

File Disinfection Framework:
Striking back at polymorphic
viruses

BlackHat USA 2012, Las Vegas Mario Vuksan & Tomislav Pericin

AGENDA
Introduction to…

•  Computer viruses
•  Polymorphic virus problem
•  File disinfection framework

File disinfection framework
•  Static file disinfection

•  Creating a simple static disinfector
•  Emulator aided file disinfection

•  Emulator design
•  Creating a simple emulator aided disinfector

WHAT IS A COMPUTER VIRUS?
“Computer virus is a computer program that can replicate itself
and spread from one computer to another.”

Search
routine

Infection
routine

Anti detection
routine

Trigger
routine

Payload

Mandatory

Optional

HISTORY OF COMPUTER VIRUSES
1949
•  The first academic work on the theory of computer viruses

was done in 1949 by John von Neumann

1971
•  The Creeper virus, an experimental self-replicating program,

is written by Bob Thomas at BBN Technologies. Creeper
infected DEC PDP-10 computers running the TENEX
operating system. The Reaper program was later created to
delete Creeper.

HISTORY OF COMPUTER VIRUSES
1984
•  The term 'virus' is coined by Frederick Cohen in describing self-

replicating computer programs. In 1984 Cohen uses the phrase
"computer virus" to describe the operation of such programs in
terms of "infection". He defines a 'virus' as "a program that can
'infect' other programs by modifying them to include a possibly
evolved copy of itself."

1987
•  Appearance of the Vienna virus, which was subsequently

neutralized—the first time this had happened on the IBM platform.
•  Appearance of Lehigh virus, boot sector viruses such as Yale from

USA, Stoned from New Zealand, Ping Pong from Italy, and
appearance of first self-encrypting file virus, Cascade.

HISTORY OF COMPUTER VIRUSES
1990
•  Mark Washburn working on an analysis of the Vienna and Cascade

viruses with Ralf Burger develops the first family of polymorphic
virus: the Chameleon family.

1998
•  The first version of the CIH virus appears.

2001 – 2002
•  Zmist (also known as Zombie.Mistfall) is a metamorphic computer

virus created by the Russian virus writer known as Zombie.
•  Simile (computer virus) is a metamorphic computer virus written in

assembly.

FILE INFECTION PROBLEM
Polymorphic viruses
•  File infection is the ultimate polymorphism
•  File infector replicates self into a host of unique containers
•  One strain can generate 100K+ of unique infected samples
•  Response is difficult

•  Focus on reducing polymorphisms to a single infection
•  Classifying multi-infections
•  Disinfection is like surgery

•  Remove offending payload surgically
•  Make sure there’s no remaining malignant content
•  Close the incision areas so patient can walk again

•  Failure is severe
•  Potential for re-infection
•  Potential for system downtime and loss of data

DISINFECTION DILEMMA
Disinfect or re-image the machine?
•  Consumer

•  Always disinfect, rarely re-image
•  Most users do not back up frequently or at all
•  Loss of personal documents and media trumps security risks
•  Is served by AV product

•  Enterprise
•  Always re-image if possible
•  But re-image is not always practical
•  IT staff will quit if we re-imaging over 10K machines is requested
•  Disinfection to be followed by staged re-imaging is preferrable
•  Yet, who will write custom disinfectors for the Enterprise?

WHY DID WE CREATE FDF?
What’s its purpose and who will benefit from it?
•  Purpose

•  Speed up development of disinfection routines and utilities
•  Increase the quality
•  Reduce the risk of failure
•  Collaborate with the community

•  Open source modules
•  Benefactors

•  AV companies for mass disinfection modules
•  CERT teams for specialized projects
•  ISPs for Botnet infection reduction
•  Enterprises for custom disinfectors

FILE DISINFECTION
FRAMEWORK

TITANENGINE
Open source library for PE file processing

Version 1.0
 Historic version, purely dynamic file processing centered

Version 2.0
 Presented at BlackHat USA 2009
 Total rewrite from ASM to C
 Many improvements in the field of dynamic file processing

Version 3.0
 Presented at Hack In the Box 2012
 Total rewrite to C++
 Purely static file processing centered

Version 3.1
 Presenting at BlackHat 2012
 Inclusion of file disinfection components
 Static file processing enriched with the x86 emulator

FILE DISINFECTION FRAMEWORK
Open source library for PE file disinfection

Version 3.1 (Windows x86-x64)
 Static portable executable manipulation
 Portable executable integrity validation and recovery
 Dynamic portable executable building
 Import recovery with hash databases
 Dynamic decrypter building
 Advanced x86 emulator

