
 1

Clonewise – Automatically Detecting Package
Clones and Inferring Security Vulnerabilities

Silvio Cesare, Deakin University

Abstract— Developers sometimes statically link libraries from other projects, maintain an internal copy of other software or fork

development of an existing project. This practice can lead to software vulnerabilities when the embedded code is not kept up to

date with upstream sources. As a result, manual techniques have been applied by Linux vendors to track embedded code and

identify vulnerabilities. We at Deakin University propose an automated solution to identify embedded packages, which we call

package clones, without any prior knowledge of these relationships. We then correlate clones with vulnerability information to

identify outstanding security issues. Our approach identifies similar source files based on file names and content to identify

relationships between packages. We extract these and other features to perform statistical classification using machine

learning. We evaluated our automated system against Debian’s manually created database. Clonewise had a 58% true positive

rate and a false positive rate of 0.03%. Additionally, our system detected many package clones not previously known or tracked.

Our results are now starting to be used by Linux vendors such as Debian and to track embedded packages. Red Hat started to

track clones in a new wiki, and Debian are planning to integrate Clonewise into the operating procedures used by their security

team. Based on our work, over 30 unknown package clone vulnerabilities have been identified and patched.

Index Terms—Vulnerability detection, code clone, Linux.

——————————  ——————————

1 INTRODUCTION

evelopers of software sometimes embed code from
other projects. They statically link against an exter-
nal library, maintain an internal copy of an external

library’s source code, or fork the development of an ex-
ternal library. A canonical example is the zlib compres-
sion library which is embedded in much software due to
its functionality and permissive software license. In gen-
eral, embedding software is considered a bad develop-
ment practice, but the reasons for doing so include reduc-
ing external dependencies for installation, or modifying
functionality of an external library. The practice of em-
bedding code is generally ill advised because it has impli-
cations on software maintenance and software security. It
is a security problem because at least two versions of the
same software exist when it is embedded in another
package. Therefore, bug fixes and security patches must
be integrated for each specific instance instead of being
applied once to a system wide library. Because of these
issues, for most Linux vendors, package policies exist that
oppose the embedding of code, unless specific exceptions
are required.

In the example of zlib, each time a vulnerability was
discovered in the original upstream source, all embedded
copies required patching. However, uncertainty existed in
Linux distributions of which packages were embedding
zlib and which packages required patching. In 2005, after
a zlib [1] vulnerability was reported, Debian Linux [2]
made a specific project to perform binary signature scans
against packages in the repository to find vulnerable ver-
sions of the embedded library. To create a signature the
source code of zlib was manually inspected to find a ver-
sion string that uniquely identified it. This manual ap-
proach still finds vulnerable embedded versions of soft-
ware today. We constructed signatures for vulnerable
versions of compression and image processing libraries

including bzip2, libtiff, and libpng. The version strings
are shown in Fig. 1. We performed a scan of the Debian
and Fedora Linux [3] package repository and found 5
packages with previously unknown vulnerabilities. Even
for actively developed projects such as the Mozilla Firefox
web browser, we saw windows of exploitability between
upstream security fixes and the correction of embedded
copies of the image processing libraries. Even in main-
stream applications such as Firefox, these windows of
opportunity sometimes extended for periods of over 3
months.

1.1 Motivation for Automated Approaches

The approach of manual searching for embedded cop-
ies of specific libraries deals poorly with the scale of the
problem. According to the list of tracked embedded
packages in Debian Linux, there are over 420 packages
which are embedded in other software in the repository.
This list was created manually and our results show that
it is incomplete. Other Linux vendors were not even
tracking embedded copies before our research supplied
them with relevant data. It is evident from this that an
automated approach is needed for identifying embedded
packages without prior knowledge of which packages to
search for. This would aid security teams in performing
audits on new vulnerabilities in upstream sources.

Our approach is to consider code reuse detection as a
binary classification problem between two packages. The
classification problem is ‘do these two packages share
code?’ We achieve this by performing feature extraction
from the two packages and then performing statistical
classification using a vector space model. The features we
use are based on the filenames, hashes, and fuzzy content
of files within the source packages
To identify security vulnerabilities we associate vulner-

D

2

ability information from public CVE advisories to vulner-
able packages and vulnerable source files. We then dis-
cover all clones of these packages in a Linux distribution.
Finally, we check the manually tracked vulnerable pack-
ages that Debian Linux maintain for each CVE and report
if any of our discovered clones are not identified as being
vulnerable.

