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browsers are the new platform for applications
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Google Native Client
• A Chrome plugin that allows the execution of native 
untrusted code in your browser (Win32, OS X, Linux)

• Chrome 14 shipped with NaCl by default

• Large and complex architecture
• Modified Compiler Toolchain
• Secure ELF loader
• Disassembler and Code Validator
• Service Runtime
• Inner and Outer Sandbox
• SRPC (Simple Remote Procedure Call)
• IMC (Inter-Module Communication)
• PPAPI (Pepper)



Native Client Architecture



NaCl Security

If a NaCl module can execute instructions that 
were not validated by the service runtime then the 

security provided by Native Client is broken



Modified Compiler Toolchain
• Modified GCC toolchain ships with NaCl SDK

• Only the SDK compiler can be used to produce a NEXE

• SDK can produce code for:

• 32-bit x86

• 64-bit x86_64



Modified Compiler Toolchain
• NEXE modules are compiled and linked as ELF

• All of the typical structures are present

• ELF Header, Program Headers, Dynamic Segment, 
Section Headers, Symbol Tables, Relocation Entries

• readelf can be used to examine NEXE ELF structures

• IDA Pro can be used to disassemble the NEXE .text



Modified Compiler Toolchain
• NEXE instructions must be aligned to 32 byte boundary

• This is required by the inner sandbox

• Blacklisted instructions are never emitted

01000ac0 <PpapiPluginStart>:  ; 32 byte aligned

 1000ac0:       53                 push   %ebx

 1000ac1:       83 ec 28           sub    $0x28,%esp

 1000ac4:       a1 00 00 02 11     mov    0x11020000,%eax

 1000ac9:       8b 08              mov    (%eax),%ecx

 1000acb:       85 c9              test   %ecx,%ecx

 1000acd:       74 31              je     1000b00 <PpapiPluginStart+0x40>

 1000acf:       eb 0f              jmp    1000ae0 <PpapiPluginStart+0x20>

 1000ad1:       90                 nop

 1000ad2:       90                 nop



Modified Compiler Toolchain
• No instructions can straddle the 32 byte boundary

• Branches are used to transfer control across boundaries

• No ret instructions, the stack is manually modified

01000ac0 <PpapiPluginStart>:  ; 32 byte aligned

 1000ac0:       53                 push   %ebx

 1000ac1:       83 ec 28           sub    $0x28,%esp

 1000ac4:       a1 00 00 02 11     mov    0x11020000,%eax

 1000ac9:       8b 08              mov    (%eax),%ecx

 1000acb:       85 c9              test   %ecx,%ecx

 1000acd:       74 31              je     1000b00 <PpapiPluginStart+0x40>

 1000acf:       eb 0f              jmp    1000ae0 <PpapiPluginStart+0x20>

 1000ad1:       90                 nop

 1000ad2:       90                 nop



Modified Compiler Toolchain
• Branch instructions are properly aligned to validated code

• call instructions are subject to a simple AND operation

• Alignment masking on the destination register ensures a 
32 byte alignment which guarantees the destination has 
been run through the validator

• Prevents over written NEXE function pointers and 
modified registers from resulting in arbitrary code 
execution

 0x100057b:   83 e0 e0  and    $0xffffffe0,%eax ; eax = 0x100057a

 0x100057e:   ff d0     call   *%eax            ; eax = 0x1000560



Modified Compiler Toolchain
• NaCl toolchain

• Ensures all ELF structures are properly formed

• Only safe instructions are emitted

• All branch instructions are preceded by alignment mask

• But an attacker can modify the NEXE binary...



Service Runtime



Service Runtime
• Stand alone process, launched from Chrome

• Runs in the same sandbox as Chrome renderer
• ‘Outer Sandbox’

• Shares its virtual address space with a NEXE module
• Service Runtime memory is trusted
• NEXE memory is untrusted
• Separation between the two is the ‘Inner Sandbox’



Instruction Validator
• Found in the Service Runtime

• Disassembles all NEXE instructions after ELF parsing

• Starts at trusted 32 byte aligned entry point

• Exits on any blacklisted instructions
• Privileged instructions
• Instructions that modify segment registers
• ret
• sysenter
• prefix bytes



