Intrusion Along the Kill Chain

Part I: On the State of things

Intrusion detection systems have been around for almost two decades as a way to
attempt to fill in the gap for when preventative security fails. To practitioners of
this arcane art the problem of accurately and consistently detecting attackers
among the sea of noise feels no less worthy or indeed less difficult than that of
historic searches for Atlantis or the Holy Grail. Years into the problem we have
much technology to show for our work but sadly few approaches that work reliably,
especially against the face of highly sophisticated modern attackers and their
shifting behavior. This paper is an attempt to investigate some of the shortcomings
of these classic approaches and offer some new ideas to approach this problem.

The Industry

Gartner estimates the information security market as having a total spend of about
$35 Billion?! for 2011. The exact amount of intrusion detection spending proves
difficult to size accurately. However, IDC has forecast? $1.5 Billion being spent on
SIEM systems alone in 2012. Regardless of precisely the way you count the
numbers, it is clear that billions are being spent annually.

Enterprises of all kinds are buying the latest security appliance and SIEM products
in an attempt to solve their Intrusion Detection problems. But does intrusion
detection work? Two of the best technical reports on the state of the security
industry are the Verizon Data Breach Report and the Mandiant M-Trends report.
Both of these present data to help illuminate this subject.

Verizon

The 2012 Verizon Data Breach Investigations Report3 is one of the best and most
comprehensive analytical reports on the state of the security industry out there. It
combines data from a multitude of sources including Verizon’s own Incident
Response work, as well as that of a number of Law Enforcement agencies from
different countries in an attempt to distill trends and intelligence from the history of
data breaches and compromises that they have collectively observed. The Verizon
report does a good job of trying to include data from a cross section of businesses,
from small to large.

L http://www.gartner.com/it/page.jsp?id=1844114

2 http://www.qualys.com/docs/idc_VM_forecast2012.pdf

3 http://www.verizonbusiness.com/resources/reports/rp_data-breach-
investigations-report-2012_en_xg.pdf

First of all, and not surprisingly, 7 out of 10 targeted attacks leading to data
breaches were against larger organizations*. These are the companies that we
would expect would typically have invested in intrusion detection systems. So how
well do our intrusion detection systems work at larger companies?

Average time to until an intrusion is discovered is one proxy for the efficacy of
intrusion detection systems. According to Verizon, in 2011, half of intrusions to
larger organizations took months or years to discover.

These same attacks that on average take this long to discover are executed on a
dramatically different timeframe. The time between initial attack to initial
compromise for larger organizations happen 71% of the time in “minutes” or less.

How long, after compromise does it take for our attacker to find and exfiltrate data?
The news here is a little better as 75% of the time it takes days or longer in larger
organizations. This is a great opportunity for practitioners of intrusion detection, as
this is the time that attackers are rifling around your company looking for the data,
users or systems they are after.

Unfortunately the numbers get much worse when you look at how compromises get
discovered in the first place. Again, if we look at larger organizations, we find that
half of discoveries are from 3d parties. The remainder are discovered internally, but
not by ways you might expect. About a third are discovered by non security
employees noticing something is ‘weird’ and reporting it. Worse still, purpose built
‘fraud detection mechanisms’ are responsible for 5% total of detections of
intrusions against larger organizations, just behind the 8% for routine manual log
review.

This bears repeating: Intrusion detection systems are, on average, worse at
detecting modern threats than humans doing adhoc log review and almost 6 times
worse than your own users noticing ‘suspicious behavior’. This is truly a sad state of
affairs.

Mandiant

Mandiant is a company that also publishes an annual report. Their report is of a high
quality as well but it is also somewhat more focused than that of Verizon as it
primarily addresses advanced and targeted attacks. Their clients are almost
exclusively large enterprises who have been compromised. In their most recent
report® on their 2011 caseload they found that only 6% of advanced intrusions were
detected by internal processes. Of course of that number [would guess that only a
fraction was detected by a purpose built intrusion detection system.

4 Larger Organizations are defined by Verizon as 1000 employees or more.
5 http://www.mandiant.com/resources/m-trends/

If these numbers are to be believed, and [suspect that they are, then the utility of
intrusion detection systems against modern targeted attacks couldn’t be much
worse. Is there a way out?

Part Il: A glimmer of hope

The state of intrusion detection tools and best practices against modern targeted
threats is so poor that we need to do nothing less than reinvent the field. In this
section we discuss some ways to do just that.

