)0O0(
XRUUUU

2 okrr Settings Help
Phone-2.local., (Cache flush) A 169.254.202.124 (598)
.574893 ARP, Request who-has 165.254.110.169 tell 0.0.0.0, length 48
.766113 IP6 fe80::cd3f:7dcc:3f2a:doh6.58124 > ff02::1:3.5355: UDP, length 24
.766515 IP 169.254.217.182.51303 > 224.0.0.252.5355: UDP, length 24
.765056 IP 169.254.85.161.137 > 169.254.255.255.137: NBT UDP PACKET(137): QUERY; REQUEST; BROADCAST
.769572 IP 169.254.85.161.138 > 159.254.255.255.138: NBT UDP PACKET(138)
.769916 IPE feB0::f2b4:79ff:feb3:8bf.5353 > ff02::fb.5353: 0 [1n] [laul ANY (QM)? Isaac.local. (8@)
.770321 IP6 fe80::f2b4:79ff:febg:8bf.5353 > ff02::fh.5353: 0 [1In] [laul ANY (QM)? Isaac.local. (80)
.771293 IPE fe80::a844:846f:6b64:53hd > ffO2::1:ffa5:b075: ICMPE, neighbor solicitation, who has fe80::7ae7:d1ff:fea5:b075, length 32
.771678 IP 169.254.88.88.137 > 169.254.255.255.137: NBT UDF PACKET(137): QUERY; REQUEST; BROADCAST
.771893 STP 802.1d, Config, Flags [nonel, bridge-id 5014.a0:cf:5b:d6:03:80.8024, length 42
.772198 ARP, Request who-has 169.254,244.249 tell 0.0.0.0, length 46
.772533 IP6 fe80::cd3f:7dcc:3f2a:dohe.58124 = Tf02::1:3.5355: UDP, length 24
.776037 IP 169.254.217.182.51303 > 224.0.0.252.5355: UDP, length 24
.776602 IP 169.254.135.98.5353 > 224.0.0.251.5353: 0*- [0g] 3/0/2 TXT "model=MacBookPro5,4", (Cache flush) PTR Tobias-Selliers-MacBook-Pro.lecal., (Cache flush) A 169.254.135.98 (218)
.776925 IP6 feB0::6c50:al153:893a:15.51307 = ff02::1:3.5355: UDP, length 34
.777331 ARP, Request who-has 192.168.0.1 tell 192.168.0.162, length 46
.778655 IP 169.254.0.245.54652 > 224.0.0.252.5355: UDP, length 34
. 779089 IP 169.254.174.214.137 > 169.254.255.255.137: NBT UDF PACKET(137): QUERY; REQUEST; BROADCAST
L779391 IP 152.168.0.130.137 = 192.168.0.255.137: NBT UDP PACKET(137): QUERY; REQUEST; BROADCAST
.779829 IP6 feB0::Tzb4:79ff:feb2:8bf.5353 > ff0z::fh.5353: 0 [3q] [laul PTR (QM)? _ubd._tcp.local. A (QM)? astec-exch.astec.local. AAAA (QM)? astec-exch.astec.local. (85)
.780193 IP 169.254.138.142.137 > 169.254.255.255.137: NBT UDF PACKET(137): QUERY; REQUEST; BROADCAST
.780597 IPE fTe80::T2b4:75ff:febS:8bT.5353 > ff02::Th.5353: 0 [3q] [lau] PTR (QM)? _ubd._tcp.local. A (QM)? astec-exch.astec.local. AAAA (QM)? astec-exch.astec.local. (85)
.782948 ARP, Request who-has 192.168.0.1 tell 152.168.0.130, length 46
.003264 IP 0.0.0.0.68 > 255,255.255.255.67: BOOTP/DHCP, Request from 00:23:15:af:30:d0, length 300
.657120 IP 169.254.136.101.137 > 169,254.255.255.137: NBT UDP PACKET(137): QUERY; REQUEST; BROADCAST
.658042 ARP, Reguest who-has 192.168.0.1 tell 152.168.0.162, length 46
.6B0152 ARP, Request who-has 169.254.126.115 tell 165.254.126.115, length 48
.662331 IPE feBD::3651:c9ff:fecf:5ec7 > ffO2::2: ICMPE, router solicitatien, length 16
.662622 ARP, Request who-has 192.168.10.1 tell 192.168.10.180, length 46
.BB2926 ARP, Reguest who-has 192.168.0.1 tell 152.168.0.130, length 46
.663847 IP 169.254.217.182.137 > 169.254.255.255.137: NBT UDF PACKET(137): QUERY; REQUEST; BROADCAST
.664353 IPE feBD::f18e:5b34:ecal:laec.53648 > ffO2::c.1900: UDP, length 146
.664770 IP6 fe80::f18e:5b34:ecal:laec > ff02::1:ff95:8ea7: ICMPS, neighbor solicitation, who has feB0::55b3:ch9c:3395:8ea7, length 32
.665258 IP6 TeB80::6c50:al153:893a:75.51103 > ff02::1:3.5355: UDP, length 37
.6B9822 IP 169.254.0.245.57179 > 224.0.0.252.5355: UDF, length 37
.670154 IPE feBD::6c50:al53:893a:f5.63274 > ff02::1:3.5355: UDP, length 37
.674676 IP 169.254.0.245.65360 > 224.0.0.252.5355: UDF, length 37
.674961 ARP, Request who-has 192.168.0.1 tell 192.168.0.227, length 46
.675335 IP 169.254.244.249,5353 > 224.0.0.251.5353: 0 [2q] [2n] [lau] ANY (QU)? iPad-&9.local. ANY (QU)? iPad-69.local. (104)
.677318 IP6 feBD::72de:e2ff:fead:92c2.5353 > ff02::fb.5353: 0 [2q] [2n] [laul ANY (QU)7 iPad-69.local. ANY (QU)? iPad-89.local.
.677694 IPE feBD::72de:e2ff:fead:92c¢2.5353 > ff02::fb.5353: 0 [2q] [2n] [laul ANY (QU)7? iPad-69.local. ANY (QU)? iPad-69.local.
.677934 IP6 fe80::cd3f:7dcc:3f2a:d%h6.53944 > ff02::1:3.5355: UDP, length 22
L678290 IP 169,254.217.182,6283% > 224,0.0.252,5355: UDP, length 22
.678706 IPE feB0::804f:a765:d83c:99a0.60905 = ff02::1:3.5355: UDP, length 22
.679850 IP 169.254.153.160.55283 > 224.0.0.252.5355: UDP, length 22
.680157 IP6 feB80::804f:a765:d83c:99a0.58307 > ff02::1:3.5355: UDP, length 22
.680576 IP 169.254.153.160.54881 > 224.0.0.252.5355: UDP, length 22
.680985 IPE fe80::abZa:6f6:8699:172f.58723 > ff02::1:3.5355: UDP, length 27
.681394 IP 169.254.136.101.137 > 169.254.255.255.137: NBT UDF PACKET(137): QUERY; REQUEST; BROADCAST
.6B81793 IP 169.254.23.47.52166 > 224.0.0.252.5355: UDF, length 27
.682157 IP6 fe80::a667:6fT:feBa:ffco > ffo2::1: ICMPS, neighbor advertisement, tgt is fe80::a667:6ff:fe8a:ffc9, length 32
.682583 IPE feB80::ac67:6ff:feBa:ffcd = ffOZ::2: ICMPS, router solicitation, length 16
.683160 IP 0.0.0.0.68 > 255.255.255.255.67: BOOTP/DHCF, Request from 58:1f:aa:6e:a2:0d, length 300
.683498 ARP, Request who-has 165.254.135.98 tell 169.254.153.160, length 46
.683793 IP 169.254.16.139.137 > 169,254,255.255.137: NBT UDP PACKET(137): QUERY; REQUEST; BROADCAST
.865628 IP 169.254.110.169.5353 > 224.0,0,251.5353: 0 [2q] [2n] [laul ANY (QM)? iPhone-2.local. ANY (QM)? iPhore-2.local. (105)

<GHz or bust!

leveraging the power of the
chipcon 1111
(and RFCAT)

0x0001 — workshop plan - ejercicios

e |lessons to teach:

- play around with mods/baud/etc...