2 STATISTICAL CLASSIFICATION

Clonewise is based on machine learning. We employ sta-
tistical classification to learn and then classify two pack-
ages as sharing or not sharing code.

The classification problem is to have a known set of
classes and then given an object, assign a class to it. Bina-
ry classification is when there are two classes. For exam-
ple, spam and not spam in spam classification. Another
example is malicious and non malicious in malware clas-
sification.

In general, classification can also be divided into su-
pervised and unsupervised learning. In supervised learn-
ing, the classifier is trained using labeled data. The la-
beled data has objects with their classes. After training,
objects with unknown classes can be classified. In unsu-
pervised learning, there is no labelled data. The typical
approach is then to use clustering to identify classes.
Clustering groups similar objects into the same cluster.

Many classification algorithms work on feature vec-
tors. A feature vector contains a fixed number of elements
or dimensions. Each dimension represents a feature. The
value of element might be the number of times that fea-
ture occurs, or it may a numeric value representing the
feature directly. Features do not always need to be nu-
meric. However, for the classification algorithms we use
in Clonewise, numeric features are used.

Classification is a well studied problem in machine
learning and software is available to make analyses easy.
Weka is a popular data mining toolkit using machine
learning that Clonewise uses to perform machine learn-
ing.

2.1 Feature Extraction

Feature extraction is necessary to perform classification.
We need to select features that reflect if two packages
share or do not share code. The list of features we use is
shown in Fig. 1 and is discussed in the following subsec-
tions.

Number of Filenames

Our first set of features is simply the number of filenames
in the source trees of the two packages being compared.

Source Filenames and Data Filenames

In Clonewise, we distinguish between two types of file-
name features. Filenames that represent program source
code and programs that represent non program source
code. We distinguish these two types of filenames by
their file extension. The list of extensions used to identify
source code is shown in Fig. 1. Almost all of the features
in Clonewise are applied for both source and data file-
names.

Number of Common Filenames

To identify a relationship exists between two packages
such that they share common code we use common file-
names in their source packages as a feature. Filenames
tends to remain somewhat constant between minor ver-
sion revisions, and many filenames remain present even
from the initial release of that software. For our purposes
we can ignore directory structure and consider the pack-
age as a set of files, or we can include directory structure
and consider the package as a tree of files. We noted sev-
eral things while experimenting with this feature:

1. Many files in a package do not contribute to the
actual program code.

2. C code is sometimes repackaged as C++ code
when cloned. For example, lib3ds.c might become
lib3ds.cxx.

3. The filenames of small libraries can often be re-
ferred to as libfoo.xx or foo.xx in cloned form.

4. Some files that are cloned may include the version
number. For example, libfoo.c might become
libfoo43.c.

We therefore employ a normalization process on the
filenames to make this feature counting the number of
similar filenames more effective.

Normalization works by changing the case of each
filename to be all lower case. If the filename is prefixed
with lib, it is removed from the filename. The file exten-

q
Weight(q)

p

Makefile.ca

png43.c

png.h

README

rules

Makefile

png.h

Makefile

png44.c

Figure 3. The assignment problem.

C cpp cxx cc php

inc java py rb js

pl pm m mli lua

Figure 2. Source code filename extensions.

1. N_Filenames_A

2. N_Filenames_Source_A

3. N_Filenames_B

4. N_Filenames_Source_B

5. N_Common_Filenames

6. N_Common_Similar_Filenames

7. N_Common_FilenameHashes

8. N_Common_FilenameHash80

9. N_Common_ExactFilenameHash

10. N_Score_of_Common_Filename

11. N_Score_of_Common_Similar_Filename

12. N_Score_of_Common_FilenameHash

13. N_Score_of_Common_FilenameHash80

14. N_Score_of_Common_ExactFilenameHash80

15. N_Data_Common_Filenames

16. N_Data_Common_Similar_Filenames

17. N_Data_Common_FilenameHashes

18. N_Data_Common_FilenameHash80

19. N_Data_Common_ExactFilenameHash

20. N_Data_Score_of_Common_Filename

21. N_Data_Score_of_Common_Similar_Filename

22. N_Data_Score_of_Common_FilenameHash

23. N_Data_Score_of_Common_FilenameHash80

24. N_Data_Score_of_Common_ExactFilenameHash80

25. N_Common_ExactHash

26. N_Common_DataExactHash

Figure 1. Clonewise features.

 3

sions .cxx, .cpp, .cc are replaced with the extension .c. Any
hyphens, underscores, numbers, or dots excluding the file
extension component are removed.

