
Lessons In Static
Binary Analysis

Christien Rioux, Chief Scientist

Declaration of Vast Oversimplifications

ü  We take an Intel 32-bit specific view of the world for convenience. Nothing
presented here is truly platform specific however.

ü  We take a C/C++ bias in these slides. Java is similar but usually simpler. C# is
similar.

ü  The research to build the system described has taken over 5 years of effort to
develop and 5 more to implement correctly.

ü  We’ve built the system to be retargetable, resourceable, and pluggable. We
don’t go into architecture specifically here, focusing specifically on design and
algorithms.

2

Boring Stuff First: Yes, It’s Patented

3

What I’m describing here is effectively covered by U.S. Patent #7051322
and #7752609.

Patented material is published by design, don’t expect any ‘trade secrets’
in this discussion.

If we didn’t patent it, it’s publically available from other places, and there
are references to those works.

Components of Static Binary Analysis

ü Binary Modeler

ü Intermediate
Representation

ü Model Querying
and Condition
Searching System

4

Intermediate Representation

What is an
Intermediate

Representation?
An intermediate representation is a data structure that is transformable, and
represents language and architectural elements used to build software.

Many compilers use multiple intermediate representations such as:
•  Abstract Syntax Trees (ASTs)
•  Register Transfer Languages (RTLs)
•  Single Static Assignment Trees (SSAs)
•  Compiler-specific IRs, such as LLVM IR, GCC Trees, MSVC internal IR
•  Research IRs from various educational institutions, SPARK, SCORE, Pegasus,

etc.
•  Reverse-Engineering oriented IRs such as REIL

6

Designing a Good IR Is
Really Important.

You may not want to pick up someone else’s IR.

Building your own will help you ensure that what you have can
represent everything you want it to represent.

If you choose to build your own, pay attention to every little detail,
because it’s going to matter down the line. Every little bit.

Lesson #1:
Most IRs are not built for transformation, or

optimized for memory usage. Expect this to be
custom work.

7

Desirable Characteristics for an IR

•  Attention to Size and Speed
•  Don’t over-optimize too soon, but expect to have to do this, so ensure your design is optimizable

at some point once you have things working!

•  Debuggability And Readability
•  You’re going to be staring at this thing wonder what went wrong. Make sure you can export,

search and read pieces of the IR manually.

•  Complete Language Support
•  Every language element

•  Every architectural element

•  Type information

•  Debug information

•  Superset of all languages

•  Single Uniform IR
•  Represent everything only one way

•  Represent low and high level elements in the same IR

8

Why a Single, Uniform IR?
Remember, you’re transforming the IR as you go from low to high level
representation. If your transformation process is required to ‘discover’ all of
the possible places in the binary that are code and decode them, then you
are going to have high level stuff sitting along side low level stuff, likely in
the same procedure, adjacent to each other. If you have one IR, you don’t
have to ‘revert’ the high level stuff to incrementally decode the program.

Lesson #2:

Without a single uniform IR, you end up throwing away
all of your work when you discover new code.

9

Hierarchical Scoped Model

The IR should look like a tree with internal linkage
and a direct parent to child relationship. This allows
language elements to contain other language
elements, and ‘refer’ to other elements via pointer or
‘id’, minimizing duplication.

10

Low Level Language Elements
•  Registers/Flags
•  Sequences
•  Expressions

•  Immediates
•  Register/Object References
•  Memory Dereferences

•  Statements
•  ‘Call/Return’ semantics
•  Evaluations

•  Low-Level Types And Data Formats
•  Spans
•  Ints
•  Floats

•  Idiomatic Operations
•  Block copies
•  Indexing

11

High Level Language
Elements

•  Types
•  Classes
•  Prototypes

•  Objects
•  Variables
•  Procedures

•  Namespaces
•  Named
•  Anonymous

•  Templates
•  More useful than you’d think!

