly different:

There is an explicit remark that if the return address (held in RCX) is non-canonical, #GP is raised. As

we will cover in the following section, on vulnerable systems such condition can be forced by the

malicious usermode code, and as a result, elevation to ring 0 is possible.

Exploit techniques

Canonical address definition

Although on x86_64 systems pointers are 64bit long, supporting full 64bit address space would

require many page table levels, which would be inefficient. Instead, only low 48 bits of the pointer

can be set arbitrarily and be a valid address. The top 16 bits of a pointer are checked to be the same

as the bit 47 – such a pointer is named “canonical”, and can be dereferenced. Accessing memory at a

non-canonical address results in #GP exception.

Normally, both the address of a syscall instruction and the address of the following

instruction are canonical:

However, if the “syscall” instruction is placed at virtual address (1<<47)-2, the following address

(1<<47) is non-canonical:

Upon returning from a syscall handler, #GP will be raised in ring0.

All kernels place restrictions on the range of virtual addresses that ring 3 code is allowed to map.

The following list shows which OSes allow usermode to map a frame at address (1<<47)-PAGE_SIZE:

• Linux – no

• Windows – no

• NetBSD, OpenBSD – no

• FreeBSD – yes

• Xen with PV guests - yes

We will now address all of the exploits, beginning with FreeBSD.

FreeBSD exploit

The DoS exploit is straightforward:

1. Map a frame at (1<<47)-PAGE_SIZE

2. place the syscall instruction at (1<<47)-2

3. set RSP to 0 (or any other unmapped address)

4. jump to the syscall instruction at (1<<47)-2

When the syscall handler is terminating with sysret, this instruction will raise #GP, which cannot be

dispatched because of invalid stack. The result is that the double fault handler invokes successfully,

because it is configured to use a dedicated stack via IST mechanism. Usually, #DF handler’s purpose

is to shut down the system gracefully.

Even though #DF handler may start fine, it could quickly die with a page fault. The reason is

usermode gs base. See appendix A for a copy of swapgs manual from Intel SDM. When sysret is

being executed, gs base has already been reverted to the usermode value. When triggered by ring0

code, exception handlers expect gs base to be already switched to kernel address, and do not call

swapgs in their prologue. Thus when #DF handler tries to access memory with gs: prefix, it will result

in page fault (as the default usermode gs base is 0 in case of FreeBSD). The resulting triple fault

causes instant machine reboot.

What about code execution? The idea is to let #GP handler run, and because there are two

execution state elements (RSP and gs base) controlled by the user, it is no surprise that code

execution will be possible. Because exploiting of gs base desynchronization is covered in [7] and [8],

we will focus on the possibilities created by controlling RSP.

One possible method is to point RSP to some important kernel data structure. When CPU dispatches

#GP, this structure will be overwritten by the exception record. Also, any stack pushes done by #GP

handler will overwrite it, too. The natural choice for the overwrite target is IDT, for two reasons:

1. IDT base can be obtained by usermode via the sidt instruction. So even when the exploit

runs in a restricted environment (say, in a jail) and there is no access to the kernel image to

determine the precise kernel binary version, there is no need to guess the location of the

overwrite target.

2. Execution needs to be hijacked quickly, before #GP handler shuts down the machine, and

before it is terminated by a #PF raise due to memory access with gs: prefix.

Overwriting the #PF handler entry in IDT with an address of kernelmode shellcode works perfectly in

FreeBSD case. The following diagram summarizes the exploitation steps:

When #GP handler triggers #PF, the execution will be diverted to the shellcode. The latter has to

rebuild the damaged IDT, provide privileges to usermode (by e.g. changing the UID of the current

process to 0), and return to usermode via sysret.

Windows 7 exploit

As mentioned above, on Windows usermode cannot map a page at address (1<<47)-PAGE_SIZE; the

usual value of nt!mmhighestuseraddress is 0x000007FF`FFFEFFFF.

However, the syscall handler does not always return right after the syscall instruction. Jan Beulich

spotted it first while developing a patch for Xen for this vulnerability. The primary example is

NtContinue system call, used to return from usermode exception handler – it passes full execution

context, including RIP, to the kernel, and the latter is supposed to resume execution in the provided

context. However, NtContinue uses iretq to return to usermode, not sysret. Another idea was to

change a sleeping thread’s RIP via debugger interface – but apparently the newly set RIP is sanitized.