Number of Similar Filenames

It is useful to identify similar filenames since they may
refer to nearly identical source code. A fuzzy string simi-
larity function is used that matches if the two filenames
are 85% or more similar in relation to their edit distance.
We chose the edit distance as our string metric after ex-
perimenting with other metrics including the smith-
waterman local sequence alignment algorithm and the
longest common subsequence string metric.

Number of Files with Identical Content

We perform hashing of file content using the ssdeep
software and do a comparison of hashes between packag-
es to identify identical content without respect to the file-
names used. Like the previous class of feature, we have a
feature for the number of files having identical content
that are all program source code, and a feature for the
number of files having identical content that are non pro-
gram source code.

Number of Files with Common Filenames and Similar
Content

To increase the precision of file matching from the previ-
ous feature, we employ a fuzzy hash of the file contents
and then perform an approximate comparison of those
hashes for files with similar filenames. While the previous
approach is based on file names alone, the new approach
is a combination of file names and content. Fuzzy hashing
can be used to identify near identical data based on se-
quences within the data that remain constant using con-
text triggered piecewise hashing [4]. The result of fuzzy
hashing file content is a string signature known as its
fuzzy hash. Approximate matching between hashes is
performed using the string edit distance known as the
Levenshtein distance. The distance is then transformed to
a similarity measure. The similarity is a number between
0 and 100 indicates the hashes are not at all similar, and
100 indicates that the hashes are equal.

We have features for the number of files of similar con-
tent with a similarity greater than 0 of program source
code and non program source code. We also count the
number of similar files having a similarity greater than 80.

Scoring Filenames

Not all filenames should be considered equal. Filenames,
such as README or Makefile that frequently occur in
different packages should have a lower importance than
those filenames which are very specific to a package such
as libpng.h. We account for this by assigning a weight for
each filename based on its inverse document frequency.
The inverse document frequency lowers the weight of a
term the more times it appears in a corpus and is often
used in the field of information retrieval.

We use features scoring the sum of matching filename
weights to the number of similar files, the number of
similar files and similar content with similarity greater
than 0 and 80, for both program source code and non

program source code.

Matching Filenames Between Packages

If filename matching in VIII.A was performed as an exact
match, then the number of filenames shared would be the
cardinality of the intersection between the two sets of
filenames. However, in Clonewise the filename matching
is approximate based on the string edit distance. This
means that some filenames such as Makefile.ca could po-
tentially match the filenames Makefile.cba and
Makefile.cb. Moreover, the scores for each filename as
discussed in VIII.D can be different depending on which
filename is deemed to be a match. We solve this problem
by employing an algorithm from combinatorial optimiza-
tion known as the assignment problem.

The assignment problem is to construct a one-to-one
mapping between two sets, where each possible mapping
has a cost associated with it, such that the mappings are
chosen so that the sum of costs is optimal.

In our work the sets are the two packages and the ele-
ments of each set are the filenames in that package. The
cost of the mapping between sets is the score of the
matching filename in the second set according to its in-
verse document frequency. Our use of the assignment
problem seeks to maximize the sum of costs.

The assignment problem can be solved in cubic time in
relation to the cardinality of the sets using the Hungarian
or Munkres [5] algorithm.

The Munkres algorithm is effective, however for large
N, a cubic running time is not practical. We employ a
greedy solution that is not optimal but is more efficient
when N is large.

2.2 Classification

Clonewise uses the binary classification ‘Do these two pack-
ages share code?’ The two classes are ‘shares code’, and ‘does
not share code’. Clonewise is given a package name as input,
and the classification problem is applied between that pack-
age and every other package in the repository. The output of
Clonewise is the set of packages where the classification de-
termines the package pairs share code. Clonewise also reports
the filenames between the packages and the weights of those
filenames.

Clonewise uses supervised learning to build a classifi-
cation model. We use the manually created Debian em-
bedded-code-copies database that tracks package clones
to train and evaluate our system.

3 SCALING THE ANALYSIS

Our system is effective and reasonably efficient at identi-
fying clones in a single Linux package. However, in a typ-
ical Linux distribution there exist more than ten thousand
individual packages. Our system would be impractically
long if we performed clone detection on all packages
without taking advantage of multicore and cluster com-
puting.

Our implementation employs both shared and distrib-
uted memory models. Therefore, we classify it as a hybrid
model. It takes advantage of both multicore for shared
memory, and cluster computing for distributed memory.

4

3.1 Multicore

Given an input package to perform clone detection,
Clonewise pairs that package with every other package in
a Linux distribution. These package pairs are the input to
a binary classification problem. Each binary classification
problem can be evaluated independently of the other bi-
nary classification problems. This model of evaluation is
embarrassingly parallel and leads to efficient parallel and
distributed computing as shown in Fig. 3.