— using the dongle to tune in and listen

- using the dongle to determine, and transmit

- playing with the dongle... it's just fun!
» toys to play with:

- Garage door opener

- Keyless entry fob

- Power Meter

- Glucometer

- IMME 1

- IMME 2 / dongle

0x0002 — installing the client

e once you have a cc1111 dongle flashed with RfCat...
e install client according the the README

 blackhat release:

- https://rfcat.googlecode.com/files/rfcat-blackhat2012.tgz
- https://rfcat.googlecode.com/files/rfcatChronos-bh12.hex
- https://rfcat.googlecode.com/files/rfcatDons-bh12.hex

https://rfcat.googlecode.com/files/rfcat-blackhat2012.tgz
https://rfcat.googlecode.com/files/rfcatChronos-bh12.hex
https://rfcat.googlecode.com/files/rfcatDons-bh12.hex

0x1000 — intro to <GHz

« FCC Rules(title 47) parts 15 and 18 allocate and govern parts of the
RF spectrum for unlicensed ISM in the US (US adaptation of the ITU-
R 5.138, 5.150, and 5.280 rules)

— Industrial — power grid stuff and more!
- Science — microwave ovens?

— Medical — insulin pumps and the like
 US ISM bands:

- 300 : 300

- 433 :433.050 —434.790 MHz

- 915:902.000 — 928.000 MHz

- cc1111 does 300-348, 372-460, 779-928... but we've seen more.
 Popular European ISM band:

- 868 : 863.000 — 870.000 MHz
e Other ISM includes 2.4 GHz and 5.8 GHz

- ¢c2531.... hmmm... maybe another toy?

* Industry, Science, Medical bands, US and EU
 Cell phones

e Cordless Phones

e Personal Two-Way Radios
e Car Remotes

* Pink IM-ME Girl Toys!
e Tl Chronos Watches

e Power Meters
e custom-made devices

e OId TV Broadcast

e much, much more...

0x1020 — how do we play with 1it?

e cc1110/cc1111 do 300-348MHz, 391-464MHz, 782-928MHz
- and more...

» RFCAT uses the CC111x on some common dongles
‘“ﬁ Chronos dongle (sold with every Tl Chonos watch)
.~ Don's Dongles”, aka TI CC1111EMK

e B IMME (currently limited to sniffer/detection firmware)

e but there are some catches

- rf comms configuration?
- channel hopping sequence?
— bluetooth and DSSS? (not hap'nin)

0x1030 — why do 1 carel!l?

* the inner rf geek in all of us

* your security research may require that you consider
comms with a wireless device

e your organization may have 900MHz devices that
should be protected!

0x2000 - intro to the ccllll core

e for the devs in the house...

- mcu
- radio state engine
- radio configuration
- usb

- timers

- dma

0x2010 — ccl1l1l1l] mcu

 modified 8051 core
- 8-bit mcu
- single-tick instructions
— 256 bytes of iram
— 4kb of xram
— XDATA includes all code, iram, xram

— execution happens anywhere :)

e register access to radio, dma, crypto, usb, timers, adc

* registers are simply memory locations is the XDATA
address space

0x2020 — ccllll radio state engine

.I DLE Default state when the radio is rn::-t,
receiving or transmittin
*CAL ° &

FSTXON . s,

Used for calibrating frequency) (3
synthesizer upfront {(entering -~ . L
i RX receive or transmit mode can | Mtinuall1;req: "
then be done quicker). \Synth. call ’3"_?f1»-' SRX or STX or SFSTXON

'TX Transitional state. v

- F“:—“CI'-‘E“‘:Y . Frequency synthesizer is turned on, can optionally
[synthesizer startup, °\ pe calibrated, and then settles to correct frequency.
SFSTXON ' optional calibration. | Trapsitional state

Frequency synthesizer is on, - e settling T

ready to start transmitting. /" Freguency
Transmission starts very wsynthesizer on,
quickly after receiving the e P
STx command strobe. »

STX TXOFF_MODE=01

-~

SFSTXON or RXKOFF_MODE=01

- - . T
\n.

. ST or RXOFF_MODE=10 ;
Transmit mode | | Receive mode

S - SR or TXOFF_MODE=11

Tx,;.']:__,: - JODE=0D RXOFF_MO_DI%:UU

o ' Optional transitional state. /'-
Transmission is L A - - Reception is turned
turned off and this Py e T T P i -
state is entered if (_TXOverflow "~ _ 7 Optional freq "o :) off and this state is
the RFD register ; . synth. calibration T = entered if the RFD
becomes empty in | — - register overflows.
the middle of a /
packet.
Typ. current
consumption;
1.8maA

0x2030 — ccllll radio configuration

e configuring the radio is done through updating a set of 1-
byte registers in varying bit-size fields
- MDMCFG4 — MDMCFGO — modem control
- PKTCTRL1, PKTCTRLO — packet control
- FSCTRL1, FSCTRLO — frequency synth control
- FREND1, FRENDO - front end control
- FREQZ2, FREQ1, FREQO — base frequency
- MCSM1, MCSMO - radio state machine
- SYNC1, SYNCO — SYNC word, or the SFD
- CHANNR, ADDR - channel and address
- AGCCTRL2, AGCCTRL1, AGCCTRLO - gain control

0x2040 - Smart RF Studio (ftw)

CC1111 - Register View (offline)

ﬁ Register export

Value (Hex)

[l Register View [l RF Parameters

Bl
Cptimized for current consumption

1 :

2.4 kBaud, . o E E Optimized for sensitiwvity

2.4 kBaud, Z - =t E = Cptimized for current consumption
38.4 kBaud, 2 - = B = ¥Hz, Optimized for sensitiwvitcy

38.4 kBaud, = E B Wz k¥Hz, Optimized for current consumption
250 kBaud, . 5 E BW: @00 kHz, Optimized for sensitiwvity

S o T . P PP = o E n) PR Bl T P, & P A s 5] A s S

IDCFG2
I0CFG1
IOCFGO
SYNCH
SYNCO
PKTLEM
PETCTRL1
PKTCTRLO
ADDR
CHANNR
FSCTRL1
FSCTRLO
FREQZ
FREQ1
FREQHD
MOMCFG4
MOMCFG3
MOMCFG2
MOMCFG1
MOMCFGO
DEVIATN
MCSK2
MCSH1
MCSK0
FOCCFG
BSCFG
AGCCTRLZ
AGCCTRLY
AGCCTRLO

RF Parameters
Baze frequency Channel number Channel spacing Carrier frequency

|868.299683 | MHz = [199.951172 | kHz |268.209683 | MHz
Xtal frequency Data rate R fitter BW

[42.000000 =] MHz 119877 | kBaud 62.500000 | kHz [Manchester enable
Modulation format Deviation TX power

GFSK 5126953 | KHz 0 ~| dBm [PAramping

£r

e
L

Continugus TX | Continuous R¥ | PBcket TX | Packet BX | RF Device Commands

= La

Packet payload size: ;_ 3_':'__. W Add ==q. number

Packet count: | 100 | ™ Infinite

=
)

]
L]

{* Random i-ﬁTdeb3124d cd 43 bb 8b a6 1f 03 5a 7d 09 38 25 17 5d d4 cb fc 96 545 3b 13 0d 85 (a

i ta

et

g —
-

™ Hex

[=1
]

Sent packets:
Frequency:
Output power:

b A A B A A B B

I

0x2050 — ccllll radio notes

Data Rate, Bandwidth, and Intermediate Frequency and Freg-Deviation
depend on each other

e putthe radio in IDLE state before configuring
e put the radio in IDLE state before configuring

e put the radio in IDLE state before configuring

« STROBE (SIDLE, STX, SRX, SCAL...)