Instruction Validator
• The validator only performs static analysis on the code

• Static analysis will not know register values at runtime

• As long as the branch target is mod 32 aligned it knows 
whatever the target is it has been validated

• Example:
• 0x1000560 not known when the validator runs

• Guaranteed to have been properly validated due to 
proper 32 byte alignment

 0x100057b:   83 e0 e0  and    $0xffffffe0,%eax ; eax = 0x100057a

 0x100057e:   ff d0     call   *%eax            ; eax = 0x1000560



Instruction Validator
• The NaCl SDK contains a standalone NEXE validator

$ ./ncval_x86_32 ../examples/hello_world_glibc/hw.nexe 
segment[0] p_type 3 p_offset ee0 vaddr 11000ee0 paddr 11000ee0 align 1 filesz 19 memsz 19 flags 4

segment[1] p_type 1 p_offset 140 vaddr 1000140 paddr 1000140 align 65536 filesz da0 memsz da0 flags 5

parsing segment 1

VALIDATOR: 10008e6: ret instruction (not allowed)

VALIDATOR: 10008e6: Illegal instruction

segment[2] p_type 1 p_offset ee0 vaddr 11000ee0 paddr 11000ee0 align 65536 filesz 478 memsz 478 flags 4

segment[3] p_type 1 p_offset 1358 vaddr 11011358 paddr 11011358 align 65536 filesz 13c memsz 13c flags 6

segment[4] p_type 1 p_offset 10000 vaddr 11020000 paddr 11020000 align 65536 filesz 0 memsz 2c flags 6

segment[5] p_type 2 p_offset 136c vaddr 1101136c paddr 1101136c align 4 filesz d8 memsz d8 flags 6

segment[6] p_type 1685382481 p_offset 0 vaddr 0 paddr 0 align 4 filesz 0 memsz 0 flags 6

segment[7] p_type 7 p_offset 0 vaddr 0 paddr 0 align 4 filesz 0 memsz 0 flags 4

*** ../examples/hello_world_glibc/hw.nexe IS UNSAFE ***

Validated ../examples/hello_world_glibc/hw.nexe

*** ../examples/hello_world_glibc/hw.nexe IS UNSAFE ***



Service Runtime
• Inner Sandbox

• Required because the untrusted NEXE shares virtual 
address space with the trusted service runtime

• Separating untrusted code and data
• x86 memory segmentation model
• x86_64 mov/branch alignment, guard pages
• ARM load/store/branch alignment, guard pages
• TLS segments store data/registers between context 
switches



Service Runtime
• Trusted instruction blocks are mapped at runtime to 
enable a context switch between trusted and untrusted

• Springboard enable trusted to untrusted
• Trampolines enable untrusted to trusted
• Each contain privileged instructions that manipulate the 
segment registers

• x86 Segment Registers
• Used to separate trusted from untrusted code/data
• Modified when switching between trusted/untrusted
• %cs code
• %ds data
• %gs thread local storage
• %ss %es %fs 



Service Runtime
• Memory may not be marked executable at runtime

• New executable code pages may not be created at 
runtime

• This guarantees only validated code pages are set 
executable



Service Runtime



NACL Syscalls
• A NEXE cannot make normal syscalls

• sysenter / int 0x80 not allowed by the validator

• 30~ NACL_SYSCALLS

• Basic operations such as open, close, read, write, ioctl, 
mmap, munmap, stat, _exit and a few others

• NACL specific IMC accept, connect, send, recv

• These are dispatched via Springboard/Trampoline code



Service Runtime IMC
• Inter-Module Communication (IMC) is the core protocol all 
NEXE data to the NaCl plugin rides on

• IMC uses basic socket types that initialized by the 
imc_makeboundsock and imc_socketpair 
NACL_SYSCALL’s

• IMC is built on top of platform supplied UNIX sockets, 
named pipes and shared memory

• IMC is too low level to be used by application developers



Service Runtime SRPC
• Simple Remote Procedure Call (SRPC)

• Rides on top of IMC

• SRPC allows for the encapsulation of serialized data 
between NEXE modules and the NaCl plugin

• SRPC endpoints are invoked via SRPC signatures
• NaClSrpcInvokeBySignature(channel, “MyMethod:i:i”, 
resource, bool)