First off, let’s start at the beginning. What is intrusion detection anyway, and what
problem are we trying to solve?

Intrusion detection is the art and science of finding actionable deviations between
normal behavior and attacker behavior.

Perhaps another, more practical definition is:
Maximize your chance of getting lucky.

According to the data, detecting an intrusion is a low likelihood event. Let us now
discuss how we maximize our chance of getting lucky and push the chances more in
our favor.

Intrusion events are not binary

Often people will install an IDS sensor and then go about “tuning” it by turning off
everything that makes an alert. This is the “false positive fallacy.” This fallacy stems
from thinking that only those things that rarely alert are of value; that intrusion
detection is about generating a single perfect, actionable event.

The right way of thinking about intrusion events is to start by realizing that there is
actually a continuum of event types. You can think of events as having a score that
reflects how actionable they are. On the low extreme you can think of raw log data,
pcap data, netflow data and so on as a 1. There is little dispute that it is an important
part of the intrusion detection story, but the data itself isn’t actionable without at
least some kind of basic analysis. On the other extreme would be an event that is
extremely actionable. These tend to be rare but they do happen. “Every time I see
someone going to this dns name I want to be woken up in the middle of the night.”
These two extremes are familiar territory. Many security programs are based
entirely on these two extremes. People collect logs, and try to make “wake me up in
the middle of the night” events out of them.

The problem with this model is that there is a whole lot of interesting stuff between
1 and 10 that gets largely ignored by this common approach. The following list
illustrates a few common examples of these “events in the middle” or low
confidence events.

Snort event for a high confidence dns domain
Malicious PDF sent to a user

Logins for the same user from disparate geolocations

Netflow based alerts for known bad ip addresses
Specific Registry Modifications (i.e. Run Key)

Snort event for a blank useragent
Windows RDP Successful Login Event

Snort event that alerts on all encrypted outbound traffic

1
2
3
4
5.
6. Antivirus Alerts
7
8
9.
1

0. Pcap data, Raw Logs, Netflow etc.

When you change your mindset to allow these lower confidence events into your
security program, you realize that a large portion of the intrusion detection job is
basic instrumentation of your environment. This shifts the problem away from
having to create only actionable events and allows for a much richer set of data to be
part of the intrusion detection analysis later on. What most people do is try to
instrument an event, and then spend a lot of effort trying to make each eventa 1.

Too many people shy away from logging basic data about what users, machines,
processes and so on are doing in lieu of chasing the silver bullet alert that will tell
them for certain if an attacker is on their network. Instead, spend time thinking and
instrumenting every possible indication of suspicious activity you could generate,
regardless of how useful or confident you are in the utility of that data. You'll find

this approach vastly easier and in the end more effective.

The Event Pipeline

Once you have taken steps to instrument your
environment your next goal is use this sea of
instrumented data to eventually build up to higher
confidence correlated events. The event pipeline is a
conceptual framework for doing this. The pipeline is
illustrated in Figure .

Blacklisting

The first stage that our noisy events go through is known
as Blacklisting. This is the stage where we remove known
false positives from a signal. Unlike a typical approach to
IDS, we do not squelch the event altogether. Instead we
remove the known false positives by comparing the event
to a list that we maintain and update over time. Let’s say
you wanted to look for all HTTP connections to the
internet that have a blank useragent. Perhaps you write a

Figure 1: The Event Pipeline

snort signature that detects this network behavior. When you look at the results you
discover a number of false positives. For example someone has a Fitbit and it has a
blank useragent when it uploads its’ users’ data. Perhaps another user is running an

architectural design program from Taiwan that has a blank useragent when it looks
for updates. After you blacklist these 2 examples from the original event, you’ve not
got something that went from a confidence value of 2/10 to a 5/10, simply by
removing the known noise.

Identity Translation: The apples and oranges problem

At this stage we have now instrumented our environment with dozens, hundreds or
thousands of events of various confidence values. We have events derived from host
data, network data and log data. In order to be able to view these different types of
events through the same lens, we need to do identity mapping. In practice this is not
easy, but having this capability is a fundamental requirement for an effective
intrusion detection program. A stable and mature machine and user inventory
system is a good starting place. One way to go about this is to map all events back to
a user identity, but any approach that gets all events to have a common identity is
fine. As events go through the pipeline, the identity translation stage is responsible
for tagging events with this common translated identity. Let’s take our example of
the snort alerts for a blank useragent. As each of those alerts traverses the pipeline,
the event should be tagged and attributed to each user account currently active on
the system that sourced the traffic in question.

