
AMF TESTING MADE EASY!

PREPARED BY
Luca Carettoni, Matasano Security
luca@matasano.com

Monday, July 23, 2012

info@matasano.com 39 West 14th St. 53 W. Jackson 756 California St
(888) 677-0666 Suite 202 Suite 1850 Suite A
 New York, NY Chicago, IL Mountain View, CA
 10011 60604 94041

mailto:luca@matasano.com
mailto:luca@matasano.com
mailto:info@matasano.com
mailto:info@matasano.com

2

AMF TESTING MADE EASY!

Since its introduction in 2002, Action Message Format (AMF) has attracted the interest of devel-
opers and bug-hunters. Techniques and extensions for traditional web security tools have been
developed to support this binary protocol. In spite of that, bug hunting on AMF-based applica-
tions is still a manual and time-consuming activity. Moreover, several new features of the latest
specification, such as externalizable objects and variable length encoding schemes, limit the
existing tools.

This research aimed at improving the current state of art, introducing a novel testing approach
as well as a new tool named Blazer. Our automated gray-box testing technique allows security
researchers to build custom AMF messages, generating dynamically objects from method signa-
tures. The approach has been implemented in a Burp Suite plugin which currently supports
Adobe BlazeDS, a well-known Java remoting technology. Using Blazer, testing AMF-based ap-
plications is easier and more robust. The tool consents to improve the coverage and the effec-
tiveness of fuzzing efforts targeting complex applications.

This paper focuses on the newly introduced methodology and explain how to use the tool dur-
ing gray-box testing of AMF-based applications. It is assumed that readers of this document
have a basic knowledge and understanding of Adobe Flex and the AMF format.

The following summarizes the outline of this paper:

• Technology overview
Brief overview of the technology context. Introduction to the AMF specification, Flex remoting
and Adobe BlazeDS

• State of art
Summary of the state of art, including existing tools and limitations of current techniques

• Testing AMF-based applications
Description of a generic methodology for gray-box testing

• Blazer
Introduction to Blazer, detailing core techniques and features

• How to use Blazer
Two practical examples on how to use Blazer to test authorization and input validation flaws

• Conclusion
Final considerations and possible future improvements

3

TECHNOLOGY OVERVIEW

The research outlined in this paper focuses on the latest AMF specification and Adobe BlazeDS/
LiveCycle Data Services, a widely used server-side Java implementation. Some of the technical
details discussed in this paper are specific to Adobe’s implementation. However, our approach
and our tool can be applied on other Java server-side frameworks (e.g. Granite) and can be eas-
ily ported to other programming languages (RubyAMF, FluorineFX, amfPHP, etc.).

AMF Specification

As described in the Action Message Format (AMF) specification document [1], AMF is a com-
pact binary format that is used to serialize ActionScript object graphs. ActionScript is an object
-oriented programming language used within Adobe Flash applications. ActionScript object
graphs are based on named properties in the form of key-value pairs.

AMF represents an efficient mechanism to save and retrieve the state of an application across
sessions or to allow two endpoints to communicate through the exchange of strongly typed
data. Nowadays, AMF is primarily used for accessing remote services and provide RPC (Remote
Procedure Call) capabilities. Since its introduction, a standard Flex application can interact with
complex back-end services and legacy applications. As a binary protocol with optimized objects
compression, AMF allows faster data transfer comparing to traditional text-based protocols.
Also, the native support of ActionScript objects serialization and deserialization improves the
overall performance.

The first version of AMF, referred as AMF0, was officially released in 2002 with Macromedia
Flash Player 6. Due to new data types and language features of ActionScript 3.0, Adobe re-
leased an updated version (AMF3) with Flash Player 9. Major improvements and changes in-
clude the possibility to send objects traits, string and other data type by reference. Also, AMF3
introduces variable length encoding schemes and support for “flash.utils.IExternalizable”.