We chose to solve this problem using multicore
computing. We used the Open MP multicore program-
ming model to implement our solution. Open MP is a
shared memory model based on the use of compiler di-
rectives. We parallelize the feature extraction and classifi-
cation for each package pair. This process improves the
speed it takes to perform clone detection on an individual
package.

3.2 Clustering

Our multicore implementation improves the performance
of clone detection on a single package. We use cluster
computing to distribute clone detection of multiple pack-
ages. Each package can be scanned in parallel without
regard to other packages and is also an embarrassingly
parallel problem leading to efficient parallel and distrib-
uted implementations as shown in Fig. 4.

We implemented our system using message passing
with Open MPI. In our implementation, a job is defined
as performing clone detection on a single package. Since
we have many packages to analyse, a master node dis-
tributes jobs to slave nodes. When the slaves complete a
job they signal the master node requesting more work.

3.3 Running the Analysis

We analysed our Linux distribution using a high perfor-
mance computing compute cluster. We purchased 4
hours of cluster computing time from the Amazon EC2
cloud computing service. We built a 4 node cluster with
dual CPUs per node, Intel Xeon E5-2670, eight-core
"Sandy Bridge" architecture), 60.5G of memory per node,
and CPU performance identified as 88 EC2 compute

units.
In our initial implementation we used the MPI_Scatter

API call to statically distribute jobs to nodes. We found
that due to the variety in times to complete jobs, it per-
formed poorly because some nodes quickly finished their
work and then idled, while other nodes continued pro-
cessing.

We also realized that it was important to use multicore
when possible to increase the speed of individual jobs.
We tried initially to favour clustering over multicore and
we found that a few jobs would take significantly longer
to complete and were the bottleneck for completing anal-
ysis of our dataset. Multicore makes these jobs complete
faster and leads to better utilization of cores in our clus-
ter. Another advantage of using shared memory multi-
core is that the memory usage is lower since fewer pro-
cesses are running on each node. This was not a problem
for us on our Amazon EC2 cluster as each node had 60.5G
of memory. However, on nodes with less memory, it
could become a significant issue.

4 INFERRING SECURITY VULNERABILITIES

In this section, we propose use-cases for clone detection
by Linux security teams. We also propose a completely
automated solution to find out-of-date clones that have
outstanding security vulnerabilities.

4.1 Use-case of Clone Detection to Detect
Vulnerabilities

One method which we initially tried was to look at pack-
ages that had reported vulnerabilities against them. We
considered this list as security sensitive packages. We
used this list of packages as input to our clone detection
analysis. Anytime a security sensitive package was
cloned, we verified that the clone was not out of date.
This is an effective method to detect vulnerabilities, but it
requires manual analysis.

Even though the technique we described is manual, it
still has benefits today and can be used in an on-going
basis to detect new vulnerabilities.

If a new vulnerability is found in a package, then clone

Clone Detection

Clone Detection – Package_1

Clone Detection - Package_N

Clone Detection - Package_2

Figure 4. Clustering.

Clone Detection –

Package_X

Classify(Package_X, Package_1)

Classify(Package_X, Package_N)

Classify(Package_X, Package_2)

Figure 3. Multicore.

 5

detection should be performed on the Linux distributions
because it is likely the same vulnerability is present in the
cloned software. For example, if a vulnerability is report-
ed for libpng, then clone detection should be performed
and each libpng clone checked to see if the vulnerability is
present. This method can be used by Linux security
teams, but for old vulnerabilities it is not advisable since
many clones would be patched but not reported by a
Linux vendor. Therefore, we looked at other automated
methods to detect out-of-date clones which we describe in
the following sub-sections.

4.2 Debian Linux Security Tracking

Debian Linux make a significant effort to track security
information and maintain a publicly accessible repository
known as the security tracker for tracking security prob-
lems in their distribution.

A useful database that is unique to Debian is a manual-
ly generated list is used to associate CPE names to Debian
package names (CPE is a package name standard across
different vendors). This is done so Debian can check na-
tive packages against new vulnerabilities that appear as a
CVE in the NVD (CVE is a vulnerability reporting stand-
ard).

Debian Linux also use CVE internally to track vulnera-
bilities. They maintain a database of every CVE. They
then list every package in Debian affected by each partic-
ular CVE.

4.3 Automated Vulnerability Inference

In Clonewise, we can use clone detection in addition to
the above information to identify untracked vulnerabili-
ties.