Statistics:
 Over a 100 user exposed APIs
 Over 40,000 lines of C++ code

USING STATIC FILE
FUNCTIONS

STATIC FILE MANIPULATION
Features

Static PE32/32+ file format processing functionality
 Ability to read, modify and create new PE files
 Ability to read, modify, split, merge and create PE sections
 Ability to read, modify and create individual PE tables

Support for decompressing large number of formats
Support for building custom dynamic decrypters
Support for import hash to original name reverting
PE file format validation, malformation detection, damage
assessment and recovery

WORKING WITH FILES
Loading files and working with their content

DOS
PE

Sections
(code, data,

imports,
exports,

relocations)

Overlay

Resources

Traditional PE format
layout

•  TitanEngine3 file transformation process:
1.  Portable executable headers are read from

the file on disk
2.  Sections are mapped into memory

converting the file into a flat memory model
3.  All modifications to file are done in memory

& memory is allocated only when a specific
section is being modified

4.  No content is saved until explicitly
instructed

5.  When changes are saved the entire file is
rebuild to ensure format validity

WORKING WITH PE TABLES
Loading files and working with their content

•  TitanEngine3 can build new:
•  Import table
•  Export table
•  Relocation table
•  Resource table
•  TLS table
•  Overlay

DOS
PE

Code section

Import
section

Overlay

Resources

Traditional PE format
layout

Relocation
section

WORKING WITH PE TABLES
Loading files and working with their content

•  TitanEngine3 can read/enumerate:
•  Bound import table
•  Delay import table
•  Exception table
•  Debug table

•  Data is enumerated through:
•  msgpack serialization
•  User callbacks

DOS
PE

Code section

Import
section

Overlay

Resources

Traditional PE format
layout

Relocation
section

CREATING A NEW PE FILE
Dynamic portable executable building

•  Creating a new PE32/PE32+ file
•  titan_create_file API is used to create

a new PE32/PE32+ file in memory.
•  No sections exist at this time and they

must be added before storing any data
at that location.

•  titan_set_pe_header API is used to
update the PE header data.

•  Default PE header can be accessed
and its parameters can be changed at
any time.

DOS
PE

Overlay

Resources

Traditional PE format
layout

Import
section

Relocation
section

Code
section

ADDING A CODE SECTION
Dynamic portable executable building

DOS
PE

Overlay

Resources

Traditional PE format
layout

•  Adding sections to PE32/PE32+ file
•  titan_add_new_section API is used

to create a section inside the PE
header.

•  titan_get_content API is used to read
data from PE sections.

•  titan_set_content API is used to write
data to PE sections.

•  Last section can always be increased
by writing past its end but writing must
start with the current section limits.

Code section

Import
section

Relocation
section

WORKING WITH SECTIONS
Dynamic portable executable building

DOS
PE

•  Working with section content
1.  Accessing section content via relative

virtual addresses. This enables the
access to the current content of the
section.

2.  Accessing section content via physical
addresses. This enables the access to
content as it was on the disk.

Code section

Overlay

Resources

Traditional PE format
layout

Import
section

Relocation
section

ADDING AN IMPORT TABLE
Dynamic portable executable building

DOS
PE

•  Adding a new import table
•  kernel32.dll

•  GetModuleHandleA
•  LoadLibraryA
•  GetProcAddress

•  user32.dll
•  MessageBoxA

Code section

Import
section

Overlay

Resources

Traditional PE format
layout

Relocation
section

ADDING AN IMPORT TABLE
Dynamic portable executable building

•  Adding a new import table
•  titan_add_import_library API is used

to add new imported DLL file.
•  titan_add_import_function API is

used to add functions to added DLLs.
This API is called after the DLL entry
has been added. API pushes with this
function belong to DLL which was
added last.

•  titan_write_import_table API is used
to write the import table data we
pushed to the engine to the specified
location.

DOS
PE

Code section

Import
section

Overlay

Resources

Traditional PE format
layout

Relocation
section

ADDING A RELOCATION TABLE
Dynamic portable executable building

•  Adding a new relocation table
•  titan_add_base_relocation API is

used to add addresses from code and
data section(s) which need to be
relocated.

•  titan_write_relocation_table API is
used to write the relocation table data
we pushed to the engine to the
specified location.

