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Declaration of Vast Oversimplifications 

ü  We take an Intel 32-bit specific view of the world for convenience. Nothing 
presented here is truly platform specific however. 

ü  We take a C/C++ bias in these slides. Java is similar but usually simpler. C# is 
similar. 

ü  The research to build the system described has taken over 5 years of effort to 
develop and 5 more to implement correctly. 

ü  We’ve built the system to be retargetable, resourceable, and pluggable. We 
don’t go into architecture specifically here, focusing specifically on design and 
algorithms. 
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Boring Stuff First: Yes, It’s Patented 

3 

  

 
What I’m describing here is effectively covered by U.S. Patent #7051322 
and #7752609. 
 
 
Patented material is published by design, don’t expect any ‘trade secrets’ 
in this discussion.  
 
 
If we didn’t patent it, it’s publically available from other places, and there 
are references to those works. 
 



Components of Static Binary Analysis 

ü Binary Modeler 

ü Intermediate 
Representation 

ü Model Querying 
and Condition 
Searching System 
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Intermediate Representation 



What is an 
Intermediate 

Representation? 
An intermediate representation is a data structure that is transformable, and 
represents language and architectural elements used to build software. 
 
Many compilers use multiple intermediate representations such as: 
•  Abstract Syntax Trees (ASTs) 
•  Register Transfer Languages (RTLs) 
•  Single Static Assignment Trees (SSAs) 
•  Compiler-specific IRs, such as LLVM IR, GCC Trees, MSVC internal IR 
•  Research IRs from various educational institutions, SPARK, SCORE, Pegasus, 

etc. 
•  Reverse-Engineering oriented IRs such as REIL 
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Designing a Good IR Is 
Really Important. 

You may not want to pick up someone else’s IR.  
 
Building your own will help you ensure that what you have can 
represent everything you want it to represent.  
 
If you choose to build your own, pay attention to every little detail, 
because it’s going to matter down the line. Every little bit. 
 

Lesson  #1: 
Most IRs are not built for transformation, or 

optimized for memory usage. Expect this to be 
custom work. 
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Desirable Characteristics for an IR 

•  Attention to Size and Speed  
•  Don’t over-optimize too soon, but expect to have to do this, so ensure your design is optimizable 

at some point once you have things working! 

•  Debuggability And Readability 
•  You’re going to be staring at this thing wonder what went wrong. Make sure you can export, 

search and read pieces of the IR manually. 

•  Complete Language Support 
•  Every language element 

•  Every architectural element 

•  Type information 

•  Debug information 

•  Superset of all languages 

•  Single Uniform IR 
•  Represent everything only one way 

•  Represent low and  high level elements in the same IR 
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Why a Single, Uniform IR? 
Remember, you’re transforming the IR as you go from low to high level 
representation. If your transformation process is required to ‘discover’ all of 
the possible places in the binary that are code and decode them, then you 
are going to have high level stuff sitting along side low level stuff, likely in 
the same procedure, adjacent to each other. If you have one IR, you don’t 
have to ‘revert’ the high level stuff to incrementally decode the program. 
 
 

Lesson #2: 

Without a single uniform IR, you end up throwing away 
all of your work when you discover new code. 
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Hierarchical Scoped Model 

The IR should look like a tree with internal linkage 
and a direct parent to child relationship. This allows 
language elements to contain other language 
elements, and ‘refer’ to other elements via pointer or 
‘id’, minimizing duplication. 
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Low Level Language Elements 
•  Registers/Flags 
•  Sequences 
•  Expressions 

•  Immediates 
•  Register/Object References 
•  Memory Dereferences 

•  Statements 
•  ‘Call/Return’ semantics 
•  Evaluations 

•  Low-Level Types And Data Formats 
•  Spans 
•  Ints 
•  Floats 

•  Idiomatic Operations 
•  Block copies 
•  Indexing 
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High Level Language 
Elements 

•  Types 
•  Classes 
•  Prototypes 

•  Objects 
•  Variables 
•  Procedures 

•  Namespaces 
•  Named 
•  Anonymous 

•  Templates 
•  More useful than you’d think! 
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Expressions and Statements 
Statements are sequentially executed pieces of code. They perform expression 
evaluations and are the root of control flow in the system. They should perform a 
minimum of data flow, leaving much of that to the expressions: 

 

EVAL, CALL, RETURN, TRAP, TRAPRET, THROW, LOOP, SWITCH, IFELSE, 
etc 

 

Expressions are hierarchical and represent arithmetic and perform dataflow 
operations, minimizing the amount of control flow: 

 

 ((a+b)+foo(3)) is an expression 

Immediates, Operations, Object References, etc. 
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Namespaces And Sequences 
Namespaces are used to keep collections of objects in an unordered fashion. 
 