Adobe Flex Remoting

The combination of highly responsive client and server side components allow remote proce-
dure invocation through Flex Remoting. This mechanism allows client-side applications to make
asynchronous requests to remote services that process and return data. As long as the server-
side technology has been implemented according to the Flex remoting specification, any Flex
client or AIR application can communicate with remote services and inter-exchange data.

http://en.wikipedia.org/wiki/ActionScript
http://en.wikipedia.org/wiki/ActionScript

4

Adobe BlazeDS

In the effort of improving remoting and messaging capabilities of the Flex framework, Adobe
released a open-source implementation named “BlazeDS” in addition to the commercial “Live-
Cycle ES” version. BlazeDS core features include the RPC and the messaging services. In this
context, remoting allows a Flex application to invoke directly methods of Java objects deployed
within a traditional J2EE application server (e.g. Apache Tomcat). The server-side components
of BlazeDS run in a standard web application container, in the form of Java classes, JAR libraries
and XML-based configuration files (typically within WEB-INF/lib, WEB-INF/flex, WEB-INF/
classes). As detailed in the Adobe BlazeDS Developer Guide [2], to send messages across the
network, clients use the concept of channels. A channel encapsulates message formats, net-
work protocols, and network behaviors to decouple them from services, destinations, and appli-
cation code. A channel formats and translates messages into a network-specific form and deliv-
ers them to an endpoint on the server. Channels communicate with Java-based endpoints on
the server. An endpoint unmarshals messages in a protocol-specific manner and then passes the
data in generic Java form to the message broker. The message broker determines where to
send messages and routes them to the appropriate service destination (Java class and method).

Supported AMF request/response types include:

• CommandMessage

• RemotingMessage

• AcknowledgeMessage

• ErrorMessage

• HTTPMessage / SOAPMessage

Each AMF remoting message can be uniquely identified by the following attributes:

• endpoint (e.g. http://127.0.0.1:8080/myApp/messagebroker/amf)

• destination service (e.g. echoService)

• operation and parameters (e.g. String echo(String input))

Although software vulnerabilities in the BlazeDS framework have been uncovered in the past [3],
this research focuses on software vulnerabilities at the application level only.

5

STATE OF ART

In recent years, Flex clients evolved from simple shiny user interfaces to large applications man-
aging complex and sensitive data. As a result, we have observed an increase of interest for de-
velopers and breakers to evaluate the security posture of AMF-based applications. At OWASP
AppSec 2007, Stefano di Paola presented one of the first research targeting the Flash frame-
work [4]. During Blackhat USA 2008, a talk titled “Adobe Flex, Amf 3 And Blazeds An Assess-
ment” [5] defined the technology stack as “an unexpectedly large attack surface” to emphasize
the extend surface available to attackers. In 2009, Deblaze [6] was released by Jon Rose. The
tool allows to enumerate remote methods through a combination of brute-forcing techniques
and decompiling the client-side code. In 2010, Marcin Wielgoszewski presented one of the
most comprehensive research targeting Flex-based applications [7]. In particular, he pointed
out the need of building custom clients that would allow to define custom Java objects, in addi-
tion to primitive types. Starting from version 1.2.124 [8], the popular Burp Suite added support
to visualize and tamper AMF requests and responses. Moreover, the Burp Scanner module was
updated to place automatically attack payloads within string-based AMF values. Other tools
have been also updated in order to support this technology, including Charles Proxy,
WebScarab and Fiddler2 (AMFParser plugin). Particularly interesting is the idea implemented
by Pinta [9], a cross-platform Adobe AIR application that allows to debug AMF calls.

A common methodology to perform black-box security testing against AMF applications in-
clude:

• Enumeration

• Retrieving endpoints, destinations and operations from the traffic

• Decompiling Flex application components

• Brute-forcing endpoint, destination and operation names

• Traffic inspection and tampering

• Using network packet analyzers

• Using HTTP proxies

Although this approach can be used during black-box assessment with limited knowledge of the
target, it has several disadvantages. Testing a large application is a time consuming task as it
requires to invoke all application functionalities, observe the generated traffic and perform tam-
pering. In case of operations using custom objects as arguments, reverse-engineering may be
also required in order to build valid AMF messages. As a result, manual parameter tampering is
usually limited to just few messages with primitive types and simple Java objects. Another

http://www.google.com/search?hl=en&client=firefox-a&hs=33J&rls=org.mozilla:en-US:official&sa=X&ei=vCzqT_KxHIX48gTpo-jzDw&ved=0CFwQvwUoAQ&q=comprehensive&spell=1
http://www.google.com/search?hl=en&client=firefox-a&hs=33J&rls=org.mozilla:en-US:official&sa=X&ei=vCzqT_KxHIX48gTpo-jzDw&ved=0CFwQvwUoAQ&q=comprehensive&spell=1

6

drawback is related to “hidden” server-side functionalities that are impossible to uncover by
decompiling the Flex client or observing the network traffic.