• Although SRPC is at a higher level than IMC its not 
intended to be used by application developers directly



NaCl Plugin



NaCl Plugin
• The NaCl plugin itself is a trusted PPAPI plugin

• It lives inside the Chrome renderer process as a .DLL

• Invoked by HTML ‘embed’ tag

      <embed name="NaCl_module"

           id="hello_world"

           width=200 height=200

           src="hello_world.nmf"

           type="application/x-NaCl" />



NaCl Plugin
• The .nmf file is a ‘NaCl Manifest File’
• JSON that specifies NEXE and .so libraries

{ "files": {
    "libgcc_s.so.1": { "x86-32": { "url": "lib32/libgcc_s.so.1" } },

    "main.nexe": { "x86-32": { "url": "hw.nexe" } },

    "libc.so.3c8d1f2e": { "x86-32": { "url": "lib32/libc.so.3c8d1f2e" } },

    "libpthread.so.3c8d1f2e": { "x86-32": { "url": "lib32/libpthread.so.3c8d1f2e" } } },

    "program": { "x86-32": { "url": "lib32/runnable-ld.so" } }

  }

• The plugin is responsible for parsing this JSON using a 
third party package named ‘jsoncpp’

• NaCl downloads the NEXE using the PPAPI URLLoader 
and FileIO interfaces



NaCl Plugin
• NaCl asks the Chrome browser process to start the service 
runtime process

• Once the service runtime has started they establish an 
SRPC connection with each other

• This is known as an administrative channel

• Once the NEXE has been started a new SRPC channel is 
created specifically for communication with untrusted 
code



NaCl Plugin
• NaCl must expose part of itself to the browser DOM

• However PPAPI is not scriptable like NPAPI

• Only a few properties and functions are exposed

• readyState, lastError, exitStatus

• postMessage



NaCl Plugin
• PostMessage is how JavaScript talks to the NEXE module

• The NEXE must implement pp::Instance::HandleMessage 
to receive these messages

• The PPB_Messaging::PostMessage C++ interface is used 
to send messages back to JavaScript

• JavaScript gets alerted to new messages using an event 
listener and a callback

• These messages have no format and can be binary or 
ASCII



Pepper API



Pepper API
• NPAPI (Netscape Plugin Application Programming Interface)

• Designed for browser plugins written 10 years ago

• PPAPI (Pepper Plugin Application Programming Interface)

• Designed for modern browser plugins

• New APIs for Audio, FileIO, 3D and a lot more

• Chrome is the only browser shipping support for PPAPI



Pepper API
• Major differences between PPAPI and NPAPI

• PPAPI plugins are not scriptable via JavaScript
• Only PostMessage is used to transfer data

• PPAPI supports out of process plugins from the start
• NPAPI had to bolt this on many years later

• PPAPI provides interfaces for privileged actions
• FileIO is a good example
• In Chrome this is handled by the broker



PPAPI Plugins
• Trusted PPAPI plugins run in a sandboxed Chrome 
renderer process or a separate sandboxed plugin process

• The Native Client plugin itself is a PPAPI plugin that lives 
in the sandboxed Chrome renderer process

• Adobe Pepper Flash is an out of process PPAPI plugin

• Untrusted PPAPI plugins in Chrome run as a NEXE module
• NEXE’s communicate with PPAPI layer using a proxy



Pepper Proxy
• NEXE modules need to talk to the browser to provide any 
useful functionality

• PPAPI provides plugins the ability to access privileged 
browser resources

• The NaCl plugin implements the pepper proxy

• The proxy contains SRPC server and client code



Pepper Proxy
• Server code hands off data from the client to thunks which 
then direct it to the proper PPAPI backend in Chrome

• Client code makes requests back to the untrusted NEXE

• NaCl uses IDL files to describe these interfaces

• C++ code is often auto generated using them



Pepper Proxy
• The protocol stack allows 
untrusted NEXE modules to 
invoke trusted PPAPI 
interfaces