12

13

Expressions and Statements
Statements are sequentially executed pieces of code. They perform expression
evaluations and are the root of control flow in the system. They should perform a
minimum of data flow, leaving much of that to the expressions:

EVAL, CALL, RETURN, TRAP, TRAPRET, THROW, LOOP, SWITCH, IFELSE,
etc

Expressions are hierarchical and represent arithmetic and perform dataflow
operations, minimizing the amount of control flow:

 ((a+b)+foo(3)) is an expression

Immediates, Operations, Object References, etc.

14

7/13/12 15

7/13/12 16

7/13/12 17

Namespaces And Sequences
Namespaces are used to keep collections of objects in an unordered fashion.

Sequences are used to keep collections of objects in an ordered fashion.

Namespaces can be anonymous or named. Sequences in theory could be
named, but using LABEL statements makes moving control flow targets
around a lot easier than reparenting and splitting sequences.

Sequences are useful for building basic block graphs.

Namespaces are useful for segmenting code by image, object file, source file,
or whatever divisions are convenient.

18

7/13/12 19

7/13/12 20

Objects And Types
Objects are things like:

•  Variables

•  Procedures

•  Registers

They have the property that they all have ‘types’

Also, these things can actually be referenced.

Types are things like:

•  Classes, the ‘type’ of a Variable

•  Prototypes, the ‘type’ of a procedure

Registers are generally considered ‘typeless’, but could be considered to be ‘spans’ of
opaque bits. Either way works.

21

7/13/12 22

7/13/12 23

Variables
Variables are a high level construct because they can be free of low level
representation.

The link between a variable and its ‘low level representation’ is called a
‘match’ expression. For a variable ‘int x’, the match expression could be
[esp-16] or EAX.

Effectively, you should be able to drop in a variable’s match expression any
place the variable is referenced and achieve the same meaning.

At high-level representation, we don’t care about the match expressions any
more, more on that in a bit.

24

7/13/12 25

Procedures
A procedure is a function, lambda, block, etc… the base unit of interprocedural control
flow, which is the mechanism by which ‘CALL’ statements and ‘RETURN’ statements
operate.

Procedures have the property that they are usually named, and have a fixed or variable
number of arguments and/or returns.

The arguments and returns to procedures are actually variables, whose location is
shared with that of the calling procedure. This allows a ‘call stack’ to share variables in
what is called a ‘frame’.

Procedure frames are discussed later in the ‘variablization’ section where we describe
where variables come from.

26

Templates
Templates are blocks of IR scopes that are made ‘generic’ and ‘instantiable’
with the usage of ‘template variables’. Instantiating a template duplicates
the ‘base specialization’ and replaces the ‘template variable references’ with
‘instance expressions’. Got that?

Lesson #3:

If you use templates to represent things like integer
types, you can have int<32> and int<16> be distinct
objects in your hierarchy, allowing for very specific

precision without complex ‘type selectors’.

27

What Should A Good IR
Enable?

Dataflow Analysis
Controlflow Analysis
Expression And Statement Manipulation
Serialization In Parts and as a Whole
Debugging!!

Also:

Lesson #4
If you’re going to make your system multithreaded, you

should start with a thread-safe IR.

28

Dataflow Representation
A good IR enables a dataflow representation, such as a Def-Use graph or a
Def-Kill graph. The IR should allow these graphs to be built easily and
reference the variables and their definitions and uses.

Call graphs that show the interprocedural connections are also especially
useful.

Lesson #5:

Do yourself a favor, and don’t make a DU graph that
incrementally updates itself. Batch your IR edits and

make the DU graphs read only, it’s way faster that way.

29

7/13/12 30

Control Flow Representation
Control flow should be flexible. You’re going to be editing this a lot. Make
distinct interprocedural and intraprocedural control flow.

Low level control flow should be simple.
High level control flow is not going to be.

Lesson #6:

Build a ‘cursor’ object that works like a ‘program
counter’. Something that you can point into the IR and

step forward and backward in execution order. This
will make building your graphs way easier.

31

7/13/12 32

7/13/12 33

Expression and Statement
Manipulation

If you design your statements to be effectively linear-flow non-hierarchical
entities, and use ‘sequences’ to provide hierarchy, statements are easier to
manage. That’s pretty clear.