Note similar methods may be applicable to Unix systems, sys_sigreturn and ptrace being equivalents;

on Unix, sys_execve and signal dispatching also return to a RIP unrelated to the address of the

previous usermode instruction.

Reverse engineering of ntoskrnl.exe revealed one more case when execution is resumed via sysret –

User Mode Scheduler [9]. The following diagram shows the relevant components:

The function EnterUmsSchedulingMode changes the way syscall handler finishes in UMS worker

threads. Instead of returning to the calling thread, the context is switched to the UMS scheduler

thread, so that the latter can manually schedule an appropriate thread to run. The address of the

scheduler procedure (hosted in the UMS scheduler thread), as well as RSP value, is taken from TEB

of UMS scheduler thread. It seems to be not sanitized in any way; moreover, sysret is used as the

method to return to the scheduler procedure. Therefore, if we change the value of scheduler_proc’s

RIP in TEB to be a non-canonical address, we will arrive at the situation very similar to the one

discussed previously: #GP handler will run with user-controlled RSP and gs base.

Here is another, more generic exploit scenario. This time, we will let #GP handler run with RSP being

set to a mapped usermode address.

Note that usually code treats stack as uninitialized memory. So, it gains nothing to preload the UMS

scheduler stack with any payload – code never reads from any location on the stack before writing

to it. We need a race condition: we need to poison a crucial stack location after it was initialized by

the #GP handler, but before it is read by it. So, concurrently with the UMS scheduler thread, we will

run another thread that will continuously write over the stack. We should see the following order of

events:

1. #GP handler: calls some_function, the saved return address is at stack[some_offset]

2. “Overwriter” thread: stack[some_offset] := kernel_shellcode

3. some_function completes, returns via ret

4. control is diverted to kernel_shellcode

This approach looks very promising. “Overwriter” thread’s body is only a single mov instruction is a

loop, so if this thread runs at the moment when some_function is called, it should manage to write

before some_function returns. We can spawn many “overwriter” threads to ensure that at least one

of them is scheduled to run at the critical moment. On a common 4-way SMP machine, this method

proved to be very effective on a baremetal Windows system.

Somehow unexpectedly, this method appears to be unreliable when Windows is run in a VM. The

precise reason is not known – probably, the tested VMM schedules threads in a manner that makes

the exploitation fail in many cases. More testing with other VMMs is needed to determine the root

cause.

Xen exploit

To change things up - this exploit is very Xen-specific. We will run #GP handler with RSP pointed to

usermode stack, but unlike the previous case, without any race condition. It relies on the way Xen

obtains the address of the current variable, which is a pointer to a crucial data structure (VCPU). Xen

expects this pointer to be located below the stack bottom; it even uses the current RSP value to

compute current’s address. The GET_CURRENT macro expands to:

mov $0xffffffffffff8000,%rbx ; set a mask to clear bottom 15 bits

and %rsp,%rbx ; get the bottom of per-cpu area

or $0x7fe8,%rbx ; get the address of “current” pointer

mov (%rbx),%rbx ; get the value of “current” pointer

This means that although the stack is treated as uninitialized, a crucial location below stack bottom

is expected to get initialized. We can poison it with an arbitrary value prior to exploitation, and this

value will be used in all operations involving current pointer.

Another peculiarity is how Xen’s #GP handler determines whether the exception was thrown from

usermode. Unlike all other OSes, it does not check the saved CS value in the exception record. It is

enough to set bottom 15 bits of RSP to a magic value, and then even though the exception was

raised by sysret running in ring0, it will be handled as though it was thrown from ring 3. Particularly,

#GP handler will try to disassemble the instruction that caused the fault and emulate it. This attempt

will fail, and #GP handler will try to inject a #PF fault to the guest. In order to do this, it needs to

write to a few fields in the structure pointed to by the current pointer. Because we can poison the

current pointer, it means write-anything-anywhere primitive. It is possible to overwrite the return

address of the do_general_protection() function with the address of kernelmode shellcode.

Just like all the previous techniques, this method is stable and does not require knowledge of any

absolute address of ring 0 data structures – all that is needed is offsets in data structures.

Related remarks

It is very unusual for a single vulnerability to affect so many systems for such a long period of time.