Although the current literature includes AMF testing techniques and tools, none of the previous
research was focused on coverage and automation. In addition, most of the tools available
have serious limitations while dealing with custom objects, which is a common practice in en-
terprise software. For instance, popular web security proxies do not properly handle complex
AMF3 messages and they are not even able to display those custom objects thus tampering
cannot be easily performed.

“Life is pain, highness. Anyone who tells you differently is selling something.” -W. Goldman

7

TESTING AMF-BASED APPLICATION

As outlined in the previous section, testing AMF-based applications is still a manual and time-
consuming activity. If a security assessment is focused on coverage, the tester has to be able to
generate valid AMF messages for all destinations. During several real-life engagements working
with complex AMF-based applications, we have encountered enterprise-grade software with
more than 500 remote invokable methods and more than 600 custom Java objects exchanged
by the client and server.

Introducing a generic methodology for gray-box testing

Performing vulnerability research on such extended attack surface requires a new approach that
would allow to overcome the limitations of current techniques. In particular, this research fo-
cuses on improving the coverage and the effectiveness of fuzzing efforts by designing and de-
veloping a tool, able to automatically generate valid AMF messages from operation signatures
(e.g. Java methods in case of BlazeDS). Handling custom objects and other features of the
AMF3 specification is crucial for auditing complex software and it was considered as require-
ment during the development of the tool.

The author assumes that the source code or the portable code (bytecode) for the application
under scrutiny is available. During vulnerability research analysis, this is a realistic assumption as
the tester has usually full control over the testing environment.

The ability of generating valid AMF messages for all endpoints, destinations and operations
allows security researchers to cover the following test areas:

• Authentication
Authentication and session management in BlazeDS applications is usually managed by the
underline application server (e.g. Apache Tomcat) or web framework (e.g. Spring) via tradi-
tional session tokens. By generating valid messages and verifying that all operations require a
valid cookie, except those specifically intended to be public, a tester can verify that no opera-
tions are exposed to unauthorized users.

• Access control and authorization
By generating valid messages for all operations available to multiple low-privileges users as
well as to administrators, a security researcher can detect horizontal and vertical escalation
bugs. This allows the tester to uncover access control failures between users in the same ten-
ancy and users between tenancies. In real-life situations, the tool should also be able to gen-
erate arbitrary operation parameters in order to test direct object references (DOR) bugs. For
example, let’s imagine a remote method for users management. The tool should be able to

8

build a custom Java object (e.g. “User”) containing an attribute to identify the user id (e.g.
“userID” as integer) and the user’s roles (e.g. “Roles”, another custom Java object).

• Error handling and information disclosure
By sending properly formatted AMF messages with invalid content (e.g. an invalid “userID”),
the tester can observe all possible server responses. This may lead to the discovery of Java
stack traces or verbose error messages that may facilitate further attacks. It is important to
note that we are targeting the application, thus the tool should not trigger errors or excep-
tions at the BlazeDS framework level.

• Input validation
Fuzzing with common attack patterns for traditional web application vulnerabilities (e.g. SQL
injection, LDAP injection, etc.) allows to verify that all input validation failures result in input
rejection or input sanitization. Thus, the tool should be able to tamper or mutate properly
built AMF messages with malicious strings. Due to Java strong typing, injection would typi-
cally occur within String arguments. However, all data type are relevant. For instance, integer
overflow bugs in Java application may affect the business logic and may have drastic conse-
quences. Also, BlazeDS endpoints may expose native code through Java Native Interface
(JNI) calls.

• Output Encoding
Under some circumstances, it is important to verify that all untrusted data that are output
need to be properly escaped for the specific application context. This task requires fuzzing
and manual or semi-automatic evaluation of the resulting AMF responses. Although cross-site
scripting and cross-site flashing affecting Flex applications have become less relevant thanks
to the hardening introduced by recent Flash framework versions, these classes of vulnerabili-
ties may still be relevant for particular use cases.