But also:

Lesson #7:

If you ensure that no expressions can be referenced
outside of a parent-child relationship, you can

manipulate them much easier without worrying about
managing back-references.

34

7/13/12 35

Serialization
Make sure you can write out your IR to disk in both binary
and text formats and load it back up into memory.

At various points you’ll want to checkpoint the IR you’ve
built, because this process can take a long time and you
don’t want to have to start all over if you run out of
memory or something.

Also, debugging, environments, and just about every kind
of reporting will want to use this at some point.

36

The Constraints Of The Real
World

Vector math
Extreme use of templates

Optimization…

Lesson #8

You must implement every language element
because you will encounter all of the things.

37

Binary Modeling

Compilers Make
Assumptions

Lesson #9:

Because the modeler takes in the output of a compiler,
not arbitrary input, you can use the assumptions the

compiler makes to your advantage.

For example, on MSVC x86 you can assume the call mechanism uses the
stack and the stack goes backward, and that external functions follow a set
of known calling conventions, such as stdcall, fastcall, cdecl, etc, but that
non-external functions can have arbitrary calling conventions including
passing parameters in registers.

39

Inputs To The
Modeler

•  Executables
•  Linked Libraries
•  Environments
•  Debug Symbols

If any of these are missing, the quality or readability of the output will be
reduced. With no environments, for example, you will only have the names
of operating system functions, not their parameters. With no debug
symbols, you will have no line number information and original variable
names.

Environments are not necessary on some platforms with extremely
descriptive external linkage such as .NET and JAVA.

40

Describe: Environments
When performing the modeling, one must know when to stop. The output
generated could include system libraries, or the kernel or other outlandish
components that would normally be considered undesirable to model every
single time.

Environments are a pairing of two things:
•  External dependencies
•  Type information for the edge of those dependencies

Environments require a ‘type information compiler’ of some sort to generate
meaningful type information on the edge between the user code and the
‘environment’.

41

Environment Compilation
 Compiling environments for MSVC x86 C++ looks like this:

•  Build a list of DLLs
•  Find all of the header files that the compiler would use to allow

you to link those things in your code
•  Compile the header files into the IR format
•  Pair the IR objects up with the DLL exports by signature
•  Export the DLL IR images to an archive for later retrieval

This process is more complicated for lower level languages like C.

42

The Modeling Pipeline

ü Frontend Environment Loader
ü Dataflow Transformer
ü Dataflow Optimizer
ü Control Flow Transformer
ü Optional: Backend Source Generation

43

Platform-Specific Front End
Loader

•  Load all the images and all their dependencies and all dependent environment files
•  Pull in any detected debug symbols and create IR objects from them to seed the modeling process
•  Use entry points, export tables, RTTI information, ELF symbol tables, mangled names and

whatever else you happen to have laying around to create even more IR objects and mark places to
start instruction decoding.

The Veracode ‘demangler’ takes all the weird names in PE executables and creates objects:

?_Init@?$basic_streambuf@DU?$char_traits@D@std@@@std@@IAEXPAPAD0PAH001@Z

protected:

void __thiscall std::basic_streambuf<char,struct std::char_traits<char>
>::_Init(char * *,char * *,int *,char * *,char * *,int *))

44

Dataflow Transformer

•  Import
•  Variablization
•  Propagation And Merging
•  Code Discovery
•  Call Conversion
•  Reference Conversion

45

Import
During this phase, we iteratively decode instructions from places where we
have determined the instruction pointer can reach.

Specifically, we’ll start with entry points, and build basic blocks connecting
all well known control flow into a basic block and procedure graph.

This will not find all of the code, since indirect control flow such as jumping
to registers and memory dereferences can not be easily sussed out until later
in the process.

That’s okay. Just decode everything you can until you find you can’t.

46

7/13/12 47

Variablization
Variablization is the process by which real variables are created to represent low level
register and memory access.

We start by creating a whole variable for each def/use ‘site’ in the program. Sites are
registers accesses, in whole or in part, and memory dereferences.

proc Foo {
EAX := ESP
EAX := EAX+16
EBX := *EAX….

Can you find all the sites?
How many variables get created at first?