DOS
PE

Code section

Import
section

Overlay

Resources

Traditional PE format
layout

Relocation
section

ADDING A RESOURCE TABLE
Dynamic portable executable building

•  Adding a new resource table
•  titan_add_resource_data API is used

to add new resources to the file. Every
resource is defined with its name, type,
language, code page and data.

•  titan_write_resource_table API is
used to write the resource table data
we pushed to the engine to the
specified location.

DOS
PE

Code section

Import
section

Overlay

Resources

Traditional PE format
layout

Relocation
section

WORKING WITH OVERLAY
Dynamic portable executable building

•  Finding & reading the overlay
•  titan_find_overlay API is used to

determine if the file has an overlay.
•  Adding overlay to a file

•  titan_add_overlay API is used to add new
overlay data to the file.

•  Data can be added to file in chunks. They
are subsequently added to the end of the
rebuild file.

•  When rebuilding the file you can chose to
preserve or remove debug table and
certificate.

DOS
PE

Code section

Import
section

Overlay

Resources

Traditional PE format
layout

Relocation
section

SAVING CHANGES
Dynamic portable executable building

•  Exporting work from engine to disk
•  titan_export_file API exports the

current state of the PE header and the
sections from memory to a new file on
disk.

•  When exported file is reconstructed and
its section content physical size is
minimized so that sections with no data
take-up no space on disk.

DOS
PE

Code section

Import
section

Overlay

Resources

Traditional PE format
layout

Relocation
section

DISINFECTING
WIN32.AWFULL

VIRUS.WIN32.AWFULL

Malware type:
•  PE32 file infector

Aliases:
•  W32/Awfull.2376 (McAfee)
•  W32.Nector (Symantec)
•  W32/Awfull.2376 (Avira)
•  W32/Awfull-B (Sophos)

Versions:
•  2376, 3254, 3318, 3574 (based on size)

Comment:
•  Is actually awful

DOS
PE

Sections
(code, data,

imports,
exports,

relocations)

Virus

Resources

Infected file layout

General virus information

VIRUS.WIN32.AWFULL.3318

Virus body encryption
•  Original entry point is encrypted

Anti reversing protections
•  IsDebuggerPresent
•  CreateFileA (\\.\SICE & \\.\NTICE)

Uses VBScript to infect other .vbs files
Bugs:

•  MOV ESI,[address] instead of offset
•  Debugger checks don’t check API return
•  Can’t find files to infect because of

wrong parameters passed to
FindFirstFileA

•  Closing non open handles
•  Destroys original overlay

DOS
PE

Sections
(code, data,

imports,
exports,

relocations)

Virus

Resources

Infected file layout

Infected file behavior

DISINFECTION PROCEDURE

Disinfection procedure steps:
1.  Check if the file is infected

•  Determine virus version
•  Determine if it’s a virus body

2.  Get the virus code delta (EBP)
3.  Decrypt encrypted virus body
4.  Read the original entry point

address
5.  Resize the last section (remove

virus)
6.  Update the PE header with new

OEP
7.  Save the disinfected file

DOS
PE

Sections
(code, data,

imports,
exports,

relocations)

Virus

Resources

Infected file layout

Creating disinfection routine with FDF

DECRYPTING THE VIRUS BODY

Decryption procedure steps:
1.  Extract the decryption algorithm

from the unencrypted virus entry
point

2.  Apply the extracted algorithm to
encrypted code & data

3.  Verify that decryption has
succeeded

4.  Extract the needed decrypted data
•  Original Entry point address

Virus EP

Infected file layout

Dynamically creating decryption routines

Encrypted
code

Encrypted
data

CREATING DECRYPTERS
•  Decrypters execute user defined x86-x64 code
•  They are exclusively used to decrypt polymorphic code
•  Decryption direction is either from start to end or in reverse
•  Decryption is performed in steps of 1, 2, 4 or 8 bytes
•  Decryption is loop based and each pass can access only one

encrypted block of 1, 2, 4 or 8 bytes at the time
•  Decrypters can consist of most x86-x64 instructions
•  Decrypters emulate instruction code and flags
•  Decryption can use callbacks and be traced with TF set
•  User can terminate execution by calling HLT instruction

VM INSTRUCTION FORMAT

struct code_instruction_t
{

 opcode_t opcode; /* op_mov_k */
 opcode_type_t type; /* op_t_reg_s_mem1_k */
 register_t target; /* reg_al_k */
 register_t source; /* reg_none_k */
 reg64_t immediat; /* 0 */

};

•  Decrypter instructions are stored in two streams
•  Virtual machine initialization stream (executed once)
•  Virtual machine code stream (performs decryption)

