Advanced Chrome Extension Exploitation

Leveraging APl Powers for the Better Evil

Krzysztof Kotowicz
Kyle ‘Kos’ Osborn
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Note:

This slide deck version is fairly draft material. Please check out
the following website for the version that is presented:

http://kyleosborn.com/bh2012

Further updates to the white paper will be available
there also.
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http://kyleosborn.com/bh2012

Introductions

Krzysztof Kotowicz

IT security consultant at SecuRing

Kyle Osborn

Information Security Specialist at AppSec Consulting
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Chrome Extension Security

Common web vulnerabilities that effect higher
privileged applications.

Cross Site Scripting and Cross Site Request
Forgery are the most common vulnerabilities in
extensions.
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Chrome Extension Security

Currently, Chrome extension security is very
reliant on the developer.

Writing bad code is easy, giving extensions
more permissions than necessary is easier.
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Chrome Extension Security

Most commonly vulnerable:

RSS Readers

Note Extensions

Web Developer extensions
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Finger Printing

The simplest method of fingerprinting was described by
Krzysztof.

http://blog.kotowicz.net/2012/02/intro-to-chrome-
addons-hacking.html

Chrome-extension: URIs aren't (currently) restricted
from a website's DOM

It is simple to generate a list of known extensionIDs,
and bruteforce chrome-extension://ID/ resources to
discovered extensions
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Previous Research

Kotowicz
http://blog.kotowicz.net/2012/02/intro-to-
chrome-addons-hacking.html

UC Berkeley — Extension security evaluation
http://www.eecs.berkeley.edu/~afelt/extensionvul

Hacking Google ChromeOS (BH 2011)
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http://www.eecs.berkeley.edu/~afelt/extensionvulnerabilities.pdf

Examples/Demos

Slick RSS & Slick RSS: Feed Finder
Simple injection location (<link> tag title)

ol 2 https://5.kos.i0 3P O &y

Un-subscribe
| "background page":
"background.html", "content scripts": [ |
"1s": [ "feedfinder.js" ], "matches": |
"hitp://*/*", "https://*/*" ] } ],
"description”: "A companion extension
for Slick RSS, auto discovers RSS and

-
| bl | F

Subscribed to 'My Blog's RSS Feed 4
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Examples/Demos

c CONN) ¢ - -

The feed selected seems to be invalid. Please check
the URL.

Merdy Details
The response didn't have a valid responsexXhL

i "background page": property.
"background.html”, "browser action": |

"default icon": "transmit.png",
"default title": "Slick RSS" |,
"description”: "A full featured RSS reader
that's fully contained within the browser.",
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My Blog's R55 Feed
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Examples/Demos
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Automating Post-exploitation
Found <script>alert(1)</script> - Now what?
Use an automated tool to pillage and plunder

The Browser Exploitation Framework (BeEF)
does a great job hooking into DOMs

But — Need a special tool designed to take
advantage of Chrome Extension APIs.
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Automating Post-exploitation

Enter XSS ChEF
(Chrome Extension
Exploitation Framework)

ChEF

Designed from the ground up as a chrome

extension exploitation framework.

Fast (uses WebSockets)

Preloaded with automated attack scripts
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Automating Post-exploitation

Monitor open tabs of victims
Execute JS on every tab
Extract HTML

Read/write cookies

Access localStorage

Manipulate browser history ChEF
Take screenshots of tabs

Inject BeEF hooks / keyloggers
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Hopefully with the information provided,
exploiting Chrome Extensions can prove to be a
useful tactic in real life security assessments.
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The workshop portion will be released during
the presentation.
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