48

7/13/12 49

Variablizing Stack Variables
The trick here is to measure all allocated variables that are on the stack with
reference to the base of the stack frame. Specifically, ESP at the entry point
of the procedure. The compiler lays out stack frames with regard to a
particular frame ‘base’. Don’t rely on ‘EBP’ or some other register that may
be optimized away.

EBP is set to ESP at the top of the procedure!

Just forward substitute and/or use range propagation to figure out what
ESP offset is in your dereference, and use that to measure where the stack
variables live in the frame, and what their match expression really is J

50

7/13/12 51

Propagation And Merging
The goal of variablization is to create as many variables as necessary to represent
correct data flow, but no more than that if possible.
We start by creating many variable sites and then propagating definitions downward
across the control flow graph, and where they meet overlapping match expressions on
use sites we merge the two variables together.

This is similar to ‘Single Static Assignment’ form generation.

Lesson #10:

Variablization is like SSA form, except instead of generating
phi functions, actually merge the variables together to form a

single variable.

52

7/13/12 53

Interprocedural Propagation
The same kind of propagation done to link defs and uses can be used
to propagate defs that reach the end of the procedure up to call sites,
and uses that reach the top of the procedure up to call sites.

Across the call site, we translate the match expression using the call
sites’ values for things like frame bases such as ESP, such that the
defs and uses are represented in the callers’ contexts.

When those propagations merge with sites in the caller, they
become arguments and return values for the procedures in the
propagation chain.

54

7/13/12 55

7/13/12 56

Code Discovery
Code discovery is the process by which we take indirect jumps and calls and figure out
where they could possibly go.

 Indirect jumps are going to turn into switch statements most of the time. Finding
their targets is an expression analysis and some table lookups, followed by
simplification.

 Indirect calls require type information at the call, either constructed or from
debug symbols to determine how the calls go from source to destination, the calling
convention.

Lesson #11:

The compiler didn’t know where virtual function calls were
going when it built the binary, and you don’t need to know
where the calls are going either, just HOW they go there.

57

Call Conversion
Call conversion takes all of the CALL statements and turns them
into Operation expressions.

Also, it fixes the variables that are prototype arguments and
returns and puts that prototype on discovered procedures.

Calls that go to many places have an expression that says where
they go, and that can get handled by aggregation later in the
process once we have more type information propagated around.

This effectively determines the calling convention for procedures
where it is unknown.

58

7/13/12 59

Reference Conversion
When you have a complex expression, such as &A[100].b[2].c, it starts off
life as a reference inside of ‘A’, such as *(&A+812)
And that starts off as *(EAX+824) perhaps.

Using a range propagator, we can put EAX in terms of the ESP at the top of
the procedure and get something like this:

*((ESP+12)+812)

Determining that ESP+12 is the address of the variable A on the stack is the
job of the reference conversion system. This is done after variablization not
during it, since it doesn’t affect how we find the variables in the first place.

60

7/13/12 61

Type Voting
Propagation Propagation Propagation Propagation !

We take all of the type information that is loose in the system, and try to minimize the
amount of casts that required to represent it.
For example, A=B+C can be represented with no casts at all if A is the same type as B
and C. If A were something completely different, then we would have A=(int)(B+C),
which would be suboptimal if we could change the type of A.

In this sense , casts do not perform extra operations such as bit extracts or sign
extensions, they just change types from one thing of the same bit width to another.

Balancing this across the entire IR graph is an interesting problem J

62

7/13/12 63

7/13/12 64

Dataflow Optimizations
•  Aggregation
•  Match Expression Removal
•  Copy Constant Propagation
•  Expression Forwarding
•  Algebraic Simplification
•  Dead Code Elimination
•  Unused Variable Elimination
•  Variable Merging
•  Idiomatic Pattern Replacements

65

Aggregation
Aggregation takes low level dereference and reference expressions and turns them in
to high level object references:

For example:
*(&foo+var*4+16) becomes foo[var].b

Class objects like ‘A.b’ and arrays ‘foo[var]’ must be considered in the structuring.