• Serialized PPAPI arguments, 
over SRPC, over IMC

• Most of this is binary data 
packaged up as PP_Var or 
basic data types



Pepper Proxy
• Data sent over the proxy is serialized

• PP_VarType - enum specifying type of PP_Var

• PP_VarValue - union holding simple data types

• PP_Var - structure that holds PP_VarType and PP_VarValue



Pepper Proxy
• Creates a PP_Var and 
other args

• Calls a remote pepper 
interface

• SRPC message gets 
created

• SRPC message sent 
over IMC

• Received by remote 
pepper proxy

• Data deserialized
• Passed off to PPAPI



Pepper Proxy
• Lots of shared code between trusted/untrusted sides

• Both sides can act as server and/or client

• A simple rule to help differentiate the two

• Interfaces prefixed with PPP are on the untrusted side

• Interfaces prefixed with PPB are on the trusted side



Pepper Proxy
• Manages callbacks and related SRPC data structures

• Callbacks exist to inform a remote NEXE when the 
renderer has completed an operation

• Callbacks are bound to the SRPC channel

• Callbacks can only be invoked on the main thread



Pepper Proxy
• The pepper proxy is not a security boundary

• It performs little to no validation of untrusted data

• It is exists only to proxy data between an untrusted NEXE 
and the PPAPI implementation



Portable NaCl
• PNaCl (Pinnacle)

• Web site hosts LLVM IR produced by NaCl SDK toolchain

• PNaCl transforms LLVM IR to native code for the users 
architecture using AOT

• These native instructions are then put in a NEXE

• The inner sandbox and pepper proxy remain as-is

• 32-bit ARM Support

• Google has projected a 2012 release



NaCl Attack Surface



NaCl Attack Surface
• Outer (Chrome) sandbox escapes require

• Vulnerabilities in the broker process
• No/Weakly sandboxed processes (Flash, GPU)
• Kernel vulnerabilities the sandbox can’t fully prevent

• Inner sandbox
• Cannot reach the broker process directly
• You are in a sandbox within a sandbox
• You cannot make syscalls or talk to the kernel directly

• NaCl raises the bar for exploitation
• Multiple sandboxes
• Instruction validation



NaCl Attack Surface
• Native Client isolates untrusted code (inner sandbox)

• But you need trusted components to do useful things

• We find attack surface anywhere untrusted code can 
influence the execution of trusted code



NaCl Attack Surface
• Vulnerable NEXE modules are not an issue

• Validation of all direct/indirect execution branches

• Why attack a NEXE module when you can load one 
directly instead?

• Malicious NEXE modules

• Attempt to find and exploit vulnerabilities in various 
NaCl components



NaCl Attack Surface
• Service Runtime

• Inner Sandbox

• ELF loader

• Instruction validator disassembler

• NACL_SYSCALL implementations



NaCl Attack Surface
• NaCl PPAPI Plugin

• IMC

• SRPC

• DOM interfaces

• JSON parser



NaCl Attack Surface
• PPAPI - Pepper Proxy

• Server interfaces
• Client interfaces

• PPAPI
• Interface implementations reached via the proxy

• GPU
• Direct interfaces to the GPU
• Pinky Pie exploited an integer overflow here for Pwnium



NaCl Vulnerabilities
• Vulnerabilities discovered in Native Client

• The first inner sandbox break out

• 2009 Security Contest

• Various Google discovered vulnerabilities

• 2011 PPAPI - Pepper Proxy source audit



First Inner Sandbox Breakout
• Call instruction memory dereference

 andl $0xffffffe0, %edx
  call *(%edx)

• The validator and branch alignment ensure the value in 
the register is 32 byte aligned but not the value it 
references

• Results in execution of a non-validated instruction

• Discovered by Alex Radocea



2009 Security Contest
• Uncovered 20 new security vulnerabilities in NaCl

• Nothing that significantly broke the inner sandbox design

• 1st place - Mark Dowd, Ben Hawkes
• 2nd place - Chris Rohlf, Eric Monti, Jason Carpenter

• 3rd place - Gabriel Campana
• 4th place - Daiki Fukumori

• 5th place - Alex Radocea

• Some of these vulnerabilities are still relevant to NaCl



2009 Security Contest
• Two byte jmp prefix

• Unchecked prefix bytes on branch instruction

• EFLAGS direction flag modification
• Untrusted NEXE instructions can change the direction 
flag

• Validated code unmapping
• An untrusted NEXE can unmap validated code and 
replace it