1. Clonewise takes a CVE number as input and ex-
tracts the vulnerable package from the report. The
CPE package name is translated to a native Debian
package name.

2. Clonewise then parses the summary to find the
vulnerable source files. It is possible to extract the-
ses vulnerable source files from the summary (Fig.
5) by tokenizing the summary into words and ex-
tracting words that have a file extension of known
programming languages.

3. Clonewise then looks at all the clones of the vul-
nerable package and trims the list by ensuring one
of the vulnerable source files is present in the
clone and that the fuzzy hash between the vulner-
able package’s source is similar to the clone’s.

4. We also trim the list by ignoring clones that we be-

lieve have been patched to use the system wide
dynamic library. We did this by checking if in the bi-
nary version of the package the embedded package
was a package dependency. If the embedded package
is a dependency, then it the main package almost cer-
tainly uses it for dynamic linking. Dynamic linking is
the normal approach vendors use to address the secu-
rity implications of package clones.

5. Finally, Clonewise checks to see if Debian Linux is
tracking this package clone as being affected by
that particular CVE. If it is not being tracked, then
Clonewise will report the package as being poten-
tially vulnerable.

This process of finding outstanding vulnerabilities is
applied to every CVE of interest in the database, and a
final report is generated. The normal process is that a se-
curity analyst then verifies each reported vulnerability
and eliminates any false positives.

One feature that we didn’t implement was using the
CVE summary’s reference to vulnerable functions. We
could potentially parse the sentence containing the vul-
nerable source filename to extract the vulnerable function
and then check for the presence of this string in the source
file. We did not do this because it requires the contents of
each source tree to be maintained as signatures. This
would increase the data storage requirements of
Clonewise which we thought to be impractical. Potential-
ly we could download the source as required, but this
would cause issues doing analysis between distributions.

5 IMPLEMENTATION AND EVALUATION

In this section we discuss our Clonewise implementation
and the evaluation of our implementation.

5.1 Implementation

We implemented a complete system named Clonewise to
identify package clones in Linux distributions. Clonewise
automatically downloads a Linux distribution package reposi-
tory and builds a database of signatures for each package. It
then trains a model and uses statistical classification to per-
form clone detection. We employ the Weka machine learning
toolkit to perform the data mining aspects of our system.
Our implementation uses C++ and shell scripting. It consists
of about 3,500 lines of code (LOC) to perform the package
clone detection and vulnerability inference.

We performed an analysis of the Ubuntu Linux distri-
bution and also performed some analysis of other distri-
butions including Fedora 13 and Debian Linux. The pack-
age count in each distribution was in excess of 10,000.

Clonewise consists of multiple components. The com-
ponents are divided into:

1. Parsing Debian’s package clone database
2. Building the Clonewise database
3. Training the classification model
4. Clone detection
5. Building a clone detection cache
6. Querying the cache
7. Finding cloned files
8. Inferring vulnerabilities

Summary: Off-by-one error in the __opiereadrec
function in readrec.c in libopie in OPIE
2.4.1-test1 and earlier, as used on FreeBSD 6.4
through 8.1-PRERELEASE and other platforms,
allows remote attackers to cause a denial of ser-
vice (daemon crash) or possibly execute arbitrary
code via a long username, as demonstrated by a
long USER command to the FreeBSD 8.0 ftpd.

Figure 5. An NVD CVE summary.

6

We parse Debian’s package clone database and convert
it to XML or a text based format. We can optionally filter
the results to ignore statically linked clones, or we can
filter those clones which have been fixed, or those clones
which remain unfixed. This component is necessary for
generating the labelled training data to build a machine
learnt model for classification.

We can also find clones of files given as input. The
output is the set of packages that have a similar file in

their source trees.
To build the Clonewise database, we download the en-

tire source package repository for a Linux distribution,
unpack the sources, and generate signatures. The signa-
tures are the ssdeep signatures of the source trees for each
package. We also build a package index relating binary
packages to source packages. Finally we build a package
dependency list for the purpose of identifying fixed
clones.

Clone detection is performed as explained earlier by
using machine learning. XML output is optional.

The clone detection cache is built using a cluster and
the results of clone detection are stored to disk.

The cache can be queried so that clone detection does
not need to be performed again. XML output is optional.

Finally, vulnerability inference relates clones in the
cache to Debian’s security tracker and the NVD CVE in-
formation.