9

BLAZER

Considering the previously mentioned requirements, Blazer was designed and implemented to
make AMF testing easy, and yet allows researchers to control fully the entire security testing
process.

Blazer has been developed in Java as a Burp Suite plugin [10] and released under the GNU
General Public License [11]. As it is highly integrated in a well-known testing suite, web security
practitioners can start to use the tool with minimal setup in few seconds.

On Windows, it is possible to launch Burp and Blazer with the following command:

java -classpath burp.jar;Blazer.jar burp.StartBurp

On Linux and Mac OS X, use a colon character instead of the semi-colon as the classpath sepa-
rator:

java -classpath burp.jar:Blazer.jar burp.StartBurp

Burp plugins are supported by both versions (free and professional) of the Burp Suite. All major
operating systems (Windows, Mac, Linux) with standard Oracle JRE installed are supported by
the current version of Blazer.

Blazer Burp Plugin Look and Feel

10

Upon launching Burp, it is possible to verify that Blazer was properly loaded by checking the
“Alerts” notification tab. At this point, Blazer can be invoked by using a context menu available
from within Burp tools.

Please note that the tool detects and verifies the presence of valid Flex’s “RemotingMessage”
objects within requests/responses captured by Burp.

Blazer can be fully configured and used from the plugin GUI. Traditional standard output and
error streams provide further details during the automatic objects generation, messages crea-
tion and transmission.

At the top of Blazer’s window, five tabs guide the user throughout the tool configuration:

1. Application Libraries
This allows to include all application artifacts, including application classes implementing the
remote methods as well as application libraries. The current release of Blazer supports JAR files
only. From the user’s perspective, this is typically what is available in the application server web-
root, under “/WEB-INF/”.

2. Remote Method Signatures
Blazer automatically retrieves public method signatures from the application libraries. This tab
allows to select all methods under scrutiny, filtering based on annotation or type.

3. General Options and Data Pools
Object generation and fuzzing can be precisely customized from the user interface. For in-

Blazer Context Menu From Proxy History

11

stance, users can select the number of threads, the total number of permutations for each itera-
tion, common attack payloads and data pools containing “good” data.

4. Status
This tab allows to control the objects generation or fuzzing progress. It provides an overview of
the total number of requests, permutations, overall time, time to finish and speed measured in
requests/second. Also, this interface allows to pause, restore and stop current tasks.

5. BeanShell
Fuzzing is just the first step. Discovering and exploiting vulnerabilities requires troubleshooting
and trial-and-error testing. In several cases, security professionals need an easy way to custom-
ize a specific AMF message and send it over the wire multiple times. Blazer embeds a BeanShell
[12] console, automatically importing all required application libraries. Advanced users can build
custom messages in few instructions by using Blazer internal methods.

12

Core techniques and architectural design

In a nutshell, Blazer is a custom AMF message generator with fuzzing capabilities. Access to the
target application artifacts allows to generate automatically custom Java objects from method
signatures via Java reflection and “best-fit” heuristics. Based on user-defined data pools, the
tool automatically invokes objects’ methods to populate each specific object instance with plau-
sible data. This is internally referenced as “object generation” and allows to build valid AMF
messages without preliminary knowledge of the application. In addition to that, fuzzing of
string-based attributes for all encapsulated objects allow to easily pinpoint input-validation vul-
nerabilities. User-defined attack vector lists are employed to dynamically tamper string attrib-
utes of Java objects. Also, a specific setting allows to define the probability of using attack vec-
tors versus “good” application data strings. In addition to that, users can also define the num-
ber of permutations during the object generation and fuzzing. This parameter is crucial for the
entire analysis as it impacts directly the likelihood of generating semantically valid objects for
the application under scrutiny. Incrementing the number of permutations increases the number
of instances for a specific AMF method signature, populated with different data. Obviously, this
parameter also increases the total number of requests and the overall time for the analysis.