Open problem: How do you know when you’re referencing a
variable or the first member of its class, ie &(A.a) versus &A ?

66

7/13/12 67

Match Expression Removal
Match expressions bind variables to their low-level
representations.

To truly become high-level, we eliminate match expressions once
we’re fully variablized and merged because they cease to have
meaning for the transformation.

This also allows us to perform further merging since the
requirement of keeping specific low-level memory or registers
allocated is no longer necessary.

68

7/13/12 69

Copy Propagation and Expression Forwarding

From Wikipedia: http://en.wikipedia.org/
wiki/Copy_propagation

In compiler theory, copy propagation is the
process of replacing the occurrences of targets of
direct assignments with their values[1]. A direct
assignment is an instruction of the form x = y,
which simply assigns the value of y to x.

From the following code:

y = x

z = 3 + y

Copy propagation would yield:

z = 3 + x

70

Copy propagation often makes use of
reaching definitions, use-def chains and
def-use chains when computing which
occurrences of the target may be safely
replaced. If all upwards exposed uses of
the target may be safely modified, the
assignment operation may be eliminated.

Copy propagation is a useful "clean up"
optimization frequently used after other
optimizations have already been run.
Some optimizations -- such as elimination
of common sub expressions[1] -- require
that copy propagation be run afterwards
in order to achieve an increase in
efficiency.

7/13/12 71

Algebraic Simplification
Forward substitution can lead to many complicated expressions like:
(((((A+1)+1)+1)+1…, which could easily be A+4 instead.

More complicated transformations such as associativity and commutivity
rules can be applied to find a better and canonical form for a simplification

Lesson 12:

Find a canonical representation when you simplify. If
you get A+1 or 1+A, pick a sort for your output so all
simplifications that can end up the same end up the

same.

72

7/13/12 73

Variable Merging
Variables are merged in the variablizer, but some variable merging can not be done at
that time unless the match expressions are released.
If you were to do the following:
A := B
C := A

And there were no references to A anywhere else, or B or C, they could all become D:=
D and then be eliminated. This clears up a lot of intermediate variables.

You’ll want to keep tabs on which variables are ‘debug symbol’ variables in the event
that you wish to keep around things to make the output look as close as possible to the
original input.

74

Idiomatic Pattern
Replacements

•  64 bit arithmetic done as 32 bit chunks
•  Unrolled memory block copies
•  Inlined functions such as strcpy,memcpy, strlen,etc
•  Architecture specific patterns

•  Complex comparisons
•  Floating point comparisons
•  Divide by power of two

•  Language specific patterns
•  New/delete
•  Alloca
•  Static casts through virtual bases
•  Exception throw
•  Etc

75

7/13/12 76

Controlflow Transformer
•  Interval Analysis
•  2-Way Conditionals
•  N-Way Conditionals
•  Unconditional Jumps

•  Break (‘Exit’)
•  Continue (‘Cycle’)
•  Goto

•  Longjumps
•  Exception Handling

•  Goto from catch
•  Re-throw from catch
•  Nested exceptions

77

7/13/12 78

Interval Analysis
From Cifuentes, 1994:

Interval:

Given a node h, an interval I(h) is the maximal, single-entry subgraph in
which h is the only entry node and in which all closed paths contain h. The
unique interval node h is called the interval head or simply the header
node.

For a great reference on building a CFT, look at Cifuentes’ doctoral thesis:

http://www.phatcode.net/res/228/files/decompilation_thesis.pdf

79

What does an interval look like?

80

From Cifuentes, 1994

7/13/12 81

Types of Reducible Intervals

82

From Cifuentes, 1994

This gets very complicated.

Again, I recommend looking at the Cifuentes thesis on this subject
matter if you intend to get into interval graph theory.

It’s hairy stuff with a lot of edge cases and maddening to debug.

http://www.phatcode.net/res/228/files/decompilation_thesis.pdf

83

Exception Handling

Stack based exception handling and table based exception
handling both require special compiler specific handling.

Lesson #14:

It’s easiest to do most of your exception handling
at the dataflow stage, not the control flow stage!
You can do this right after variablization most of

the time.

84