•  Example: mov al,byte ptr[current_encrypter_buffer_pos]

DECRYPTING THE VIRUS BODY
Dynamically creating decryption routine

MOV ESI,DWORD[40105D]
ADD ESI,EBP
MOV ECX,0C99
PUSH ESI
POP EDI
LODS BYTE PTR DS:[ESI]
NOT AL
STOS BYTE PTR ES:[EDI]
DEC ECX

code_instruction_t decypter[]
{
/* MOV AL, BYTE PTR[“ESI”] */

{ op_mov_k, op_t_reg_s_mem1_k, reg_al_k, reg_none_k, 0 },
/* NOT AL */

{ op_not_k, op_target_reg_k, reg_al_k, reg_none_k, 0 },
/* MOV BYTE PTR[“ESI”], AL */

{ op_mov_k, op_t_mem1_s_reg_k, reg_none_k, reg_al_k, 0 }
};

Note: This VM code loops (ECX / 1) times

 (and yes the virus should use an offset for mov esi, that’s a bug in the virus code)

Virus EP

Infected file layout

Encrypted
code

Encrypted
data

D
ec

ry
pt

io
n

lo
op

DECRYPTING THE VIRUS BODY
Dynamically creating decryption routine

MOV ESI,DWORD[40105D]
ADD ESI,EBP
MOV ECX,0C99
PUSH ESI
POP EDI
LODS BYTE PTR DS:[ESI]
NOT AL
STOS BYTE PTR ES:[EDI]
DEC ECX

•  Creating a dynamic decrypter
•  titan_create_decrypter API is used to

create a new x86-x64 dynamic
decrypter.

•  titan_add_decrypter_code API is
used to add new instructions to the
selected decrypter.

•  titan_decrypt_data API executes the
virtual machine code and decrypts the
data in steps of 1, 2, 4 or 8 bytes.

•  We use the ECX value to set the
number of bytes to decrypt.

Virus EP

Infected file layout

Encrypted
code

Encrypted
data

D
ec

ry
pt

io
n

lo
op

VM INSTRUCTION FORMAT
Decrypters can handle conditional jumps

code_instruction_t decypter[]
{
/* MOV AL, BYTE PTR[“ESI”]

 { op_mov_k, op_t_reg_s_mem1_k, reg_al_k, reg_none_k, 0 },
/* STC */

 { op_stc_k, op_unknown_k, reg_none_k, reg_none_k, 0 },
/* JNC @4 */

 { op_jnc_k, op_unknown_k, reg_none_k, reg_none_k, 4 },
/* INC AL */

 { op_inc_k, op_target_reg_k, reg_al_k, reg_none_k, 0 },
/* 4: XOR AL, 0x90 */

 { op_xor_k, op_t_reg_s_const1_k, reg_al_k, reg_none_k,
0x91 }
};

VM INSTRUCTION FORMAT
Decrypters have the basic push/pop stack (ESP is affected)

code_instruction_t decypter[]
{
/* MOV AL, BYTE PTR[“ESI”]

 { op_mov_k, op_t_reg_s_mem1_k, reg_al_k, reg_none_k, 0 },
/* PUSH EAX */

 { op_push_k, op_source_reg_k, reg_none_k, reg_eax_k, 0 },
/* POP EBX */

 { op_pop_k, op_target_reg_k, reg_ebx_k, reg_none_k, 0 },
/* INC BL */

 { op_inc_k, op_target_reg_k, reg_bl_k, reg_none_k, 0 },
/* MOV BYTE PTR[“ESI”], BL */

 { op_mov_k, op_t_mem1_s_reg_k, reg_none_k, reg_bl_k, 0 }
};

VM INSTRUCTION FORMAT
Decrypters can call user mode callbacks

code_instruction_t decypter[]
{

 { op_mov_k, op_t_reg_s_mem1_k, reg_al_k, reg_none_k, 0 },
 { op_stc_k, op_unknown_k, reg_none_k, reg_none_k, 0 },
 { op_jnc_k, op_unknown_k, reg_none_k, reg_none_k, 4 },
 { op_inc_k, op_target_reg_k, reg_al_k, reg_none_k, 0 },
 { op_xor_k, op_t_reg_s_const1_k, reg_al_k, reg_none_k, 0x91 },