5.2 Establishing Ground Truth

Debian Linux maintain a manually created database of
packages that are cloned in their security tracker. This
database was not originally created to be processed by a
machine, so some of the data is not consistent in referenc-
ing packages with their correct machine readable names.
Instead, shorthand or common names for packages and
libraries are sometimes used. We cull all those entries
which do not reference package sources and are therefore
not suitable for our system.

To establish true negatives, we randomly selected pairs
of packages not in our true positive list. We label these
package pairs as negatives. This data can be unclean since
we observe the labeled true positives are incomplete, but
even so, the true negatives we label are still useful for
training our statistical model. In total, we obtained 761
labelled positives and 56780 negatives.

5.3 Accuracy of Statistical Classification

We experimented with a number of classification algo-
rithms and employed 10-fold validation from our labeled
dataset to evaluate the accuracy of our system. Our re-
sults are shown in Table 3. We obtained the best result
using the Random Forest classification algorithm. This
classification algorithm performed significantly better
than all other algorithms we evaluated. The true positive
rate is 70.04% which we think is quite reasonable for the
first implementation of an automated system for package
clone detection. The false positive rate must be very low
for our system to be used by Linux security teams. Our

TABLE 1. UNKNOWN FEDORA LINUX VULNERABILITIES

Package Embedded Package

OpenSceneGraph lib3ds

mrpt-opengl lib3ds

mingw32-OpenSceneGraph lib3ds

libtlen expat

centerim expat

mcabber expat

udunits2 expat

libnodeupdown-backend-ganglia expat

libwmf gd

Kadu mimetex

cgit git

tkimg libpng

tkimg libtiff

ser php-Smarty

pgpoolAdmin php-Smarty

sepostgresql postgresql

TABLE 2. PREVIOUSLY UNKNOWN DEBIAN LINUX VUL-

NERABILITIES

Package Embedded Package

boson lib3ds

libopenscenegraph7 lib3ds

libfreeimage libpng

libfreeimage libtiff

libfreeimage openexr

r-base-core libbz2

r-base-core-ra libbz2

lsb-rpm libbz2

criticalmass libcurl

albert expat

mcabber expat

centerim expat

wengophone gaim

libpam-opie libopie

pysol-sound-server libmikod

gnome-xcf-thumnailer xcftool

plt-scheme libgd

TABLE 3. ACCURACY OF STATISTICAL CLASSIFICATION

Classifier TP/FN FP/TN TP Rate FP Rate

Naïve Bayes 439/322 484/56296 57.69% 0.85%

Multilayer Perceptron 204/557 48/56732 26.81% 0.08%

C4.5 523/238 86/56694 68.73% 0.15%

Random Forest 533/228 60/56720 70.04% 0.11%

Random Forest (0.8) 446/315 15/56765 58.61% 0.03%

 7

initial false positive rate is 0.11%. We then modified the
decision threshold of the random forest algorithm to con-
sider false positives as more significant than false nega-
tives. Our false negative rate is 0.03% with a decision
threshold of 0.8 which represents that 3 in every 10,000
package pairs is mislabeled as a positive. The true posi-
tive rate is lower with a higher decision threshold and is
58.61%. This is the trade-off we accept for a low false pos-
itive rate. There are about 18,000 source packages, so
there are 18,000 package pairs that are classified when
performing clone detection on an individual package.
Therefore, if our training data were not noisy, we would
predict 4 to 5 false positive per complete clone detection
on an individual package. However, our labelled nega-
tives are noisy, and some negatives are actually positives.
Therefore, we think between 4 to 5 false positives is closer
to an upper limit. This is reasonable for a manual analyst
to verify and we think it will not cause significant burden
on Linux security teams.

5.4 Package Clone Detection

As part of the practical results from our system we contribut-
ed 34 previously untracked package clones to Debian Linux’s
embedded code copies database. Thus, we feel that the pack-
age clone detection provides tangible benefit to the Linux
community.

We also verified if the embedded packages we detect-
ed were not in fact patched by the Linux vendors to link
dynamically against a system wide library.

5.4 Vulnerability Detection

The direct consequence of package clone detection is deter-
mining if a clone is out of date and if it has any outstanding
and unpatched vulnerabilities. As part of our work we detect-
ed over 30 vulnerabilities in Debian and Fedora Linux because
of package clone issues by checking security sensitive packag-
es automatically, manually, or using adhoc identification of
out-of-date clones. The vulnerabilities in each package we
found using clone detection are shown in Table 1 and 2.

We performed a more recent evaluation of completely
automated vulnerability inference over the years of 2010,
2011, and 2012. We found a number of new vulnerabili-
ties and are currently working with vendors to remedy
these issues. The results of our system demonstrate that
we effectively identify vulnerabilities with a false positive
rate that is practical for manual verification.