By default, Blazer uses Burp Proxy to record requests and responses. This is particularly useful
during the analysis of complex applications as the tester can benefit from the built-in tools
available in Burp. Moreover, the “Filter by search term” functionality available in Burp Suite Pro-
fessional allows to easily filter and remove irrelevant responses. Nevertheless, Blazer allows to

Burp and Blazer Setup

13

specify an arbitrary proxy in order to use any third-party component to visualize and store the
entire AMF communication.

A simplified heuristic used by Blazer is hereby presented:

For all interested readers, intrigued by the technical details of the object generation and the
primitive type pools, it is suggested to read the source code of Blazer’s core classes: Object-
Generator, MessageGenerator, TaskManager and MessageTask.

At the architectural level, Blazer has three main components:

• a packet generator, based on Adobe AMF OpenSource libraries [13]

• an object generator that allows to build valid application objects using “best-fit” heuristics

• a lightweight fuzzing infrastructure that allows to generate attack vectors, insert payloads
within objects, manage multiple threads and monitor the progress

Blazer Simplified Heuristic

14

HOW TO USE BLAZER

The following chapter illustrates the use of Blazer for two standard activities, typically performed
during a security assessment. As usual, the best way to understand how the tool works is to ex-
periment. Go and download Blazer from www.matasano.com !

Test case #1 - Testing Remote Methods Authorization

Frequently, it is important to evaluate the authorization mechanism and the level of privileges
required for accessing remote methods. Let’s imagine an application where session manage-
ment and user permissions are based on standard session tokens. In this situation, Blazer can be
extremely useful to evaluate whether a specific session has access to remote methods.

Testing with Blazer requires literally just few clicks. Upon instrumenting the browser to proxy all
requests through Burp, intercept a valid AMF request for the remote BlazeDS-based applica-
tion. Users can now start Blazer by selecting “Blazer - AMF Testing Made Easy!” from the con-
text menu (e.g. right click from a Burp repeater tab).

Clicking “Add JARs”, users can import all application resources.

In this example, “samplesVuln.jar” contains all classes including the exposed remote methods
as well as all custom Java objects exchanged by the application.

Blazer - Step 1

http://www.matasano.com
http://www.matasano.com

15

Switching to tab “2”, Blazer automatically unpacks and analyzes the libraries in order to display
all public methods. Filtering can be used to identify specific methods. For instance, whenever
annotation is used, users can quickly identify all exposed methods by displaying “@RemotingIn-
clude” methods only.

For this test case we simply select all methods, even though some of those operations are not
remotely invokable.

In step “3”, users can configure multiple parameters used by Blazer. As we are testing access
control mechanisms, we just want to generate valid AMF requests for all methods. Thus, we
simply increase the number of threads and the number of permutations. The latter should be
properly tuned, depending on the target application.

Blazer - Step 2

16

Finally, users can launch the object generation by clicking on “Start”. As all requests and re-
sponses are stored within Burp Proxy history, it is possible to identify easily accessible methods
by filtering the raw responses.

Blazer - Step 3

Blazer - Step 4

17

For example, it is possible to search for specific keywords (e.g. “No destination with id”) and
remove all invalid destinations. In just few minutes, users can identify all exposed methods for a
specific user session. Changing the session token and repeating previous steps allows to test
access control for different users and different set of privileges.

Test case #2 - Testing SQL Injection

The following demonstrates how to use Blazer in order to detect a common web application
vulnerability: SQL Injection. Detecting input validation vulnerabilities within AMF messages re-
quire to build properly formatted AMF requests containing common attack patterns.

 Blazer can be easily configured with a custom attack vectors wordlist by loading it from a file or
just typing in common attack patterns. In addition, users can control the mechanism used by
Blazer to build objects with string attributes. This tuning allows to unbalance “good” and “bad”

Tuning Blazer Configuration

18

user-supplied input. In this example, Blazer will send “good data” 70% of the times and just
30% of the strings will contain actual attack vectors.

The “Data Pools” tab allows to define input that is considered by the application as “good”
input and can be used by Blazer to build syntactically and semantically valid objects. By default,
pools include all Java primitive types with predefined values. In-depth fuzzing requires to build
valid AMF messages with attack vectors for detecting input validation vulnerabilities in strategic
attributes only. By carefully tuning Blazer’s configuration, users can achieve good results during
the automatic objects generation.