Sequences are used to keep collections of objects in an ordered fashion. 
 
Namespaces can be anonymous or named. Sequences in theory could be 
named, but using LABEL statements makes moving control flow targets 
around a lot easier than reparenting and splitting sequences. 
 
Sequences are useful for building basic block graphs. 
 
Namespaces are useful for segmenting code by image, object file, source file, 
or whatever divisions are convenient. 
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Objects And Types 
Objects are things like: 

•  Variables 

•  Procedures 

•  Registers 

They have the property that they all have ‘types’ 

Also, these things can actually be referenced. 

 

Types are things like: 

•  Classes, the ‘type’ of a Variable 

•  Prototypes, the ‘type’ of a procedure 

Registers are generally considered ‘typeless’, but could be considered to be ‘spans’ of 
opaque bits. Either way works. 
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Variables 
Variables are a high level construct because they can be free of low level 
representation.  
 
The link between a variable and its ‘low level representation’ is called a 
‘match’ expression. For a variable ‘int x’, the match expression could be 
[esp-16] or EAX. 
 
Effectively, you should be able to drop in a variable’s match expression any 
place the variable is referenced and achieve the same meaning. 
 
At high-level representation, we don’t care about the match expressions any 
more, more on that in a bit. 
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Procedures 
A procedure is a function, lambda, block, etc… the base unit of interprocedural control 
flow, which is the mechanism by which ‘CALL’ statements and ‘RETURN’ statements 
operate.  
 
Procedures have the property that they are usually named, and have a fixed or variable 
number of arguments and/or returns.  
 
The arguments and returns to procedures are actually variables, whose location is 
shared with that of the calling procedure. This allows a ‘call stack’ to share variables in 
what is called a ‘frame’.  
 
Procedure frames are discussed later in the ‘variablization’ section where we describe 
where variables come from. 
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Templates 
Templates are blocks of IR scopes that are made ‘generic’ and ‘instantiable’ 
with the usage of ‘template variables’. Instantiating a template duplicates 
the ‘base specialization’ and replaces the ‘template variable references’ with 
‘instance expressions’. Got that?  
 

Lesson #3: 
 

If you use templates to represent things like integer 
types, you can have int<32> and int<16> be distinct 
objects in your hierarchy, allowing for very specific 

precision without complex ‘type selectors’. 
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What Should A Good IR 
Enable? 

Dataflow Analysis 
Controlflow Analysis 
Expression And Statement  Manipulation 
Serialization In Parts and as a Whole 
Debugging!! 
 
Also: 

Lesson #4 
If you’re going to make your system multithreaded, you 

should start with a thread-safe IR. 
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Dataflow Representation 
A good IR enables a dataflow representation, such as a Def-Use graph or a 
Def-Kill graph. The IR should allow these graphs to be built easily and 
reference the variables and their definitions and uses.  
 
Call graphs that show the interprocedural connections are also especially 
useful. 
 

Lesson #5: 

Do yourself a favor, and don’t make a DU graph that 
incrementally updates itself. Batch your IR edits and 

make the DU graphs read only, it’s way faster that way. 
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Control Flow Representation 
Control flow should be flexible. You’re going to be editing this a lot. Make 
distinct interprocedural and intraprocedural control flow.  
 
Low level control flow should be simple. 
High level control flow is not going to be. 
 

Lesson #6: 

Build a ‘cursor’  object that works like a ‘program 
counter’. Something that you can point into the IR and 

step forward and backward in execution order. This 
will make building your graphs way easier. 
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Expression and Statement 
Manipulation 

If you design your statements to be effectively linear-flow non-hierarchical 
entities, and use ‘sequences’ to provide hierarchy, statements are easier to 
manage. That’s pretty clear. 
 