Correlation

The Attack Plane

Correlation is a complex topic that requires the introduction of a number of new
concepts. The first of these is called the Attack Plane. The best way to think about an
attack plane is that it is a way to conceptually group our sea of intrusion events
together. The overall goal is to choose a grouping model that allows us to combine
as many emanations from a real attacker as possible.

The simplest case of an attack plane is that of a specific host on your network. Let’s
say an attacker compromises one of your machines and installs malware. The
malware modifies portions of the systems’ registry and makes a network connection
using a blank useragent. You have instrumented the useragent detection as we
discussed above and have a fairly low confidence event (5/10) after blacklisting that
triggered for that. The event has an internal source ip address of your host. You also
have instrumented your registry such that you happened to get another low
confidence event for the specific registry modification that occurred from the host.

In the case of this trivial example, we can choose an attack plane that is simply a
host ip address on your network and stack the two events on the ‘plane’. While these
two events in isolation are interesting but not quite interesting enough, when
viewed through the lens of the attack plane we can now see an opportunity for
correlation.

Attack plane grouping is a great way to do event correlation and it allows you to
gain value even from low confidence events. The problem with the trivial model
above is that it doesn’t capture attacker behavior completely. Our goal is to find an

attack plane that captures as much of our attackers’ behavior as possible. This will
allow us to maximize the number of events that we can include in our grouping.

The major source of limitation for the simple host-based model above is that
modern attackers can often limit activity on a single host. Instead they opt to use a
number of hosts and accounts in your environment as part of their attack. We can
make a more intelligent choice of an attack plane if we think a little deeper about
what attackers are actually doing.

The Kill Chain

So what do modern attackers do, and how can we
accurately model their behavior? The Kill Chain is
a conceptual model originally used by the US
Military, and discussed in the context of
information security by Huchins, Cloppert and
Amin at Lockheed Martin.® The idea behind the Kill
Chain is that there are a series of stages an
attacker necessarily goes through in the course of
setting up and executing an attack. Figure 2 shows
an adapted version of the Kill Chain from the
original work. Changes that have been made are
primarily to add more focus to the time that an
attacker spends within a given enterprise to make
it clearer what our opportunities might be for
detection.

Recon

Attack Delivery

Client Exploitation

C2

Local Compromise

Internal Recon

If you have studied modern attacker behavior, the
stages of the Kill Chain should be familiar. Recon is
also known as “passive recon” where the attacker
maps relationships between individuals, sets up
C2 nodes and so on. Delivery is where the attacker
will send the payload, for example in the form of a
spear phishing email. Client exploitation is the
detonation of that payload on the client, often
exploiting weaknesses in browsers or 3™ party Figure 2: The Detection Kill Chain
apps. The compromised host then engages in

command and control communication. Next an attacker will usually grab credentials
from the machine and possibly escalate privileges if necessary. The attacker will
then set about discovering what systems are available internally, and what accounts
and systems they need to spread to next to get to their target. Once they have
determined this, they will spread laterally from machine to machine, and sometimes
between accounts until they have privileges to access the data they need. At some
point along the way, attackers will often make sure to leave one or more ways to

Lateral Movement

Establish Persistence

Stage and Exfiltration

ATy ayararayara
YN NN YN

6 http://papers.rohanamin.com/wp-
content/uploads/papers.rohanamin.com/2011/08/iciw2011.pdf

gain re-entry into the network in case their original access vector is discovered.
Finally once they find their target they will grab the data and send it out for offline
analysis.

The Kill Chain model has a number of nice properties. Although it does change over
time, it is far less volatile than the specific tools and techniques that an attacker uses
which can change rapidly. It is this stability of this model that we will exploit in
doing our correlation.

The Kill Chain as an Attack Plane

So now that we understand that an attacker’s behavior can be described
conceptually in the form of a series of stages, let’s return to our discussion of attack
planes and event correlation. Recall that we are attempting to optimize our chance
of “getting lucky” at finding an intrusion by grouping events together in more and
more sophisticated ways. The kill chain represents another way to group our low
confidence events. We started of by simply grouping events that pertain to a single
host in our environment together. Now, as we instrument our events, we also
annotate them with the stage in the kill chain. Due to our identity mapping in a
prior stage, we now have everything we need. First we group events that share a
common identity. Next we try to observe clusters of events for the same identity
that inhabit multiple stages in the kill chain.