Data Pools Configuration

19

As in the previous test case, users can finally review all AMF requests and responses from within
Burp. Sorting and filtering allows security testers to identify traditional error messages, typically
associated with SQL injection vulnerabilities. Advanced users can also select the “console” tab

Automatic and Manual Testing (BeanShell) with Blazer

20

in order to invoke BeanShell and programmatically use Blazer’s inner classes to customize their
exploit and create powerful proof-of-concepts.

Detecting SQLi in AMF endpoints with Burp and Blazer

21

CONCLUSION

Our newly introduced approach has been proven to increase the coverage and the effectiveness
of AMF security testing. Blazer has been used to find real-life vulnerabilities including direct ob-
ject reference bugs, authentication flaws, business logic abuses, SQL injections and other critical
bugs during several complex engagements.

Unlike previous research, our effort was focused on coverage and automation. We strongly be-
lieve that our approach reshapes the concept of AMF fuzzing. Security testers can now generate
valid AMF messages in just a few clicks. Also, Blazer fuzzing capabilities allow to perform tam-
pering and to detect vulnerabilities in a very time-efficient manner. Finally, taking advantage of
Blazer internal methods, a user can easily construct custom AMF messages from within the tool
with BeanShell. Also, Java, JRuby and other programming languages can import Blazer as a li-
brary in order to quickly build complex proof-of-concepts.

Although the current tool has been designed specifically for BlazeDS-based application, Blazer
can be used on other Java server-side frameworks and the approach can be easily ported to
other programming languages and technologies.

Upcoming tool improvements include the possibility to import recursively source code and
classes from specified directories. Sand-boxing via Java security manager configurations will be
also provided to avoid dangerous methods execution while generating custom objects.

In future, the following features may be implemented:

• In addition to BeanShell, it will be also useful to extend the “console” tab in order to support
jRuby or other scripting languages

• Having an embedded utility for visualizing complex AMF messages will be also beneficial
while monitoring the objects generation process

• Auto-selection of remote method signatures from entries already present in Burp History may
further speed-up the testing activity

• Auto-save of all Blazer’s configuration parameters would allow to easily tamper HTTP requests
(e.g. changing the session token), without having to reconfigure Blazer

22

REFERENCES

1. AMF 3 Specification, Adobe Systems Inc.
http://download.macromedia.com/pub/labs/amf/amf3_spec_121207.pdf

2. Adobe BlazeDS Developer Guide, Adobe Systems Inc.
http://livedocs.adobe.com/blazeds/1/blazeds_devguide/index.html

3. AMF arbitrary code execution, Wouter Coekaerts
http://wouter.coekaerts.be/2011/amf-arbitrary-code-execution

4. Testing Flash Applications, Stefano di Paola
http://www.owasp.org/images/8/8c/OWASPAppSec2007Milan_TestingFlashApplications.ppt

5. Adobe Flex, AMF 3 and BlazeDS: An Assessment, Jacob Karlson and Kevin Stadmeyer
http://www.blackhat.com/presentations/bh-usa-08/Carlson_Stadmeyer/BlackHat-Flex-Carlson
_Stadmeyer_vSubmit1.pdf

6. Deblaze, Jon Rose
http://deblaze-tool.appspot.com/

7. Pentesting Adobe Flex Applications, Marcin Wielgoszewski
http://blog.gdssecurity.com/storage/presentations/OWASP_NYNJMetro_Pentesting_Flex.pdf