- then wait for the MARCSTATE == MARC_STATE_whatever
« CCA impacts entering TX state from RX

— but not from IDLE state

0x2060 — usb

e usb is a world unto itself, with a massive standard and
substandards

- @gg: usb-in-a-nutshell

— gg: usb complete jan axelson

e cc1111's usb controller is accessed using:

— registers for config/control of usb
— registers indicating usb events that occur
- endpoint-specific FIFO buffers

e messages go there before sending to host
* messages arrive there from host

— usb “descriptors” as necessary by spec
* host uses these to query the device
e our firmware provides all this and more

0x2100 — RfCat for devs

 cc1111usb.c provides usb descriptors and framework

— shouldn't need much tinkering

e cc1111rf.c provides the core of the radio firmware

— shouldn't need much tinkering

« application.c provides the template for new apps

— copy it and make your amazing toy

e txdata(buffer, length) to send data IN to host

e registerCbEP50UT() to register a callback function to handle data
OUT from host

— data is in epSiobuf]
e transmit(*buf, length) allows you to send on the RF pipeline

« appMainLoop() — modify this for handling RF packets, etc...
« follow the examples, luke!

- RfCat's “application” source is appFHSSNIC.c

0x3000 — radio info do want to know

* frequencies

 modulation (2FSK/GFSK, MSK, ASK/OOK, other)
* intermediate frequency (IF)

e baud rate

e channel width/spacing/hopping?

* bandwidth filter

e sync words / bit-sync

 variable length/fixed length packets

* Crc

e data whitening?

e any encoding (manchester, fec, enc, etc...)

0x3010 — i1nteresting frequencies

315MF
433MF-
863MI-

915MHK

pumps,

Z — car fobs
z — medical devices, garage door openers
z — EU loves this range

z — NA stuff of all sorts (power meters, insulin
industrial plant equipment, industrial backhaul)

2.4GHz — 802.11/wifi, 802.15.4/zigbee/6lowpan, bluetooth

5.8GHz — cordless phones
FREQZ2, FREQ1, FREQO

0x3020 — modulations

2FSK/GFSK — Frequency Shift Key
- (digital FM)
— cordless phones (DECT/CT2) _

. ASK/OOK — Amplitude Shift Key AR
_ (digital AM) -

- morse-code, car-remotes, eftc...

L!I.H. 'BARRER

modulatlon like QPSK) | G |
- GSM || |I| |'| |"|I I | Illll Il

- MDMCFG2, DEVIATN

0x3030 — intermediate frequency

« mix the RF and LO frequencies to create an IF (heterodyne)
- Improves signal selectivity
- tune different frequencies to an IF that can be manipulated easily
— cheaper/simpler components

 cc1111 supports a wide range of 31 different IF options:

— 23437 hz apart, from 0 — 726.5 khz
e Smart RF Studio recommends:

21 Amplitude

N\ 140 khz uP to 384 kbaUd ‘{r" .Ih:'m-l;iltiir I:Tiginal E;E-"nl Eg-uil an mbEnmedale
- 187.5 khz at 38.4 kbaud N S

f

beat— |f‘.!
-

CRITIRr Lry
A AN B L"
-

i f1|
- 281 khz at 250 kbaud

- 351.5khz at 500 kbaud I

A baat freque 3
; o f ORTRRERIEY . pierence frequency
: FSCTRL1 o % =t 2 Alen carnier which retaire
" I:;-:rl- Eilf::ll:ﬂ 1 the moodgilabing sgnal,

0x3040 — data rate (baud)

much like your modems or old

the frequency of bits

— some can overlap and get garbage!

e garbage can be good...

e baud has significant impact on IF, Deviation and
Channel BW

» seeing use of 2400, 19200, 38400, 250000
MDMCFG3 / 4

0x3050 — channel width / spacing

» simplifying frequency hopping / channelized systems
* real freq = base freq + (CHANNR * width)

e MDMCFGO / 1

AWAT ATAY AVATY
\i |

ARRRNAARNARRY

0x3060 — bandwidth filter

* programmable receive filter
» provides for flexible channel sizing/spacing

total signal bw = signal bandwidth + (2*variance)
total signal bw wants to be less than 80% bw filter!

MDMCEG4

Bandwidth
f 5 f 1

Amplitude (dB)

Frequency (Hz)

0x3070 — preamble / sync words

 identify when real messages are being received!
o starts out with a preamble (1010101 0...)
e then a sync word (programmable bytes)
- marking the end of the preamble
- aka 'SFD' — start of frame delimiter
e configurable to:
- nothing (just dump received crap)
— carrier detect (if the RSSI value indicates a message)
- 15 or 16 bits of the SYNC WORD identified
— 30 out of 32 bits of double-SYNC WORD

SYNC1, SYNCO, MDMCFG2

0x3080 — variable / fixed-length packets

» packets can be fixed length or variable length

variable length assumes first byte is the length byte
* both modes use the PKTLEN register:

- Fixed: the length

- Variable: MAX length
PKTCTRLO, PKTLEN

0x3090 — CRC — duh, but not

» crc16 check on both TX and RX

e uses the internal CRC (part of the RNG) seeded by Oxffff
« DATA ERROR flag triggers when CRC is enabled and fails

e« some systems do this in firmware instead

« PKTCTRLO

e————— Optional data whitening ——————»
¢« Optionally FEC encoded/'decoded ——
——0Optional CRC-16 calculation —————

Preamble bits

(1010..1010) Data field

Sync word
Length field
Address Tield

o

——8 % bifs ——£ 16/32 hns!n;blt :HTI:' H——————— 8 % n bits§ ————x—16 bits =

Figure 51: Packet Format

Legend:
Inserted automatically in TX,
processed and removed in BX.

Optional user-provided fields processed in TX,
processed but not removed in RX.

|:| Unprocessed user data {apart from FEC
and/or whitening)

0x30a0 — data whitening — 9 bits of pain

 |deal radio data looks like random data
e real world data can contain long sequences of 0 or 1
e data to be transmitted is first XOR'd with a 9-bit sequence

— sequence repeated as many times as necessary to
match the data

PKTCTRLO

The T' tT (_DATA byte hrrt n before doing th peration providing the firs JLTL“'O]hrc
second TX_DATA t:\.rt tr hflen:l before doi gh P—upwrmmpmﬂ uh Fuud JLTFU]I'

Figure 50: Data Whitening in TX Mode

0x30b0 — encoding N
Data | |

1 01 0 0 1 1 1 0 0 1
Manchester

(as per G.E. Thomas)

* manchester

- MDMCFG2
e forward error correction

Manchester

(as per IEEE 802.3)

— convolutional
« MDMCFG1
- reed-solomon (not supported)yp
 encryption - AES in chip

APy
X-al)=(a<<1)@ 1D (a3=1)? :00
09 base

Use (x+1)=03 for

M folorns:
B Pl | 32
Fiv]

0x30c0 — MDMCFG2 register

0xDFOE: MDMCFG2 - Modem Configuration

Bit | Field Name

T DEM_DCFILT_OFF

6:4 | MOD_FORMA

MAMCHESTER_EMN

SYNC_MODE(2:0]

a

1]

oo

RW

Description

Disable digital DC blocking filtar before demodulator. The recommanded IF
fragquency changes when the DG blocking is disabled. Please usa SmarlRF
Studio [9] to calculate correct registar setting.

i} Enable Bedtar Sansitivity
1 Disable Currant oplimized. Only for data rates £ 100 kBaud
The modulation farmat of the radio signal

ono

0o

010

011
100
101

110
111

Mote that MSK is supported for dala rates above 26 kBaud and GFSK,
ASHK |, and 00K is only supporied for data rate up until 250 kBaud. MSK
cannal be used if Manchester encoding/decoding is enabled.