6 RELATED WORK

Large scale manual attempts at auditing specific Linux distri-
butions for embedded packages have occasionally occurred in
the past. In 2005, the Debian package repository was scanned
for vulnerable zlib fingerprints based on version strings [6].
Antivirus signatures were generated and ClamAV performed
the scanning. Our system improves practice by automating
the discovery of embedded packages without prior
knowledge of which packages are embedded. Additionally,
our system automatically constructs the signatures to detect
embedded packages.
Software similarity is an area that covers topics such as mal-
ware variant detection, software theft detection, plagiarism

detection, and code clone detection. This area identifies simi-
larities between software and may be applied to binary or
source code. Our work is a similar problem in that of finding
similar occurrences of packages embedded in other packages.
The most related works to ours is that of software clone detec-
tion [7] and plagiarism detection because they are a source
level software similarity problems. Clone detection identifies
duplicated copies of code fragments. This can be used to iden-
tify duplication of effort in source code which can be a source
of software bugs or confusion. Plagiarism also detects source
code that has been copied between software. Our system is
not as fine grained as code clone or plagiarism detection and
detects code similarity at the source file and package level.
This allows us to use integrate our system into existing prac-
tice by Linux vendors, and allows us to use vulnerability in-
formation which is provided at the package level. We believe
that while our approach is simplistic, this method offers prac-
tical and immediately useful benefits to practitioners.

6.1 Plagiarism Detection

Plagiarism detection systems often make the distinction be-
tween attribute counting and structure based techniques. At-
tribute counting is based on software metrics, or the frequen-
cies of particular features occurring. Typical approaches in-
clude Halstead metrics and other metrics which take into ac-
count attributes including the number of tokens, the number
of operators, the number of variables, or the number of source
lines [8]. Structure based techniques rely on using program
structure which typically include the use of dependency
graphs or parse trees.

JPlag [9] and YAP3 [10] consider tokens from source
code as features and perform similarity comparisons us-
ing greedy string tiling. Another approach [11] considers
tokenization and linearization of the source code and uses
an adaptive sequence alignment to construct a similarity
measure.

Parse trees are related to abstract syntax trees and have
been proposed for plagiarism detection [12] by using tree
comparisons to identify similarity. Tree similarity can be
based on algorithms including tree edit distances or larg-
est common subtrees.

GPLAG used program dependency graphs of pro-
grams [13]. Similarity between program dependency
graphs uses similarity metrics such as the graph edit dis-
tances.

6.2 Code Clone Detection

Clone detection can be performed on the textual stream in a
source file once whitespace and comments are removed [14].
The key concept is that a fingerprint of a code fragment is ob-
tained and then the remainder of the source scanned for pos-
sible matching duplicates. More recently [15, 16] has used the
token approach with good success in large scale evaluations.
Large scale copy and paste clones using a data mining ap-
proach was investigated in [17, 18].

An alternative approach is to use the abstract syntax
tree of the source to generate a fingerprint [19]. Tree
matching can subsequently be used to discover software
clones. Abstract syntax trees are more impervious to su-
perficial changes to the textual stream and textual organi-

8

zation of the code.
Other program abstractions can be used to fingerprint

code fragments such as the program dependency graph
which is a graph combining control and data dependen-
cies [20].

In non exact matching of code fragments, similarity
searches can be used using appropriate distance metrics
such as the Euclidean distance, given an appropriate
threshold for similarity. Using non exact matching of
code fragments allows detection of duplicated code that
has been revised or that subjected to an evolutionary pro-
cess. Our system allows for evolution and revision of
code by using fuzzy hashing over the source.

7 FUTURE WORK AND CONCLUSION

There are several ways we could continue our research or see
it applied to improve current practice. We could apply our
system to more source code, including other Linux distribu-
tions, BSD vendors and also online source code repositories
such as Google Code [21] or Sourceforge [22]. It is conceivable
that source code repositories could offer services to find pack-
age clones. Our system could be integrated into a package
build system to automatically update the embedded database
information or ask for validation from a package maintainer.
Debian Linux would like our Clonewise tool to run constantly
in the background and scan the source code repository to up-
date a live database of clones. If we did this, we could enforce
build recommendations that aim for avoidance of embedded
code. Finally, the embedded package information could au-
tomatically be cross referenced against new advisories relating
to embedded code. The Debian Linux security team has asked
us to perform this integration into their distribution as part of
a standard operating procedure for when a vulnerability is
found in a package and this is a focus of our current work.
In addition to the number of reported vulnerabilities and sub-
sequent patching and resolution of vulnerabilities, we believe
our research has much value in the practical approach of cop-
ing with embedded code and packages that may or may not
be known about. We believe all vendors benefit in creating
and maintain databases of embedded code in their package
repository and our research fills a gap when the manual task
of auditing in excess of 10,000 packages per distribution is too
time consuming to be practical. There is much work as a con-
sequence that could be applied to current practice to aid pack-
age maintenance and cross checking of advisories relating to
embedded code and feel our work is a large step towards this
goal.