But also: 
 

Lesson #7: 

If you ensure that no expressions can be referenced 
outside of a parent-child relationship, you can 

manipulate them much easier without worrying about  
managing back-references. 
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Serialization 
Make sure you can write out your IR to disk in both binary 
and text formats and load it back up into memory. 
 
At various points you’ll want to checkpoint the IR you’ve 
built, because this process can take a long time and you 
don’t want to have to start all over if you run out of 
memory or something. 
 
Also, debugging, environments, and just about every kind 
of reporting will want to use this at some point. 
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The Constraints Of The Real 
World 

Vector math 
Extreme use of templates 

Optimization… 
 
 
 

Lesson #8 

You must implement every language element 
because you will encounter all of the things. 
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Binary Modeling 



Compilers Make 
Assumptions 

Lesson #9: 
 

Because the modeler takes in the output of a compiler, 
not arbitrary input, you can use the assumptions the 

compiler makes to your advantage. 
 

For example, on MSVC x86 you can assume the call mechanism uses the 
stack and the stack goes backward, and that external functions follow a set 
of known calling conventions, such as stdcall, fastcall, cdecl, etc, but that 
non-external functions can have arbitrary calling conventions including 
passing parameters in registers. 
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Inputs To The  
Modeler 

•  Executables 
•  Linked Libraries 
•  Environments 
•  Debug Symbols 

If any of these are missing, the quality or readability of the output will be 
reduced. With no environments, for example, you will only have the names 
of operating system functions, not their parameters. With no debug 
symbols, you will have no line number information and original variable 
names. 
 
Environments are not necessary on some platforms with extremely 
descriptive external linkage such as .NET and JAVA. 
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Describe: Environments 
When performing the modeling, one must know when to stop. The output 
generated could include system libraries, or the kernel or other outlandish 
components that would normally be considered undesirable to model every 
single time. 
 
Environments are a pairing of two things: 
•  External dependencies 
•  Type information for the edge of those dependencies 

Environments require a ‘type information compiler’ of some sort to generate 
meaningful type information on the edge between the user code and the 
‘environment’. 
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Environment Compilation 
 Compiling environments for MSVC x86 C++ looks like this: 
 
•  Build a list of DLLs 
•  Find all of the header files that the compiler would use to allow 

you to link those things in your code 
•  Compile the header files into the IR format  
•  Pair the IR objects up with the DLL exports by signature 
•  Export the DLL IR images to an archive for later retrieval 

This process is more complicated for lower level languages like C. 
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The Modeling Pipeline 

ü Frontend Environment Loader 
ü Dataflow Transformer 
ü Dataflow Optimizer 
ü Control Flow Transformer 
ü Optional: Backend Source Generation 
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Platform-Specific Front End 
Loader 

•  Load all the images and all their dependencies and all dependent environment files 
•  Pull in any detected debug symbols and create IR objects from them to seed the modeling process 
•  Use entry points, export tables, RTTI information, ELF symbol tables, mangled names and 

whatever else you happen to have laying around to create even more IR objects and mark places to 
start instruction decoding. 

The Veracode ‘demangler’ takes all the weird names in PE executables and creates objects: 

 
?_Init@?$basic_streambuf@DU?$char_traits@D@std@@@std@@IAEXPAPAD0PAH001@Z 

  

protected:  

void __thiscall std::basic_streambuf<char,struct std::char_traits<char> 
>::_Init(char * *,char * *,int *,char * *,char * *,int *)) 
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Dataflow Transformer 

•  Import 
•  Variablization 
•  Propagation And Merging 
•  Code Discovery 
•  Call Conversion 
•  Reference Conversion 
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Import 
During this phase, we iteratively decode instructions from places where we 
have determined the instruction pointer can reach.  
 
Specifically, we’ll start with entry points, and build basic blocks connecting 
all well known control flow into a basic block and procedure graph.  
 
This will not find all of the code, since indirect control flow such as jumping 
to registers and memory dereferences can not be easily sussed out until later 
in the process. 
 
That’s okay. Just decode everything you can until you find you can’t. 
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Variablization 
Variablization is the process by which real variables are created to represent low level 
register and memory access.  
 
We start by creating a whole variable for each def/use ‘site’ in the program. Sites are 
registers accesses, in whole or in part, and memory dereferences. 
 
proc Foo { 
EAX := ESP 
EAX := EAX+16 
EBX := *EAX…. 
 