Manchestar encoding/decoding enabla

4] Disable
1 Enable

Maote that Manchaster encoding/dacoding cannot ba used at the same fime

as using the FEC/Intereaver oplion or when using M modulation.
Syne-word qualifier modea.

The valuas 000 and 100 disables praamble and synec ward transm
T¥ and preamble and sync word detection in RX.

The valuas 001, 010, 101 and 110 anables 16-bit sync word ransmission in
T¥ and 16-bits sync word datection in RX. Only 1 16 bils naed to match
in AX when using sething 001 ar 101, The values 011 and 111 enablas
rEpE v word fransmission in TX and 32-bits syne word detection in
RX {only 30 of 32 bits need to match).

[ln] Mo preamblefsyne
o 1518 sync word bils detecled

o10 1618 sync word bils detecled

011 30732 sync word bits detected

100 Mo preamblefsyne, carrier-sensa above thrashold
101 15186 + carrier-sensea above threshold
110 16/M16 + carrier-sensa above thrashold

111 30/32 + carrier-sensa above threshold

sorry, couldn't resist

Big Idea #2: Secrecy Only in the Key

Afrer thousands of years, we learned
rthat it's o bad idea to assume that no
one knows how your method works.
Someone will evenfua"y find that our.

Tell me how it works!

Ok No problem! I+'s
Greatl Navwe T on Wikipedia, but

can decode I don't know the

/"EVEI"Y‘I'hIhsl key \

|
/Dra1's. '

Te.“ me haw it worka'

/
BETTER

0x3100 — how can we figure 1t out!?

e open / public documentation
- insulin pump published frequency
e open source implementation / source code
e “public” but harder to find (google fail!)
— fcc.gov — search for first part of FCC ID

. -bookmark it
- patents — amazing what people will patent!

 french patent describing the whole MAC/PHY of one meter
e and another:

http://transition.fcc.gov/oet/ea/fccid/
http://freepatentsonline.com/
http://www.freepatentsonline.com/8189577.html
http://www.freepatentsonline.com/20090168846.pdf

0x3101 — how can we figure i1t out!? -part?2

reversing hw
- tapping bus lines — logic analyzer

e grab config data
e grab tx/rx data

- pulling and analyzing firmware
* hopping pattern analysis
- arrays of dongles — space them out and record results
- hedyattack, or something similar
- spectrum analyzer
- USRP2 or latest gadget from Michael Ossman

trial and error — rf parameters

MAC layer? - takes true reversing.. unless you find a patent :)

Bandwidth (i.e. 902-928 MHz or 2.4-2.483 GHz)

9 3 511 115 4 13 7 1016 2 14 8 12 6

0x4000 — intro to FHSS

Direct sequence waveform

Frequency s

e FHSS is common for devices in the ISM bands

— provides natural protection against unintentional
jamming /interferance

- US Title 47 CFR 15.247 affords special power
considerations to FHSS devices

e« >25khz between channels

pseudorandom pattern

each channel used equally (avg) by each transmitter
if 20db of hopping channel < 250khz:
- must have at least 50 channels

— average <0.4sec per 20 seconds on one channel
if 20dB of hopping channel >250khz:

- must have at least 25 channels
— average <0.4sec per 10 seconds on one channel

0x4010 — FHSS, the one and only - NOT!

 different technologies:

- DSSS - Direct Sequence Spread Spectrum

* hops happen more often than bytes (ugh)
« typically requires special PHY layer
RNRHSSY

* hops occur after a few symbols are transmitted
 different topologies: (allow for different synch methods)
— point-to-point (only two endpoints)
— multiple access systems (couple different options)

« each cell has their own hopping pattern
» each node has own hopping pattern

e different customers:

- military has used frequency hopping since Hedy and George submitted the
patent in 1941.

- commercial folks (WiFi, Bluetooth, proprietary stuff like power meters)

0x4020

— FHSS intricacies

 what's so hard about FHSS?

must know or be able to come up with the hopping pattern

e can be anywhere from 50 to a million distinct channel hops
before the pattern repeats (or more)

must be able to synchronize with an existing cell or partner

e Or become your own master!
must know channel spacing

must know channel dwell time (time to sit on each channel)
likely need to reverse engineer your target

DSSS requires that you have special hardware

« military application will be very hard to crack, as it typically will have hops
based on a synchronized PRNG to select channels

0x4030 — FHSS, the saving graces

e any adhoc FHSS multi-node network: (power meters / sensor-nets)

- node sync in a reasonable timeframe
* limited channels in the repeated pattern
- each node knows how to talk to a cell

* |let one figure it out, then tap the SPI bus to see what the
pattern is...

* two keys to determining hopping pattern:

— hop pattern generation algorithm

e often based on the CELL ID

— one pattern gets you the whole cell ;)
e others generate a unique pattern per node

- some sync information the cell gives away for free

 gotta tell the n00bs how to sync up, right?
» for single-pass repeating sequences, it's just the channel

0x4040 — FHSS summary

e FHSS comes in different forms for different uses and
different users

 FHSS is naturally tolerant to interference, and allows a
device to transmit higher power than nonFHSS comms

» getting the FHSS pattern, timing, and appropriate sync
method for proprietary comms can be a reversing
challenge

e getting a NIC to do something with the knowledge gained
above has — to date — been very difficult

0x5000 — intro to RfCat

 RfCat: RF Chipcon-based Attack Toolset
e background...

e goals...

e plans...

e where we're at so far...

0x5010 — rfcat background

* the power grid

- power meters and the folks who love them (yo cutaway,
g, travis and josh!)

- no availability of good attack tools for RF
e vendor at Distributech 2008:

“Our Frequency Hopping Spread Spectrum is too fast
for hackers to attack.”

« OMFW! really?

0x5020 — rfcat goals

 RE tools - "how does this work?”
e security analysis tools - “your FHSS and Crypto is weak!”

e satiate my general love of RF

 a little of Nevil Maskelyne

* | will not demonstrate to any man who throws doubt upon the
system” - Guglielmo Marconi, 1903

— Julwut?

0x5030 — this i1s not HedyAttack

but leveraged the knowledge from HA...

cc1111usb is the base code which HedyAttack started
- forms the USB base for RfCat

* |less "researchy"

— this project won't find hopping patterns
— it's goal is to provide you something to do with that infoz
e “so, we determined this hopping pattern... now what?”

e more utilitarian

— give us comms parameters and a hopping pattern, and we'll
be a NIC, sniffer, and interact with RF gadgets

— some devices will require more customization than other

0x5040 — rfcat's interface

 rfcat is many things, but | like to think of it as an interactive
python access to the <GHz spectrum!