• Uninitialized vtable
• A manual vtable left uninitialized can lead to code 
execution



2009 Security Contest
• The architecture has changed significantly since 2009

• NPAPI is gone but the same type of issues could be found 
in the PPAPI replacement

• Proved the inner sandbox was relatively strong

• Provided a good look at the future of NaCl vulnerabilities

• Trusted components that handle untrusted data are more 
likely to contain vulnerabilities than the inner sandbox



Google NaCl Vulnerabilities
• Win64 inner sandbox escape via 
KiUserExceptionDispatcher
• Exceptions transfer execution to this function which is 
not aware of the trusted vs untrusted stack

• bsf Instruction inner sandbox escape
• Cannot properly validate alignment of conditional value

• Trampoline address space leak
• Does not use PIC code, leaks a .text instruction address

• Address space leak via JavaScript error
• A JavaScript error message contained a memory address



Pepper Proxy Source Audit
• June 2011 Pepper Proxy Source Audit

• Performed under contract to Google while at Matasano

• 3 week project

• 1 Person

• 10 vulnerabilities discovered

• Manual source audit of C/C++
• Many thousands of lines
• No scanners
• Mostly grep and reading source



Pepper Proxy Source Audit
• Are there vulnerabilities in the pepper proxy that would 
allow a malicious NEXE to escape the inner sandbox?

• Many interfaces accept and deserialize untrusted data

• Lots of opportunity for vulnerable code



Pepper Proxy Source Audit
• PPB_Graphics2D_Create Shared Memory Integer 
Overflow

• PPB_Context3DTrusted_CreateTransferBuffer Shared 
Memory Integer Overflow

• PPB_Audio_Create SRPC Channel Use After Free

• PPB_URLLoader_Open CORS Request Allows For Header 
Injection

• PPB_URLLoader_ReadResponseBody Heap Overflow



Pepper Proxy Source Audit
• PPB_FileIO_Write Out Of Bounds Read Information Leak

• PPB_FileIO_Dev_Read Heap Overflow

• PPB_PDF_SearchString Potential Heap Overflow

• PPB_FileRef_Create Potential Directory Traversal

• Heap Overflow In MessageChannelEnumerate



Pepper Proxy Source Audit
• Length calculations are difficult with serialized binary data

• The pepper proxy and SRPC glue code is tricky

• Callbacks and channel related structures need to be 
tracked

• Confusion over who validates data can lead to 
vulnerabilities

• PPAPI implementation vs proxy receiver stub



Pepper Proxy Source Audit
• Successful exploitation of a vulnerability in the pepper 
proxy allows arbitrary code execution in the renderer

• Inner sandbox has been defeated

• Chrome renderer sandbox is still enforced

• This is not exactly equivalent to a WebKit/V8 bug

• The pepper proxy exposes more interfaces at a lower 
level



Chrome Shaker
• A pepper proxy fuzzer

• Developed under contract to Google January 2012

• Joint project with Matasano Security (Cody Brocious)

• Google deployed it in their fuzzing farm

• https://code.google.com/p/chrome-shaker/



Chrome Shaker
• Simple NEXE template in C++

• NEXE glue code, random numbers, memory etc...

• Python tool that parses pepper proxy IDL files

• Generates C++ into the basic template

• Sets up each PPAPI interface in the ‘C’ style

• Calls interfaces in random order with random arguments



Chrome Shaker
• Fuzzing from a NEXE is not easy

• You can’t log to disk

• How do you write to disk from within two sandboxes?
• Use the interface (FileIO) that you’re currently fuzzing?
• We had to resort to STDOUT

• You need a constant source of random data
• We cheated and call into JavaScript for window.crypto

• Some code paths require calling interfaces in order
• We have an API dependency file in yaml for this



The Conclusion
• NaCl is trying to solve a difficult problem

• NaCl is not ActiveX or NPAPI

• NaCl research into SFI and the inner sandbox will 
influence future sandbox designs with similar goals

• As the attack surface grows more implementation 
vulnerabilities may be found in trusted code

• The NaCl design helps to mitigate their impact

• Enable Chrome’s Click-To-Play



The End

Questions?

leafsr.com
Chris.Rohlf@gmail.com



BlackHat Survey

Please fill out the BlackHat survey!