Can you find all the sites? 
How many variables get created at first? 
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Variablizing Stack Variables 
The trick here is to measure all allocated variables that are on the stack with 
reference to the base of the stack frame. Specifically, ESP at the entry point 
of the procedure. The compiler lays out stack frames with regard to a 
particular frame ‘base’. Don’t rely on ‘EBP’ or some other register that may 
be optimized away. 
 
EBP is set to ESP at the top of the procedure! 
 
Just forward substitute and/or use range propagation to figure out what 
ESP offset is in your dereference, and use that to measure where the stack 
variables live in the frame, and what their match expression really is J 
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Propagation And Merging 
The goal of variablization is to create as many variables as necessary to represent 
correct data flow, but no more than that if possible.  
We start by creating many variable sites and then propagating definitions downward 
across the control flow graph, and where they meet overlapping match expressions on 
use sites we merge the two variables together.  
 
This is similar to ‘Single Static Assignment’ form generation.  
 

Lesson #10: 

Variablization is like SSA form, except instead of generating 
phi functions, actually merge the variables together to form a 

single variable. 
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Interprocedural Propagation 
The same kind of propagation done to link defs and uses can be used 
to propagate defs that reach the end of the procedure up to call sites, 
and uses that reach the top of the procedure up to call sites. 
 
Across the call site, we translate the match expression using the call 
sites’ values for things like frame bases such as ESP, such that the 
defs and uses are represented in the callers’ contexts. 
 
When those propagations merge with sites in the caller, they 
become arguments and return values for the procedures in the 
propagation chain. 
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Code Discovery 
Code discovery is the process by which we take indirect jumps and calls and figure out 
where they could possibly go. 

 Indirect jumps are going to turn into switch statements most of the time. Finding 
their targets is an expression analysis and some table lookups, followed by 
simplification. 

 Indirect calls require type information at the call, either constructed or from 
debug symbols to determine how the calls go from source to destination, the calling 
convention.  
 

Lesson #11: 

The compiler didn’t know where virtual function calls were 
going when it built the binary, and you don’t need to know 
where the calls are going either, just HOW they go there. 
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Call Conversion 
Call conversion takes all of the CALL statements and turns them 
into Operation expressions. 
 
Also, it fixes the variables that are prototype arguments and 
returns and puts that prototype on discovered procedures. 
 
Calls that go to many places have an expression that says where 
they go, and that can get handled by aggregation later in the 
process once we have more type information propagated around. 
 
This effectively determines the calling convention for procedures 
where it is unknown. 
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Reference Conversion 
When you have a complex expression, such as &A[100].b[2].c, it starts off 
life as a reference inside of ‘A’, such as *(&A+812) 
And that starts off as *(EAX+824) perhaps. 
 
Using a range propagator, we can put EAX in terms of the ESP at the top of 
the procedure and get something like this: 
 
*((ESP+12)+812) 
 
Determining that ESP+12 is the address of the variable A on the stack is the 
job of the reference conversion system. This is done after variablization not 
during it, since it doesn’t affect how we find the variables in the first place. 
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Type Voting 
Propagation Propagation Propagation  Propagation ! 
 
We take all of the type information that is loose in the system, and try to minimize the 
amount of casts that required to represent it. 
For example, A=B+C can be represented with no casts at all if A is the same type as B 
and C. If A were something completely different, then we would have A=(int)(B+C), 
which would be suboptimal if we could change the type of A.  
 
In this sense , casts do not perform extra operations such as bit extracts or sign 
extensions, they just change types from one thing of the same bit width to another. 
 
Balancing this across the entire IR graph is an interesting problem J 
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Dataflow Optimizations 
•  Aggregation 
•  Match Expression Removal 
•  Copy Constant Propagation 
•  Expression Forwarding 
•  Algebraic Simplification 
•  Dead Code Elimination 
•  Unused Variable Elimination 
•  Variable Merging 
•  Idiomatic Pattern Replacements 
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Aggregation 
Aggregation takes low level dereference and reference expressions and turns them in 
to high level object references: 
 
For example: 
*(&foo+var*4+16) becomes foo[var].b 
 
Class objects like ‘A.b’ and arrays ‘foo[var]’ must be considered in the structuring. 
 