[should note that the BotHunter” research project implements a simplified version
of this same model. It uses the concept of instrumenting stages of malware behavior
to more accurately detect malware.

Let’s take an example to try to make this clearer. You have instrumented registry
changes that indicate a host might be compromised. You also have an event for the
blank useragent http connections we discussed. Finally you have a tool that creates
low confidence events indicating access to some internal sensitive documentation.
By themselves none of these events could ever solely indicate a compromise worthy
of further investigation. However, let’s apply our kill chain lens and follow the
methodology laid out in our event pipeline. Each low confidence event would go
through a process of individual blacklisting to remove egregious false positives.
Next we would apply identity translation to each one. In the first case, registry
changes, we might have only a hostname of the machine applied to the event. The
translation system would apply identities to the event of all users that were seen on
that machine at that time as well as the internal IP addresses of the system at that
time. In the second case the event would come into the translation stage with only a
source IP, which again you’d have to translate into usernames and apply to the
event. In the final case we already have a username so we could apply IP addresses
and hostnames to the event if desired. Now we have reached the correlation stage.
The producer of the event would tag them with stage in the Kkill chain it belonged.
The registry event would be ‘client exploitation’, while the blank useragent would be
“C2” and the internal documentation events would be “internal recon”. It is now

7 http://static.usenix.org/event/sec07 /tech/full_papers/gu/gu_html/

pretty easy to see how the Kkill chain can relate these events. Before they seemed like
useless events that would generally be ignored. You simply line up the usernames
and note that this is a correlated event with 3 possible stages seen in the attack
progression.

Are there weaknesses to this approach? Absolutely. It is hard to build an accurate
identity translation system and attackers change identities that can be difficult to
follow. But likewise there are a large number of ways you can make this model
vastly more sophisticated once the basic foundation is there. You can incorporate a
much higher volume of events from your environment than you previously were
just throwing away. Difficult to incorporate systems such as anomaly detectors fit
into this model comfortably, as they are just another source of valuable, but often
low confidence events. You can also experiment with alternate strategies for
defining attack planes to find optimal fits against the event data.

Context

Going back to our original event pipeline, there are a few more stages after
correlation is complete. When you finally have a list of high confidence events that
you’ve produced we want to apply context. Context, also known as situational
awareness, is additional data that you bring to bear on a given high-confidence
event to aid manual analysis. The goal of context is to enable a human analyst to
spend as little time as possible trying to make the determination to escalate an
intrusion event. But what is context and where do you find it?

Your vendor products are an ecosystem

Most people don’t think about their vendor products as being a major source of
event context. Instead of just producing streams of alerts, many systems are
valuable for the insight they offer into an alert produced by another subsystem. Let’s
take our example discussed during the correlation section above. Recall the case of
the snort alert for a blank useragent . We had correlated it with alerts about
documentation access and registry writes and found a possible kill chain match.
Now that we are in the context stage with this correlated event, we can find ways to
apply more information about the environment to this event to aid manual analysis.
To that end, perhaps we add data from a machine inventory system to tell us about
the running processes on that system. Perhaps we can create a simple visualization
about the last 24 hours of authentication events for the user in question. Perhaps we
can add some information about what patterns of network behavior the user or host
was seen to have done around the time of the intrusion. Since we should have a
relatively low amount of events at this stage ready for manual analysis, applying
environmental context to each one should be no problem at all.

Analysis

Analysis is the stage where we finally have some things worthy of a human being’s
attention. In an ideal world, our poor human analysts are only looking at events that
have a high quality score so we aren’t wasting people’s time with low confidence

events. Aided by our applied context, analysts would have everything they need
when presented with the correlated event to make a decision.

Conclusion

Our current batch of Intrusion Detection products are clearly insufficient against
today’s targeted modern threats. This paper has laid out a series of models for how
to rethink the problem from the ground up. Stepping back from our need to only
instrument highly actionable events is the first and most important realization that
we have outlined. The event pipeline provides a framework to understand how low
confidence events can and should be assimilated into an effective intrusion
detection program. We introduced the concept of the attack plane as a way to look
at how to group events during the correlation stage. We present the kill chain as one
highly sophisticated way to apply attack plane grouping to our events to better
correlate them. Finally, we discussed the notion of applying context to our events so
as to improve the quality of our analysis.