8. Burp Suite v1.2.14 Release Note, PortSwigger Ltd.
http://releases.portswigger.net/2009/08/v1214.html

9. AMF service test and debug utility, Pinta project members
http://code.google.com/p/pinta/

10. Burp Suite Extender, PortSwigger Ltd.
http://portswigger.net/burp/extender/

11. Licenses, Free Software Foundation, Inc.
http://www.gnu.org/licenses/

12.BeanShell, BeanShell developers
http://www.beanshell.org/

13. BlazeDS Java AMF Client, Adobe Systems Inc.
http://sourceforge.net/adobe/blazeds/wiki/Java%20AMF%20Client/

http://download.macromedia.com/pub/labs/amf/amf3_spec_121207.pdf
http://download.macromedia.com/pub/labs/amf/amf3_spec_121207.pdf
http://livedocs.adobe.com/blazeds/1/blazeds_devguide/index.html
http://livedocs.adobe.com/blazeds/1/blazeds_devguide/index.html
http://wouter.coekaerts.be/2011/amf-arbitrary-code-execution
http://wouter.coekaerts.be/2011/amf-arbitrary-code-execution
http://www.owasp.org/images/8/8c/OWASPAppSec2007Milan_TestingFlashApplications.ppt
http://www.owasp.org/images/8/8c/OWASPAppSec2007Milan_TestingFlashApplications.ppt
http://www.blackhat.com/presentations/bh-usa-08/Carlson_Stadmeyer/BlackHat-Flex-Carlson_Stadmeyer_vSubmit1.pdf
http://www.blackhat.com/presentations/bh-usa-08/Carlson_Stadmeyer/BlackHat-Flex-Carlson_Stadmeyer_vSubmit1.pdf
http://www.blackhat.com/presentations/bh-usa-08/Carlson_Stadmeyer/BlackHat-Flex-Carlson_Stadmeyer_vSubmit1.pdf
http://www.blackhat.com/presentations/bh-usa-08/Carlson_Stadmeyer/BlackHat-Flex-Carlson_Stadmeyer_vSubmit1.pdf
http://deblaze-tool.appspot.com
http://deblaze-tool.appspot.com
http://blog.gdssecurity.com/labs/author/mwielgoszewski
http://blog.gdssecurity.com/labs/author/mwielgoszewski
http://blog.gdssecurity.com/storage/presentations/OWASP_NYNJMetro_Pentesting_Flex.pdf
http://blog.gdssecurity.com/storage/presentations/OWASP_NYNJMetro_Pentesting_Flex.pdf
http://releases.portswigger.net/2009/08/v1214.html
http://releases.portswigger.net/2009/08/v1214.html
http://code.google.com/p/pinta/
http://code.google.com/p/pinta/
http://portswigger.net/burp/extender/
http://portswigger.net/burp/extender/
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.beanshell.org
http://www.beanshell.org
http://sourceforge.net/adobe/blazeds/wiki/Java%20AMF%20Client/
http://sourceforge.net/adobe/blazeds/wiki/Java%20AMF%20Client/

Corporate Office:
39 W. 14th Street
Suite 202
New York, NY 10011

Midwest:
53 W. Jackson Blvd
Suite 1850
Chicago, IL 60604

West Coast:
756 California St
Suite A
Mountain View, CA
94041

www.matasano.com
info@matasano.com
888-677-0666

23

ABOUT THE AUTHOR

Luca Carettoni is a senior security consultant for Matasano Security with over 7 years experi-
ence as a computer security researcher. His professional expertise includes black box security
testing, web application security, vulnerability research and source code analysis.

Prior to Matasano, Luca worked at The Royal Bank of Scotland as a penetration testing specialist
where he performed security audits against several online banking systems worldwide. In the
past years, Luca has been an active participant in the security community and a member of the
Open Web Application Security Project (OWASP). Luca holds a Master's Degree in Computer
Engineering from the Politecnico di Milano university.

ABOUT MATASANO

Matasano is an independent security research and development firm. We work with vendors
and enterprises to pinpoint and eradicate security flaws, using penetration testing, reverse en-
gineering, and source code review.

Since 1994, Matasano researchers have had founding roles in the first security research labs,
discovered new classes of vulnerabilities, secured operating systems, and shipped large soft-
ware projects. We’ve been behind some of the first breaks in SAN technology, virtualization, and
financial protocols.

Our work has been featured in Network World, eWeek, Forbes, Macworld, Wired, and the
Washington Post, and at conferences ranging from Black Hat to Gartner. Our practice focus ar-
eas include storage, virtualization, financial, middleware, software protection, kernel security,
AJAX/Web 2.0, enterprise technology, security product testing, 802.11 and authentication pro-
tocols, RF, VOIP and telephony, Windows Vista, Mac OS X, and embedded platforms.

http://www.matasano.com
http://www.matasano.com
mailto:info@matasano.com
mailto:info@matasano.com