Open problem: How do you know when you’re referencing a 
variable or the first member of its class, ie &(A.a) versus &A ? 
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Match Expression Removal 
Match expressions bind variables to their low-level 
representations.  
 
To truly become high-level, we eliminate match expressions once 
we’re fully variablized and merged because they cease to have 
meaning for the transformation.  
 
This also allows us to perform further merging since the 
requirement of keeping specific low-level memory or  registers 
allocated is no longer necessary. 
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Copy Propagation and Expression Forwarding 

From Wikipedia: http://en.wikipedia.org/
wiki/Copy_propagation 

In compiler theory, copy propagation is the 
process of replacing the occurrences of targets of 
direct assignments with their values[1]. A direct 
assignment is an instruction of the form x = y, 
which simply assigns the value of y to x. 

From the following code: 

y = x  

z = 3 + y 

Copy propagation would yield: 

z = 3 + x 
  

70 

Copy propagation often makes use of 
reaching definitions, use-def chains and 
def-use chains when computing which 
occurrences of the target may be safely 
replaced. If all upwards exposed uses of 
the target may be safely modified, the 
assignment operation may be eliminated. 
 
Copy propagation is a useful "clean up" 
optimization frequently used after other 
optimizations have already been run. 
Some optimizations -- such as elimination 
of common sub expressions[1] -- require 
that copy propagation be run afterwards 
in order to achieve an increase in 
efficiency. 
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Algebraic Simplification 
Forward substitution can lead to many complicated expressions like: 
(((((A+1)+1)+1)+1…, which could easily be A+4 instead. 
 
More complicated transformations such as associativity and commutivity 
rules can be applied to find a better and canonical form for a simplification 
 

Lesson 12: 

Find a canonical representation when you simplify. If 
you get A+1 or 1+A, pick a sort for your output so all 
simplifications that can end up the same end up the 

same. 
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Variable Merging 
Variables are merged in the variablizer, but some variable merging can not be done at 
that time unless the match expressions are released. 
If you were to do the following: 
A := B 
C := A 
 
And there were no references to A anywhere else, or B or  C, they could all become D:= 
D and then be eliminated. This clears up a lot of intermediate variables. 
 
You’ll want to keep tabs on which variables are ‘debug symbol’ variables in the event 
that you wish to keep around things to make the output look as close as possible to the 
original input. 
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Idiomatic Pattern 
Replacements 

•  64 bit arithmetic done as 32 bit chunks 
•  Unrolled memory block copies 
•  Inlined functions such as strcpy,memcpy, strlen,etc 
•  Architecture specific patterns 

•  Complex comparisons 
•  Floating point comparisons 
•  Divide by power of two 

•  Language specific patterns 
•  New/delete 
•  Alloca 
•  Static casts through virtual bases 
•  Exception throw 
•  Etc 
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Controlflow Transformer 
•  Interval Analysis 
•  2-Way Conditionals 
•  N-Way Conditionals 
•  Unconditional Jumps 

•  Break (‘Exit’) 
•  Continue (‘Cycle’) 
•  Goto 

•  Longjumps 
•  Exception Handling 

•  Goto from catch 
•  Re-throw from catch 
•  Nested exceptions 
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Interval Analysis 
From Cifuentes, 1994: 
 
Interval: 
 
Given a node h, an interval I(h) is the maximal, single-entry subgraph in 
which h is the only entry node and in which all closed paths contain h. The 
unique interval node h is called the interval head or simply the header 
node. 
 
For a great reference on building a CFT, look at Cifuentes’ doctoral thesis: 
 
http://www.phatcode.net/res/228/files/decompilation_thesis.pdf 
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What does an interval look like? 
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From Cifuentes, 1994 
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Types of Reducible Intervals 
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From Cifuentes, 1994 



This gets very complicated. 

 
Again, I recommend looking at the Cifuentes thesis on this subject 
matter if you intend to get into interval graph theory.  
 
It’s hairy stuff with a lot of edge cases and maddening to debug. 

 
http://www.phatcode.net/res/228/files/decompilation_thesis.pdf 
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Exception Handling 

Stack based exception handling and table based exception 
handling both require special compiler specific handling. 
 

Lesson #14: 
 

It’s easiest to do most of your exception handling 
at the dataflow stage, not the control flow stage! 
You can do this right after variablization most of 

the time. 
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