Indeed, a stitch in time could have saved nine.

Who failed? Possible explanations:

1. Developers should know the platform they write OS for. sysret semantics is explicitly

described in Intel SDM. Also, after CVE-2006-0744, everyone should have checked its

applicability to their system.

2. It was Intel’s mistake to let sysret throw an exception. Also, after CVE-2006-0744, Intel should

have realized the problem, notified everyone, and updated SDM with an explicit warning.

The “Ivy Bridge” Intel processors, introduced in Q2 2012, have an interesting feature named

“Supervisor Mode Execution Prevention” (SMEP). If a SMEP bit in CR4 register is set, then an attempt

to execute code stored in usermode page with ring0 CS will fail. Many perceive SMEP as a method to

stop common ring0 privilege escalation exploits – indeed, in all the examples above, the ultimate

goal was to execute a shellcode located comfortably in user mode pages. The properties of this

feature are similar to NX/DEP – if used alone, it can be defeated with return-oriented programming if

the addresses of suitable kernel functions are known in advance and the control over stack contents

can be gained. It is a step in a right direction, but requires either

1. Making it impossible for an attacker to know the exact kernel version, which is unsuitable for

any public vendor

2. ASLR for kernel – not implemented anywhere by now

In both cases, any address leak from the kernel may render the protection useless.

It is unfortunate that current mainline kernel security is so loose among OS vendors. Their code

base is huge, which opportunes many vulnerabilities. In general, the separation between kernel and

usermode is unsatisfactory – too much state is shared, e.g. virtual memory mapping, which often

makes the exploitation reliable. Introduction of SMEP indicates that the need for more strict

separation is understood, but it alone is not sufficient. Many have decided to throw the towel on

kernel security and use the separation offered by hardware-assisted virtualization, which when used

properly, should be more reliable.

Appendix A

“swapgs” instruction description from Intel SDM

SWAPGS exchanges the current GS base register value with the value contained in MSR address

0000102H (MSR_KERNELGSbase). KernelGSbase is guaranteed to be canonical; so SWAPGS does not

perform a canonical check. The SWAPGS instruction is a privileged instruction intended for use by

system software.

When using SYSCALL to implement system calls, there is no kernel stack at the OS entry point.

Neither is there a straightforward method to obtain a pointer to kernel structures from which the

kernel stack pointer could be read. Thus, the kernel can't save general purpose registers or

reference memory.

By design, SWAPGS does not require any general purpose registers or memory operands.

No registers need to be saved before using the instruction. SWAPGS exchanges the CPL 0 data

pointer from the KernelGSbase MSR with the GS base register. The kernel can then use the GS prefix

on normal memory references to access kernel data structures. Similarly, when the OS kernel is

entered using an interrupt or exception (where the kernel stack is already set up), SWAPGS can be

used to quickly get a pointer to the kernel data structures.

The KernelGSbase MSR itself is only accessible using RDMSR/WRMSR instructions. Those instructions

are only accessible at privilege level 0. WRMSR will cause a #GP(0) if the value to be written to

KernelGSbase MSR is non-canonical.

Bibliography

1. CERT Vulnerability Note VU#649219, http://www.kb.cert.org/vuls/id/649219/

2. Philip Guenther, "Force the sigreturn syscall to return to userspace via iretq",

http://www.openbsd.org/cgi-

bin/cvsweb/src/sys/arch/amd64/amd64/locore.S.diff?r1=1.47;r2=1.48

3. Andi Kleen, "[PATCH] [18/30] x86_64: When user could have changed RIP always force IRET",

http://www.x86-64.org/pipermail/discuss/2006-April/008271.html

4. CVE-2006-0744, http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0744

5. BID 17541, http://www.securityfocus.com/bid/17541

6. Intel SDM, http://www.intel.com/content/www/us/en/processors/architectures-software-

developer-manuals.html

7. Derek Soeder , “VMware Emulation Flaw x64 Guest Privilege Escalation”,

http://www.securityfocus.com/archive/1/498150

8. Nate Eldredge, “amd64 swapgs local privilege escalation”,

http://security.freebsd.org/advisories/FreeBSD-SA-08:07.amd64.asc

9. “User Mode Scheduling”, http://msdn.microsoft.com/en-

us/library/windows/desktop/dd627187(v=vs.85).aspx