- <insert pic>
e rfcat
- FHSS-capable NIC

« some assembly may be required for FHSS to arbitrary devices

- toolset for discovering/interfacing with RF devices
» rfcat _server

- access the <GHz band over an IP network or locally and
configure on the fly

— connect to tcp port 1900 for raw data channel
— connect also to tcp port 1899 for configuration

WHl () — rfcat

 customizable NIC-access to the ISM bands
 ipython for best enjoyment

» |ame spoiler: you get a global object called “d” to talk to the
dongle

'"RfCat, the greatest thing since Fregquency Hopping!'

N d RF .t 'bl h' Don't you wish this were a CLI!? Sorry Waybe soon
.)(I Ill Ea For now, enjoy the raw power of rflib, or write your own device-specific CLI!
urrentl our environment has an ol t called "d" for dongle this iz how

- data = d.RFrecv() Jou interact with the ricat dongle, for

|
|)
= d.setMdmModulation(NOD_ASK_00K)
|
|
|

- d.discover(lowball=1)
- d.RFlisten()
= help(d) PING: 26

26 |
PING: 26 bytes transmitte
PING: 26 bytes transmitte
PING: 26 by
PING: 26 bytes
PING: 26 bytes

[

[

[

[

== d.makePlktFLEN{250)
== o RFxmit("HALLO")

~ d.RFrecv()
= print d.reprRadicConfig()

d.ping()
s transmitted, received: 'ABCDEFGHIJELWMNOPORSTUNWAYZ' (0.027489 seconds)
received: 'ABCDEFGHIJELMHOPQRSTUNWEYZ® (0.011954 seconds)
received: 'ABCDEFGHIJELMHOPQRSTUNWAYEZ® (0.01238
== transmitted, received: 'ABCDEFGHIJELMHNOPORSTUMWYZ' (0.012189 se
transmitted, received: 'ABCDEFGHIJELMNOPQRSTUNMWIYE® (0.012 =1 ds)
transmitted, receives "ABCDEFGHIJELMNOPOQRSTUNWYZ " (0.012139 =se ds)
received: 'ABCDEFGHIJELMHOPQRSTUNYWEYEZ® (0.0 5
26 by received: 'ABCDEFGHIJELMHOPOQRSTUNWYEZ® (0.0 ds)
PING: 26 bytes transmitted, received: 'ABCDEFGHIJELMHOPQRSTUMWAYZ' (0.011946 seconds)
PING: 26 bytes transmitted, received: "ABCDEFGHIJELMNOPQRSTUMWYZ' (0.01159 nds)
1 {10, 0, 0.13894200325012207)

PING: 26 bytes transmitte
PING: 26 = transmitte

mor mor m

0x5060 — rfcat server

e bringing <GHz over the IP network!
e connect on TCP port 1900 to access the wireless network
e connect on TCP port 1899 to access the wireless configuration

e created to allow non-python clients to play too

- stdin is not always the way you want to interact with
embedded wireless protocols

CARRIER_SENSE_ABS_THR REG_DEVIATII
CARRIER_SENSE_REL_THR REG_PKTCTRL
REG_PKTLEN

0x5070 — rfsniff (pink version too!)

» focused primarily on capturing data from the wireless network
 IMME used to provide a nice simple interface

* RF config adjustment using keyboard!

01/25/2012

i = -
/ 2 W \k_
inc/dec highest sync word nibble
inc/dec high-middle sync word nibble
inc/dec low-middle sync word nibble
inc/dec lowest sync word nibble
HO sync word matching

menu - inc Medulation type
bye! - dec Medulation type

up inc recv bandwidth
down dec recv bandwidth

right - inc baudrate
left - dec baudrate

Enter - inc/dec frequency
‘. - faster inc/dec freguency
m - even faster inc/dec freguency
set freq to 915mhz
set freq to B868mhz
set freq to 433mhz
set freq to 315mhz
inc/dec channels

set channel = 0

SPACE - switch screens
SPER - toggle CARRIER TX mode (good for showing up on a 5SpecAn, or, umm, jamming?)

0x5080 — rfcat wicked coolness

e d. debug = 1 - dump debug messages as things happen

e d.debug() - print state infoz once a second

» d.discover() - listen for specific SYNCWORDS

» d.lowball() - disable most “filters” to see more packets

» d.lowballRestore() - restore the config before calling lowball()

» d.RFlisten() - simply dump data to screen

e d.RFcapture() - dump data to screen, return list of packets
e d.scan() - scan a configurable frequency range for “stuff’

 print d.reprRadioConfig() - print pretty config infoz

0x5090 — lowball and discover

* lowball mode stores current radio config

>>> d.lowball() # drops most blocks to pkts (CARRIER)
>>> d.lowballRestore() # returns original config

>>> d.lowball(0) # dumps all sorts of crap (SYNCM_NONE)
>>> d.lowball(1) # default... same as no argument

e discover() uses lowball mode, adds value
d.discover(lowball, debug, length, IdentSyncWord, SyncWordMatchList)
>>> d.discover() # enters lowball mode, dumps pkts
>>> d.discover(lowball=0) # dumps way more pkts
>>> d.discover(ldentSyncWord=True)
>>> d.discover(SyncWordMatchList=[0Oxdead, Oxbeef])

0x5100 — example lab setup

« example RF attack lab setup:
- dongle “Gina” running hedyattack spec-an code
— dongle “Paul” running rfcat
— IMME running rfsniff
- (possibly an IMME's running SpecAn)
- saleae logic analyzer for hacking of the wired variety
- FunCube Dongle and quisk/qgthid or other SDR

Ul attack form

base freq:
modulation:
baud/bandwidth:
deviation:

channel hopping?

- how many channels: channel spacing:
- pattern and effective sync method? dwell period (ms):
fixed-/variable-length packets: len/maxlen:

“address”:

sync word (if applicable):

crc16 (y/n): does chip do correct style?

fec (y/n): type (convolutional/reed-soloman/other):
manchester encoding (y/n):

data whitening? and 9bit pattern:

more complete information:

http://atlas.r4780y.com/resources/rf-recon-form.pdf

0x6000 — playing with medical devices

CAUTION: MUCKING WITH THESE CAN KILL PEOPLE.
- THIS FIRMWARE AND CLIENT NOT PROVIDED
found frequency in the pdf manual from the Internet

- what random diabetic cares what frequency his pump
communicates with!? ok, who cares!

 modulation guessed based on spectrum analysis and trial/error

- the wave form just looks like <blah> modulation!

other characteristics discovered using a USRP and baudline
(and some custom tools, thanks Mike Ossman!)

0x6010 — the discovery process

» glucometer was first captured using Spectrum Analyzer
(IMME/hedyattack) to validate frequency range from the lay-
documentation

e next a logic analyzer (saleae) used to tap debugging lines

e next, the transmission was captured using a USRP (thank you
Mike Ossman for sending me your spare!)

* next, the “packet capture” was loaded into Baudline, and
analysis performed to identify baudrate and modulation
scheme, and get an idea of bits

* next, Mike Ossman did amazing-sauce, runningy¥e.
the capture through GnuRadio Companion T
(the big picture on next slide)

 RF parameters confirmed through RF analysis,
and real-life capture.