/* Callback can change register state with titan_set_decrypt_context */
 { op_call_k, op_unknown_k, reg_none_k, reg_none_k, 0 },
 { op_push_k, op_source_reg_k, reg_none_k, reg_eax_k, 0 },
 { op_pop_k, op_target_reg_k, reg_ebx_k, reg_none_k, 0 },
 { op_mov_k, op_t_mem1_s_reg_k, reg_none_k, reg_bl_k, 0 }

};

FDF EMULATOR
DESIGN

EMULATOR DESIGN CONCEPT
Features

Emulating x86 Windows environment
Emulating PEB, TEB and SEH structures
Emulating user mode libraries

 Over 100 functions from kernel32.dll and user32.dll
 Dynamically building custom libraries from hash databases
 Loading user defined custom libraries into the process

Emulating file system
 Customizable drives (type, size, name, serial, …)
 Supporting file mapping, attributes, time stamps and sharing

Support for multiple breakpoints per address, page or API
Support for hooking and replacing API functionality
Support for high level code execution in the emulated process

LOADING THE FILE

PE32 file from disk
(executable or dynamic

link library)

Loading the file inside the emulated environment

•  Initializing the emulation process
•  titan_open_file API is used to load the

file from disk.
•  While most PE files can be loaded only

x86 PE32 executable and dynamic link
library files can be emulated.

•  At this point all necessary static
operations can be performed.

DOS
PE

Overlay

Resources

Import
section

Relocation
section

Code
section

VALIDATING & REPAIRING FILES
•  During the last years BlackHat ReversingLabs has published

a number of PE malformations that can be introduced to the
format

•  These complex malformation are now the integral part of the
TitanEngine PE file validation process

•  In addition to malformations files can also be damaged which
is quite common for virus infections

•  titan_validate_file API performs malformation checks and
estimates the damage done to the file.

•  File validation is strict and implemented to reflect the PECOFF
documentation not the implementation in various version of
the OS loader

•  If the damaged and is estimated to be in recoverable state
then you can use titan_repair_file API to recover the damage

EMULATING THE PROCESS

DOS
PE

Code section

Import
section

Overlay

Resources

PE32 file from disk
(executable or dynamic

link library)

Relocation
section

Creating a new process inside the emulator

•  Initializing the emulation process
•  titan_vm_create_process API is used to

initialize the virtual process environment.
•  This API performs the environment

initialization process that is similar to the
one which Windows performs.

•  This executes the following steps:
•  Creates a new emulated instance
•  Initializes the emulated file system
•  Maps the file into memory
•  File is relocated if necessary
•  Loads the necessary dependencies

RUNNING THE EMULATOR
•  titan_vm_run_process API is used to run the emulation

process.
•  Emulation can be controlled via the set of predefined

callbacks that occur on breakpoints and other events
•  List of supported Windows events: enum debug_event_code_t

{
 exception_debug_event_k,
 create_thread_debug_event_k,
 create_process_debug_event_k,
 exit_thread_debug_event_k,
 exit_process_debug_event_k,
 load_dll_debug_event_k,
 unload_dll_debug_event_k,
 output_string_debug_event_k,
 rip_event_k

};

DEPENDENCIES
Loading application dependencies
•  Dependencies can be loaded statically and dynamically
•  Statically loaded dependencies

•  Can be generated be the user during process
initialization

•  Can be automatically generated from hash databases
•  Dynamically loaded dependencies

•  Can be loaded from the virtual file system
•  Can be generated by the user before loading
•  Can be automatically generated from hash databases

HASH DATABASES
•  Hash databases are user created files that have the list of

module exported functions
•  Hash databases enable reverse hash queries
•  Every entry in the hash database is the name of the function

with its corresponding hashes
•  List of internal hashes is small and limited to algorithms

commonly found in packers or viruses

Hash
database

kernel32.dll

VirtualAlloc Hash[1..n]

ExitProcess Hash[1..n]

CREATING HASH DATABASES
•  Hash databases can automatically import PE32/32+ libraries
•  Existing databases automatically upgrade when new

algorithms are added inside the TitanEngine
•  Expanding hash databases with new algorithms doesn’t

require source code modification
•  User can add more hashes with custom “decryption”

algorithms
•  They are the same as the ones discussed before but only

used for hashing
•  Algorithms you write are stored in the database itself
•  Resulting RAX value stores the hash value

USING HASH DATABASES
•  Hash databases can be used for reverse hash queries
•  User can push multiple hash databases to the emulator
•  If multiple databases have the same library inside them only

the database which was pushed later is used
•  Statically imported libraries are created automatically from all

available hash databases
•  If the requested library isn’t found in a hash database it is

automatically created by the engine

WORKING WITH FUNCTIONS
•  Emulator has the predefined set of emulated functions
•  List of supported functions can be expanded dynamically
•  titan_vm_hook_function API can be used to both intercept

emulated APIs and define the virtual machine behavior when
the specified API is called

