
Advanced Chrome Extension Exploitation

Leveraging API Powers for the Better Evil

Krzysztof Kotowicz
Kyle ‘Kos’ Osborn



Note:

This slide deck version is fairly draft material. Please check out 
the following website for the version that is presented:

http://kyleosborn.com/bh2012

Further updates to the white paper will be available 
there also.

http://kyleosborn.com/bh2012


Introductions

Krzysztof Kotowicz

● IT security consultant at SecuRing

Kyle Osborn

● Information Security Specialist at AppSec Consulting



Chrome Extension Security

● Common web vulnerabilities that effect higher 
privileged applications.

● Cross Site Scripting and Cross Site Request 
Forgery are the most common vulnerabilities in 
extensions.



Chrome Extension Security

● Currently, Chrome extension security is very 
reliant on the developer.

● Writing bad code is easy, giving extensions 
more permissions than necessary is easier.



Chrome Extension Security

● Most commonly vulnerable:

● RSS Readers

● Note Extensions

● Web Developer extensions



Finger Printing

● The simplest method of fingerprinting was described by 
Krzysztof.

● http://blog.kotowicz.net/2012/02/intro-to-chrome-
addons-hacking.html

● Chrome-extension: URIs aren't (currently) restricted 
from a website's DOM

● It is simple to generate a list of known extensionIDs, 
and bruteforce chrome-extension://ID/ resources to 
discovered extensions



Previous Research

● Kotowicz
● http://blog.kotowicz.net/2012/02/intro-to-

chrome-addons-hacking.html

● UC Berkeley – Extension security evaluation
● http://www.eecs.berkeley.edu/~afelt/extensionvulnerabilities.pdf

● Hacking Google ChromeOS (BH 2011)

http://www.eecs.berkeley.edu/~afelt/extensionvulnerabilities.pdf


Examples/Demos

● Slick RSS & Slick RSS: Feed Finder
● Simple injection location (<link> tag title)



Examples/Demos



Examples/Demos

More demos and examples to be released 
during presentation.



Automating Post-exploitation

● Found <script>alert(1)</script> - Now what?

● Use an automated tool to pillage and plunder

● The Browser Exploitation Framework (BeEF) 
does a great job hooking into DOMs

● But – Need a special tool designed to take 
advantage of Chrome Extension APIs.



Automating Post-exploitation

● Enter XSS ChEF
(Chrome Extension
Exploitation Framework)

● Designed from the ground up as a chrome 
extension exploitation framework.

● Fast (uses WebSockets)
● Preloaded with automated attack scripts



Automating Post-exploitation

● Monitor open tabs of victims
● Execute JS on every tab 
● Extract HTML
● Read/write cookies
● Access localStorage
● Manipulate browser history
● Take screenshots of tabs
● Inject BeEF hooks / keyloggers



End of Part One

Hopefully with the information provided, 
exploiting Chrome Extensions can prove to be a 
useful tactic in real life security assessments.



Part two: workshop!

The workshop portion will be released during 
the presentation.




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

