Advanced Chrome Extension Exploitation

Leveraging APl Powers for the Better Evil

Krzysztof Kotowicz
Kyle ‘Kos’ Osborn

g
RN o T
s e R s et
7‘; e
C :
b o

Note:

This slide deck version is fairly draft material. Please check out
the following website for the version that is presented:

http://kyleosborn.com/bh2012

Further updates to the white paper will be available
there also.

blégk o

S A 2012

http://kyleosborn.com/bh2012

Introductions

Krzysztof Kotowicz

IT security consultant at SecuRing

Kyle Osborn

Information Security Specialist at AppSec Consulting

blégk o

S A 2012

Chrome Extension Security

Common web vulnerabilities that effect higher
privileged applications.

Cross Site Scripting and Cross Site Request
Forgery are the most common vulnerabilities in
extensions.

blégk o

S A 2012

Chrome Extension Security

Currently, Chrome extension security is very
reliant on the developer.

Writing bad code is easy, giving extensions
more permissions than necessary is easier.

blégk o

S A 2012

Chrome Extension Security

Most commonly vulnerable:

RSS Readers

Note Extensions

Web Developer extensions

blégk o

S A 2012

Finger Printing

The simplest method of fingerprinting was described by
Krzysztof.

http://blog.kotowicz.net/2012/02/intro-to-chrome-
addons-hacking.html

Chrome-extension: URIs aren't (currently) restricted
from a website's DOM

It is simple to generate a list of known extensionIDs,
and bruteforce chrome-extension://ID/ resources to
discovered extensions

blégk o

S A 2012

Previous Research

Kotowicz
http://blog.kotowicz.net/2012/02/intro-to-
chrome-addons-hacking.html

UC Berkeley — Extension security evaluation
http://www.eecs.berkeley.edu/~afelt/extensionvul

Hacking Google ChromeOS (BH 2011)

blégk o

S A 2012

http://www.eecs.berkeley.edu/~afelt/extensionvulnerabilities.pdf

Examples/Demos

Slick RSS & Slick RSS: Feed Finder
Simple injection location (<link> tag title)

ol 2 https://5.kos.i0 3P O &y

Un-subscribe
| "background page":
"background.html", "content scripts": [|
"1s": ["feedfinder.js"], "matches": |
"hitp://*/*", "https://*/*"] }],
"description”: "A companion extension
for Slick RSS, auto discovers RSS and

-
| bl | F

Subscribed to 'My Blog's RSS Feed 4

S A 2012

Examples/Demos

c CONN) ¢ - -

The feed selected seems to be invalid. Please check
the URL.

Merdy Details
The response didn't have a valid responsexXhL

i "background page": property.
"background.html”, "browser action": |

"default icon": "transmit.png",
"default title": "Slick RSS" |,
"description”: "A full featured RSS reader
that's fully contained within the browser.",

(T BE (BB 8 ™% "wEE_ ER" A EE__BE @ . EK

r

-

My Blog's R55 Feed

LUSA 2012

Examples/Demos

blggk =l

S A 2012

Automating Post-exploitation
Found <script>alert(1)</script> - Now what?
Use an automated tool to pillage and plunder

The Browser Exploitation Framework (BeEF)
does a great job hooking into DOMs

But — Need a special tool designed to take
advantage of Chrome Extension APIs.

blégk o

S A 2012

Automating Post-exploitation

Enter XSS ChEF
(Chrome Extension
Exploitation Framework)

ChEF

Designed from the ground up as a chrome

extension exploitation framework.

Fast (uses WebSockets)

Preloaded with automated attack scripts
blggkf'“f—?#"“

S A 2012

Automating Post-exploitation

Monitor open tabs of victims
Execute JS on every tab
Extract HTML

Read/write cookies

Access localStorage

Manipulate browser history ChEF
Take screenshots of tabs

Inject BeEF hooks / keyloggers

blggk s

S A 2012

Hopefully with the information provided,
exploiting Chrome Extensions can prove to be a
useful tactic in real life security assessments.

bleclbok hat

S A 2012

""f LA f" o ,’
itk i my LA

The workshop portion will be released during
the presentation.

blg)ok hat

LSA 2012

leok hat

LSA 2012

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