01/15/2012

File Edit Wiew Build Help

EEXI& .«

o4]

q - = = - = e = = = = - = = - = e

4 ex6 b4 |ﬁlterﬁ |xy|oc—demo b4 |xyloc—demod b4 |xyloc—rep|ayﬁ | exl 3% | ex8 3¢ | exBb 5% | exBc 3% | docsis-interferer 3% | atlas-dermed 3¢ insulin-demod 38 | P
Options File Source Throttle]]
ID: top_block File: ... asfinsulinclip. cfile Power Squelch Sample Rate: 125k Multiply
Generate Options: WX GUI Repeat: fes Threshold (dB): -100 Signal Source
Alpha: 10m Sample Rate: 500k
Ramp: 1 Waveform: Cosine
Gate: Yes Frequency: -9.5k
Amplitude: 1
Offset: 0
Complex to Mag |out ind Low Pass Filter
Variable . - S — . Subtract [out De.cimation: 1
ID: samp_rate Low Pass Filter o'.w a.ss ilter inl Gain: 1
Value: 500k Decimation: 1 Decimation: 1 = Sample Rate: 500k ot
Gain: 1 Gain: 1 Cutoff Freq: 8k
Sample Rate: 500k & Sample Rate: 500k ol Transition Width: 2k
_ Cutoff Freq: 10k Cutoff Freq: 10 Window: Hamming
Variable Transition Width: Sk Transition Width: 20 Beta: 6.76 —
ID: symbel_rate Window: Hamming Window: Hamming
Value: 16.384k Beta: 6.76 Beta: 5.76
in | Binary Slicer File Sink
File: ...asfinsulin-dermad. out
Unbuffered: Off
Clock Recovery MM
Omega: 30.5176
= Gain Omega: 7.7m ot Correlate Access Code
Mu: 0 Accass Code: 10101... 00000000 WX GUI Scope Sink
e l?5r1-'1 L Threshold: 1 Title: Scope Plat
Omega Relative Limit: 5m _b_IE Sample Rate: 500k
Trigger Mode: Auto
¥ Axis Label: Counts
Ad
[] Persistence
200U ScorsiRiot . [nalog Alpha; 0,0984 ﬂ
Axes Options
150u
Secs/Div: +| -
100u Counts/Div: +
¥ offset: +
50U T Offset: x
E a [Autorange
2 Channel Options
s0u cht | ig|
100u Coupling: DC 8
s Marker: Line Link |
-200u
10 12 14 16 18 20 22 24

RUR

Blocks

[Sources]
[sinks]
[Operators]
[Type Conversions]
[Stream Conwversions]
[Misc Corwversions]
[Synchronizers]
[Level Contrals]
[Filters]
[Modulators]
[Error Correction]
[Line Coding]
[Vocoders]
[Probes]
[“ariables]
[Mise]
[Digital]
Binary Slicer
Clock Recovery MM
CMA Equalizer

Constellation Decoder

Costas Loop
FLL Band-Edge

kKiitatic Fanalizar

= Add

0x6020 —the immaculate reception

e punched in the RF parameters into a RFCAT dongle

— created subclass of RFNIC (in python) for new RF config

e dropped into “discover” mode to ensure | had the modem right

' L wAaOal - ’ WYAQOQW 1 . wAaaaaln - , YAQOaWL . vAagaarL |
1 d555555555555555555555555555555 7 F 80 C
'OxaaffL', 'OxaabfL', 'OxaaaflL', 'OxasabL',
cOB02aaaaaaaaaaaadaaaaaaaaaaaaaaaasabfcd 02a96adlcch4359c5
OxaaftfL', 'OxaabfL', 'OxaaaflL', 'Oxa=ablL'. xaaaasl', 'OxZaaal’', 'Oxaaal']
ved: 1c59580002aaacaaaaaaaaaaasaaasasaaasaaasaabfc03fc02a96adlechs
v ['OxaaftfL', 'OxaabfL', 'OxaaaflL', 'OxazabL', 'Oxaaaal']
ved: b3BadBe2cacOOn
['OxaaffL', 'Oxaaal']
'Oxamal', 'Ox2aal']
! 0lSaaaaaaacaaadaaaacaaaasaaaaaaaaaatf
e 11cch43 /Jaaaasaaasaaaazaaazaaazaaazaaasz
effOOffO0aa5ab4732d0dE715b1c59580002aaaaaaaaaaasaaaaaaaaaaas
= a=aaaff00ffO0aa5aba752d0d6715b1 c59580002ELEEEEEEEEEEEEEELEE
maaffL', 'OxaabfL', 'OxaaaflL mazabl', 'Oxaaasl', 'Ox2aaal’', 'Oxaaal', 'OxZaal']
aaaasaaasaaTfOOffO0aasSab47 S0002azaaasaaasaaas
‘OxaaffL', 'OxaabfL', 'OxaaaflL', , 'Oxaaaal', 'Ox2aaal']
. oomaaaaasaaassaatfOOffO0aaSab4732d0de715hlc59580002aaaaaaaas
['OxaaffL', 'OxaabfL', 'OxaaaflL', 'COxasabL', ' 'Ox2aaal', 'Oxa=al', 'Ox2aal']
! @oaadoaacosasdaaazamat fOOFfO0aaSaba7s 2
OxaaffL', 'OxaabfL', 'OxaaaflL', 'OxasabL',
! @o@adaoacoodaddaadsaaasassaffOOffoCaaSabd
['GxaaffL', 'OxaabfL', 'GxaaaflL', 'OxaaabL'. 'Oxazal', 'Ox2aal’']
1

W N P T T N T T A T T T S T Y W SO S C N | B Y " S " By o -

. rétur ed to normal NIC mode to receive real packets

 now need the pump to reverse the bi-dir protocol

'aaSab4732d0d2f19ac56558000" ,
'aaSab47 E
'aaSab4732c
'aaSab4a7
'aaSab4732dC
'aaSab47
'aaSab4732dC
'aaSab4a7
'aaSab4732dC
'aaSab4a7
'aaSab4732dC
'aaSab47
'"aaSab4732c
'aaSab47 ?
'aaSab4732d0d2

0x6100 — playing with a power meter

e CAUTION: MUCKING WITH POWER SYSTEMS WITHOUT APPROPRIATE
AUTHORIZATION IS ILLEGAL, EVEN IF IT IS ON THE SIDE OF YOUR HOUSE!

* most power meters use their own proprietary “Neighborhood Area Network™
(NAN), typically in the 900MHz range and sometimes 2.4GHz or licensed
spectrum.

» to get the best reception over distance and gain tolerance to interference, all
implement FHSS to take advantage of the Title 47: Part 15 power
allowances

* many of the existing meters use the same cc1111 or cc1110 chips, or the
cc1101 radio core

e this is the reason I'm here today :

0x6110 — as sands through the hourglass

 power meter RF comms have long been “unavailable” for
most security researchers

« some vendors understand the benefits of security
rigor by outside researchers

— others, however, do not.

e the gear used in my presentation was given to me by one
who understands

- for various reasons, they have asked to remain
anonymous, however, their security team has a
well founded approach to finding out “how their
baby is ugly” | would like to give them credit for
their commitment to the improved security of their
products.

atlas, tell us what you really think

1S \T A RGHT { T DoNT

TO REMAIN | KNOW, BUT
. IGNORANT 7 | T REFUSE
~ e __ TO FIND
IGNORANCE <

When did it become a point of view?