REFERENCES

[1] J.-l. Gailly and M. Adler. (2011). zlib. Available: http://zlib.net

[2] (2011). Debian Linux. Available: http://www.debian.org

[3] Red_Hat. (2011). Fedora Linux. Available: http://fedoraproject.org

[4] J. Kornblum, "Identifying almost identical files using context

triggered piecewise hashing," Digital Investigation, vol. 3,

pp. 91-97, 2006.

[5] H. Kuhn, W., "The hungarian method for the assignment

problem," Naval Research Logistics Quarterly, 1955.

[6] Christoph Biedl, Mark Adler, and F. Weimer. (2011). Discovering

copies of zlib. Available:

http://www.enyo.de/fw/security/zlib-fingerprint/

[7] C. K. Roy and J. R. Cordy, "A survey on software clone detection

research," Queen’s School of Computing TR, vol. 541, p.

115, 2007.

[8] E. L. Jones, "Metrics based plagarism monitoring," Journal of

Computing Sciences in Colleges, vol. 16, pp. 253-261,

2001.

[9] L. Prechelt, G. Malpohl, and M. Philippsen, "Finding plagiarisms

among a set of programs with JPlag," Journal of Universal

Computer Science, vol. 8, pp. 1016-1038, 2002.

[10] M. J. Wise, "YAP3: improved detection of similarities in

computer program and other texts," SIGCSE Bull., vol. 28,

pp. 130-134, 1996.

[11] J.-H. Ji, G. Woo, and H.-G. Cho, "A source code

linearization technique for detecting plagiarized programs,"

SIGCSE Bull., vol. 39, pp. 73-77, 2007.

[12] J.-W. Son, S.-B. Park, and S.-Y. Park, "Program

Plagiarism Detection Using Parse Tree Kernels," in

PRICAI 2006: Trends in Artificial Intelligence. vol. 4099, Q.

Yang and G. Webb, Eds., ed: Springer Berlin / Heidelberg,

2006, pp. 1000-1004.

[13] C. Liu, C. Chen, J. Han, and P. S. Yu, "GPLAG: detection

of software plagiarism by program dependence graph

analysis," presented at the Proceedings of the 12th ACM

SIGKDD international conference on Knowledge discovery

and data mining, Philadelphia, PA, USA, 2006.

[14] S. Ducasse, M. Rieger, and S. Demeyer, "A language

independent approach for detecting duplicated code,"

1999, p. 109.

[15] T. Kamiya, S. Kusumoto, and K. Inoue, "CCFinder: a

multilinguistic token-based code clone detection system

for large scale source code," IEEE Transactions on

Software Engineering, pp. 654-670, 2002.

[16] S. Livieri, Y. Higo, M. Matushita, and K. Inoue, "Very-large

scale code clone analysis and visualization of open source

programs using distributed CCFinder: D-CCFinder," in

Proceedings of the 29th international conference on

Software Engineering (ICSE '07), 2007, pp. 106-115.

[17] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, "CP-Miner: A tool

for finding copy-paste and related bugs in operating

system code," in Proceedings of the 6th conference on

Symposium on Opearting Systems Design &

Implementation (OSDI '04), 2004, pp. 20-20.

[18] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, "CP-Miner: Finding

copy-paste and related bugs in large-scale software code,"

IEEE Transactions on Software Engineering, pp. 176-192,

2006.

[19] I. D. Baxter, A. Yahin, L. Moura, M. Sant'Anna, and L. Bier,

"Clone detection using abstract syntax trees," 1998, p.

368.

[20] J. Krinke, "Identifying similar code with program

dependence graphs," 2001, p. 301.

[21] Google. (2011). Google Code. Available:

http://code.google.com/

[22] Geeknet. (2011). Sourceforge. Available:

http://sourceforge.net/

http://zlib.net/
http://www.debian.org/
http://fedoraproject.org/
http://www.enyo.de/fw/security/zlib-fingerprint/
http://code.google.com/
http://sourceforge.net/