PUSH “kernel32.dll”
CALL GetModuleHandleA emulator Pre call

hooks

Function
execution

Post call
hooks

User can replace system
function behavior with
user defined code

code

BREAKPOINTS
•  Emulator supports various breakpoint types:

•  On page
•  On address
•  On instruction (can be combined with address or page)

•  Breakpoint types can be combined with triggers:
•  On write
•  On read
•  On execution

•  Breakpoint triggers can be set to be executed:
•  Always
•  Once

•  Breakpoints can trigger a callback when removed
•  Multiple breakpoints can be set on the same address, page or

opcode

COMPLEX BREAKPOINTS
•  Example:

•  Break on every MOV instruction that writes to the
address range 0x00401000 – 0x00401008

titan_vm_set_breakpoint (process_handle,
 &breakpoint_handle,

 break_always_k + \
 break_on_action_write_k + \
 break_on_address_k + \
 break_on_instruction_k,
 op_mov_k,
 0x00401000,
 8,
 &callback,
 parameter);

ANALYSIS
SYMBIOSIS

REFLECTING CHANGES
Files are in sync with the emulator

DOS
PE

Code section

Import
section

Overlay

Resources

File loaded into
TitanEngine

Relocation
section

application

kernel32.dll

ntdll.dll

Empty space

Empty space

Process memory space
inside the emulator

PEB

Changes are
automatically applied

EXECUTING EMULATOR CODE
•  Emulator callbacks provide an interface to the system API

struct functions_t
{

 ...
 bool (*vm_mount_drive)(process_handle_t process_handle, ...);
 obj_handle_t (*vm_create_file)(process_handle_t process_handle, ...);
 bool (*vm_read_file)(process_handle_t process_handle, obj_handle_t file_handle, …);
 bool (*vm_write_file)(process_handle_t process_handle, obj_handle_t file_handle, …);
 uint32_t (*vm_set_file_position)(process_handle_t process_handle, …);
 bool (*vm_set_end_of_file)(process_handle_t process_handle, obj_handle_t file_handle);
 uint32_t (*vm_get_file_size)(process_handle_t process_handle, obj_handle_t file_handle);
 void (*vm_close_file)(process_handle_t process_handle, obj_handle_t file_handle);
 bool (*vm_format_drive)(process_handle_t process_handle, drive_id_t drive_id);
 bool (*vm_unmount_drive)(process_handle_t process_handle, drive_id_t drive_id);
 ...

};

DISINFECTING
WIN32.VIRUT

VIRUS.WIN32.VIRUT

Malware type:
•  PE32 file infector
•  Backdoor (IRC) / C&C
•  Memory resident

Aliases:
•  Virus:W32/Virut
•  Virus.Win32.Virut
•  Win32.Virtob

•  Versions:
•  Few different versions
•  Few different infection types

DOS
PE

Sections
(code, data,

imports)

Virus body

Resources

One infection type file
layout

General virus information

Virus EP

VIRUS.WIN32.VIRUT

Virus body encryption
•  Original entry point is moved
•  One or more polymorphic layers

encrypt the virus body
•  Original entry point is restored from

the secondary thread
•  Virus performs infection in a

secondary thread
•  Virus embeds a UPX packed DLL

that infects other PE files

DOS
PE

Sections
(code, data,

imports)

Virus body

Resources

One infection type file
layout

Infected file behavior

Virus EP

DISINFECTION PROCEDURE

Disinfection procedure steps:
1.  Check if the file is infected

•  Determine virus version
•  Determine if it’s a virus body

2.  Get the virus code delta (EBP)
3.  Read the original entry point data
4.  Read the original entry point address
5.  Resize the last section (remove virus)
6.  Update the original entry point code
7.  Update the PE header with new OEP
8.  Save the disinfected file

DOS
PE

Sections
(code, data,

imports)

Virus body

Resources

One infection type file
layout

Creating disinfection routine with FDF

OEP

DISINFECTION
DEMO

TITANENGINE 3
Where to get it?

 http://titan.reversinglabs.com

Future plans

Version 3.2
 Porting the library to Linux

Version 3.3
 Implementing disassembler & assembler
 Function analysis

Version 3.4
 TitanLanguage integration

THANK YOU!

July 25, 2012