0x6120 — smart meter — the complication

power meters are not so simple as glucometers

— proprietary FHSS in a multiple-access topology

- have to endure the RF abuse of the large metropolis

e complex mac sync/net-registration

e not easy to show with a single meter without a Master node.
e initial analysis was performed via my saleae LA:

e SpecAn code on IMME's and hedyattack dongles

— good for identifying periods of scanning

« although the dongle can hop along with the meter, we won't be
demoing synching with the meter today

0x6130 — the approach

» determine the rf config and hopping pattern through SPI Bus sniffing
(and my saleae again)

Width: 48,163312
Period: #HEH
Freguency: ###
AL #H
T2: #H
| T1-T2 | = #&#

~ Analyzers

SPI

SPI

. || S I | B | aaaa—

. 840

.851
. 131
- 331
1
- 131
« 21
.103
.103
104
104

12.105

. 1097
.108
.108
.108
«1.23
~373
o T
. 374
374
374
e
.376
. 376
S
8 i)
. 394
<395
-39
. 396
-39
. 399
400
400
404
404
L4035
.A05
409
409

SET RF channel:

STROBE:
WRITE
READ
WRITE
READ
WRITE
READ
STROBE:
STROBE:
STROBE:
STROBE:
STROBE:
STROBE:
STROBE:
STROBE:
STROBE:
WRITE
READ
WRITE
READ
WRITE
READ
STROBE:
STROBE:
STROBE:
STROBE:
STROBE:
STROBE:
STROBE:
STROBE:
STROBE:
STROBE:
STROBE:
STROBE:
STROBE:
STROBE:
STROBE:
STROBE:
STROBE:
STROBE:

SRES

S I0LE
SCAL
SFRX
SRX

SIDLE
SCAL
SFRX
SRX

SRES

SH0LE
SCAL
SFRX
SRX
SI0LE
SCAL
SFRX
SRX
SI0LE
SCAL
SFRX
SRX
SI0LE
SCAL
SFRX
SRX
SI0LE
SCAL

0 - 3502250000

I0CFG2
I0CHG2
FRIEST
FSTEST
FATABLE
FATABLE

I0CFG2
I0CFG2
ESTEST
=
FATABLE
FATABLE

(BURST)
(BURST)
(BURST)
(BURST)
(BURST)
(BURST)

(BURST)
(BURST)
(BURST)
(BURST)
(BURST)
(BURST)

O] -
D1
L
L
OO i
OO i
O
O]
5 e
5 e
OO M-
OO M

0x6140 — the approach (2)

e discover mode:

— disables sync-word so radio sends unaligned bits

Entering Lowball mode and searching for appropriate SyncWord
(1327552987.030) Received: fFEfffffffffffffffffififfffffffffiffffrfffrffffffifffffffeffiffiftffffffffrefftffffffiffffffififfffffffifffffe000000000000000000000C

00001 00080000000000000000000000040000000207faaaaahe8657df 8520656841 1ad ff9fcdffffcal0o0ff8ac000080009000450000200a001 411304000021 0b0405080019F6F FFFFFF
possible Sync Dwords: ['Oxfal9l', 'Oxbe86L', 'Oxafall', 'OxabeBL', 'Oxaafal', 'Oxaabel', 'OxaaafL', 'Oxaasabl']

(1327553021.785]) Received: fRffffffffffffffffiffrffffffffrffffrfeffffefffofffffff{ffealoonoO00000000000040000000000000000002000000000000000040000000000400000C

..

O2Bn00000000000aA0ARAEAA00000000000N2000200000000000000RAARAAA000L feaaaaafal st Te 20819510460 Tfea 72 F 1913300 7d08401 01 2000001 03005401 40010203

possible Sync Dwords: ['Oxfaldl', 'Oxbed86L', 'Oxafall', 'OxabeBL', 'Oxaafal', 'Oxaabel', 'OxaaaflL'. 'Oxaasabl']
(1327553059, 045) Received: 203000606006116168d62b5cl3as2bd5053dd3ecdleeelBfcc7hef7batddaddfd38000000000000000002000000000200000000004000200000020000000000000¢

..

0000000000000000000000000220200000 1 f eI e Tc41032b4208d6T fdee 4f f 1712 c69941240211856452900 04812840281 080020901 2f 0040020001 c16a7c 7alf2a

possible Sync Dwords: ['Oxfalol', 'Oxbed6L', 'Oxafall', 'Oxabesl', 'Oxaafal', 'Oxaabel', 'OxaaaflL', 'Oxasabl']
{1327553095,899) Recelven oorreueShth7ofof37+df fdfdbat 7R O0000000AANRAARAEAEAEGAG0000AAAARAAAAAAAG0A00A0AANRAAEANAANE0002A00A0AAAEAA0000000AANRAAEAA 20000004007
1T T e e T T e e e e e e T e DT e T e O et e e e e e e e e T e e e T e e T T
000000A00000N000A00010000EAND00ON00ANN00Sfeaaaaatal 95F 7e 2081 55a1 046b7FF 971 ffffh97561 3df daBO08E42c 309¢ 346761 88c 70720520121 0001 c002000c 040838

possible Sync Dwords: ['OxfalSl', 'Oxbe86L', 'Oxafall', 'OxabeBL', 'Oxaafal', 'Oxaabel', 'Oxasafl', 'Oxaasabl']

- algorithm looks for preamble (Oxaa or 0x55)
— then determines possible dwords

« ummm... but that's not any bit-derivation of the sync word(s) |
expect. wut? | am confident those are coming from the meter

- intro: Bit Inversion (see highlighted hex)

0x6145 — new developments

e vendors filed numerous patents with hopping pattern
calculations, communications parameters, etc...

- WIN!

- plenty of work to be done! jump right in!
 http://www.patentstorm.us/patents/7064679/fulltext.ntmi
 http://www.patentstorm.us/patents/7962101/fulltext.html

 http://www.patentstorm.us/applications/20080204272/fulltext.html
 http://www.patentstorm.us/applications/20080238716/fulltext.html

http://www.patentstorm.us/patents/7064679/fulltext.html
http://www.patentstorm.us/patents/7962101/fulltext.html
http://www.patentstorm.us/applications/20080204272/fulltext.html
http://www.patentstorm.us/applications/20080238716/fulltext.html

AAARLATIRARIAY
i ARRRRRRRARARRR AR
T : i IR
| i FRRRRRRRRRRRRRARRRRR A
HM\HHNHHNHH‘

i
" i

—

il

gL |
h |-
‘ | | | “\H“\Hw‘ ||
T IRt R ARt \
“‘\“\ ‘ | | Ly \‘ “M
RARERRERRRARAL: ‘ i |
|
T

”‘““H “‘\‘\NH H‘“ ‘H
HH““H‘U“‘\‘\‘HM“N i : ! “\“J‘\“‘H\MM“H‘\ ‘ HH\ J
| ‘*w\\w“\‘\\“\‘\\\\\w‘ 1 | | | | | H/

““,‘H““J"/

VY \ J ““““““‘e“““““‘“““c“““““‘;"““‘!/y’/“"

|]
T

PR LAY
\ T
(T
/]
I/
//

AR /
i
/]

/

Iy

[

/

ARRRAN
AV
ALY
RN

0x6150 - conclusions

 rfcat discover mode roxors
 rfcat is a foundation for your attack tool

— way more than just a tool in itself

. are responsible for ensuring our devices use
appropriate security. do not simply expect someone else
to do it. the first med-device death could be your best
friend.

References

http://rfcat.googlecode.com

http://en.wikipedia.org/wiki/Part_15 (FCC_rules)
http://en.wikipedia.org/wiki/ISM_band
http://www.ti.com/lit/ds/swrs033g/swrs033g.pdf - “the” manual
http://edge.rit.edu/content/P11207/public/CC1111_USB_HW User_s Guide.pdf
http://www.ti.com/litv/pdf/swru082b
http://www.ti.com/product/cc1111f32#technicaldocuments

http://www.ti.com/lit/an/swraQ77/swraQ77 .pdf

http://www.newscientist.com/article/mg21228440.700-dotdashdiss-the-gentleman-hackers-1903-lulz.htmi
http://saleae.com/

http://zone.ni.com/devzone/cdal/epd/p/id/5150 - FSK details (worthwhile!)
http://www.radagast.org/~dplatt/hamradio/FARS presentation _on_modulation.pdf

- very good detailed discussion on deviation/modulation

http://en.wikipedia.org/wiki/Frequency modulation

http://en.wikipedia.org/wiki/Minimum-shift_keying

http://rfcat.googlecode.com/
http://www.ti.com/lit/ds/swrs033g/swrs033g.pdf
http://saleae.com/
http://zone.ni.com/devzone/cda/epd/p/id/5150
http://www.radagast.org/~dplatt/hamradio/FARS_presentation_on_modulation.pdf
http://en.wikipedia.org/wiki/Frequency_modulation

Oxgreetz

 power hardware folk who play nice with security researchers
e cutaway and q (awesome hedyattackers)

e gerard van den bosch

e travis and mossman

e sk0dO and the four J's

 Invisigoth and kenshoto

« Jewel, bug, ringwraith, diva

e Jesus Christ

i

11// ////////
1111111/
/ // //////’////// /

i
) s i
‘ ‘

| / / . \ i
! i |
T I o
[

(WﬂWMNMwWWmmm‘ mep
[\\ [i }JJ
| o | | g /‘/ }//\

SO
e
H‘,/J |
I

\w‘\\u“\
| AN !

N =
S =z

atlas@ﬁlah:"fhackinngérdwarefrfcat$ rfcat -r

'RfCat, the greatest thing since Frequency Hopping!'

Don't you wish this were a CLI!? Sorry. MWaybe soon...
For now, enjoy the raw power of rflib, or write your own device-specific CLI!

currently your environment has an object called "d" for dongle. this 1s how
you interact with the rfcat dongle, for :

=== d.ping()

=== d.setFreq(433000000)

=== d.setldmModulation(MOD_ASK_00K)

=== d.makePktFLEN{250)

=== d.RFxmit("HALLO™)

=== d.RFrecv()

=== print d.reprRadicConfig()

O0xE2 — workshop ej 2 — listen to teacher

$ rfcat -r

>>> d.setMdmModulation(MOD_ASK OOK)

>>> d.setMaxPower()

>>> d.setMdmDRate(9600)

>>> d.makePktVLEN() # variable length packet

>>> d.RFlisten()

O0XE3 — heartfelt communication

e pick a friend (or set of friends)

e agree on who will xmit and who will recv
$ rfcat -r # common (xmit/recv)
>>> d.setMdmModulation(MOD_GFSK)
>>> d.makePktFLEN(20)
>>> d.setFreq(915200000)

--- recver ---

>>> d.RFlisten()

--- Xxmitter ---

>>> d.RFxmit(“hello my name is <name>")
« what happened?

O0xE3.5 — your closer friends...

* two problems: length and sync word!
e both xmitter and recver (not necessarily at once):
— Increase the packet length
>>> d.makePktFLEN(35)
- now agree upon a 16-bit sync word (0 — Oxffff)
>>> d.setMdmSyncWord(<syncword>)
- now try again
- then reverse roles
- now learn the power of the dark side!
>>> d.discover()
>>> d.discover(ldentSyncWord=True)

>>> help(d) # ahhhhhhhh.....

O0xE4 - mismatching

» xmitter and recver pick the same config (last ej)
e select random quiet frequency (same as each other)

« xmitter change something and transmit, talk to recver (use
your mouth) to discuss results)

>>> d.setMdmModulation(MOD _*)
(MOD_ASK OOK, MOD_GFSK, MOD_2FSK, MOD_MSK)

>>> d.setMdmDRate (baud)
>>> d.setMdmDeviatn(<deviation _number>)
>>> d.makePktFLEN() and d.makePktVLEN() # vary len too!

>>2>

O0XE5 — lowball, discovery, and scanning
» enter lowball mode (which stores config)

>>> d.lowball() # (SYNCM_CARRIER)
>>> print d.reprClientState()
>>> d.lowballRestore() # restore the config

>>> d.RFrecv() # and again, until you receive a timeout error

 now use lowball level O:

>>> d.lowball(0) # dumps all sorts of crap (SYNCM_NONE)
>>> print d.reprRadioConfig()

>>> d.lowballRestore() # restores original config

>>> d.RFrecv() # grab raw packet

>>> d.recvAI(APP_NIC, NIC_RECV) # dump all buffered pkts

OxXE5.1 — discover mode

* now use discover()

>>> d.discover() # press <enter> to leave discover mode
>>> d.discover(lowball=0) # what do you see?

>>> d.discover(ldentSyncWord=True) # what's that?!

>>> d.discover(SyncWordMatchList=[0x0c4e, 0xf432])

H“‘\
‘M
i}

‘ I
|
|
4
\

i
(I
1l

5

|

/
|

i
|
|

1

Scanning
Scanning
Scanning
Scanning
Scanning
Scanning
Scanning
Scanning
Scanning
Scanning
Scanning
Scanning
Scanning
Scanning

i
*\
miataih
L

L

"
(i

| \ \ \\
A\ \

d.scan(]
Scanning range:

for
for
for
for
for
faor
for
for
faor
for
for
for
for
for

frequency
frequency
frequency
frequency
frequency
frequency
frequency
frequency
frequency
frequency
frequency
frequency
frequency
frequency

S02000000...
Q02250000...
902500000. ..
902750000, ..
903000000, ..
903250000...
903500000...
903750000. ..
904000000...
Q04250000...
904500000. ..
904750000...
905000000, ..
905250000. ..

e (=)
‘Scanning
‘Scanning
Scanning
Scanning
Scanning
Scanning
Scanning
Scanning
Scanning
Scanning
Scanning

for
for
for
for
for
for
for
for
for
for

frequency
frequency
frequency
frequency
frequency
frequency
frequency
frequency
frequency
frequency
frequency

o

909500000, ..
909750000, ..
910000000, ..
910250000, ..
910500000, ..
910750000, ..
911000000, ..
911250000. ..
911500000, ..
911750000, ..

912000000,

(1342153528, 208) Receiving: eel7bbb435b8b5a320244141f0fabc906F115430F450elefiea
eb2db28113cafb7bfic/3f74e888%adb3d5e3el 1cB8ddde9chb7643 1 ccdld1b792ed1 08677 F76fb2
(1342153528, 261) Receiving: 62bdeccObcced]leflB408e312821732085a45ec3507F7143ec
Baelbbf901975028bal248aa7Tht991582b%cfoabfo4ae209b4f3ed5918ebd/da5e827 fdfhad /0eh

O0XE6 — car keyless entry

configuring the dongle — Keyless Entry Fob
e start RfCat

- set Frequency to 315mhz
- set Modulation to ASK_OOK

- set SyncWord to FFFE and SyncMode to
SYNCM 16 of 16

- set Packet Length: 12
- enable Manchester Encoding

- play around with baud rates... end up at 4761.9 baud
- d.RFlisten()

OXE7 — genie! oh genie!

configure the dongle / determine correct parameters: genie
« start RfCat

- set Frequency to 315mhz
- set Modulation to ASK_OOK

- set SyncWord to AAOO and SyncMode to
SYNCM 16 of 16

- set Packet Length: 30

- play around with baud rates... end up at 5200 baud
- d.RFlisten()

O0XE8 — hop hop hopping along...

>>> d.getFHSSstate()

* import friend. decide who will be Sync Master.

e non-Master starts first:

>>> d.setFHSSstate(FHSS _STATE DISCOVER)

* now the Sync Master:

>>> d.setFHSSstate(FHSS_STATE_SYNCINGMASTER)
e once sync'd:

>>> d.getMACdata()

>>> print d.reprMACdata()

OxE8.1 — FHSS xmit and recv

* now, one of you send (notice, different function)
>>> d.FHSSxmit('yo yo! wazgud!?')

» and the other of you receive:

>>> d.RFrecv() # nothing special here

>>> d.RFlisten() # same thing here

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

