
  

0x0000

“We are not as strong as we think we are”
● Rich Mullins



  

<GHz or bust!

leveraging the power of the 
chipcon 1111
(and RFCAT)



  

0x0001 – workshop plan ­ ejercicios

● lessons to teach:

– play around with mods/baud/etc...

– using the dongle to tune in and listen

– using the dongle to determine, and transmit

– playing with the dongle... it's just fun!

● toys to play with:

– Garage door opener

– Keyless entry fob

– Power Meter

– Glucometer

– IMME 1

– IMME 2 / dongle



  

0x0002 – installing the client

● once you have a cc1111 dongle flashed with RfCat...

● install client according the the README

● blackhat release:

– https://rfcat.googlecode.com/files/rfcat-blackhat2012.tgz

– https://rfcat.googlecode.com/files/rfcatChronos-bh12.hex

– https://rfcat.googlecode.com/files/rfcatDons-bh12.hex

https://rfcat.googlecode.com/files/rfcat-blackhat2012.tgz
https://rfcat.googlecode.com/files/rfcatChronos-bh12.hex
https://rfcat.googlecode.com/files/rfcatDons-bh12.hex


  

0x1000 – intro to <GHz
● FCC Rules(title 47) parts 15 and 18 allocate and govern parts of the 

RF spectrum for unlicensed ISM in the US (US adaptation of the ITU-
R 5.138, 5.150, and 5.280 rules)

– Industrial – power grid stuff and more!

– Science – microwave ovens?  

– Medical – insulin pumps and the like

● US ISM bands:

– 300 : 300

– 433 : 433.050 – 434.790 MHz 

– 915 : 902.000 – 928.000 MHz

– cc1111 does 300-348, 372-460, 779-928... but we've seen more.

● Popular European ISM band:

– 868 : 863.000 – 870.000 MHz

● Other ISM includes 2.4 GHz and 5.8 GHz

– cc2531....  hmmm... maybe another toy?



  

0x1010 – what is <GHz? what plays there?

● Industry, Science, Medical bands, US and EU

● Cell phones

● Cordless Phones

● Personal Two-Way Radios

● Car Remotes

● Pink IM-ME Girl Toys!

● TI Chronos Watches

● Medical Devices (particularly 401-402MHz, 402-405MHz, 405-406MHz)

● Power Meters

● custom-made devices

● Old TV Broadcast

● much, much more...



  

● cc1110/cc1111 do 300-348MHz, 391-464MHz, 782-928MHz

– and more...
● RFCAT uses the CC111x on some common dongles

– Chronos dongle (sold with every TI Chonos watch)

– “Don's Dongles”, aka TI CC1111EMK

– IMME (currently limited to sniffer/detection firmware)
● but there are some catches

– rf comms configuration?

– channel hopping sequence?

– bluetooth and DSSS? (not hap'nin)

0x1020 – how do we play with it?



  

0x1030 – why do i care!?

● the inner rf geek in all of us
● your security research may require that you consider 

comms with a wireless device
● your organization may have 900MHz devices that 

should be protected!



  

0x2000 ­ intro to the cc1111 core

● for the devs in the house...

– mcu

– radio state engine

– radio configuration

– usb

– timers

– dma



  

0x2010 – cc1111 mcu

● modified 8051 core
– 8-bit mcu

– single-tick instructions

– 256 bytes of iram 

– 4kb of xram

– XDATA includes all code, iram, xram

– execution happens anywhere :)

● register access to radio, dma, crypto, usb, timers, adc

● registers are simply memory locations is the XDATA 
address space



  

0x2020 – cc1111 radio state engine

●IDLE
●CAL
●FSTXON
●RX
●TX



  

0x2030 – cc1111 radio configuration

● configuring the radio is done through updating a set of 1-
byte registers in varying bit-size fields

– MDMCFG4 – MDMCFG0 – modem control

– PKTCTRL1, PKTCTRL0 – packet control

– FSCTRL1, FSCTRL0 – frequency synth control

– FREND1, FREND0 – front end control

– FREQ2, FREQ1, FREQ0 – base frequency

– MCSM1, MCSM0 – radio state machine

– SYNC1, SYNC0 – SYNC word, or the SFD

– CHANNR, ADDR – channel and address

– AGCCTRL2, AGCCTRL1, AGCCTRL0 – gain control



  

0x2040 ­ Smart RF Studio (ftw)



  

0x2050 – cc1111 radio notes

● Data Rate, Bandwidth, and Intermediate Frequency and Freq-Deviation 
depend on each other

● put the radio in IDLE state before configuring

● put the radio in IDLE state before configuring

● put the radio in IDLE state before configuring

● STROBE  (SIDLE, STX, SRX, SCAL...) 

– then wait for the MARCSTATE == MARC_STATE_whatever

● CCA impacts entering TX state from RX

– but not from IDLE state



  

0x2060 – usb 

● usb is a world unto itself, with a massive standard and 
substandards 

– gg: usb-in-a-nutshell

– gg: usb complete jan axelson

● cc1111's usb controller is accessed using:

– registers for config/control of usb 

– registers indicating usb events that occur

– endpoint-specific FIFO buffers
● messages go there before sending to host
● messages arrive there from host

– usb “descriptors” as necessary by spec
● host uses these to query the device

● our firmware provides all this and more



  

0x2100 – RfCat for devs

● cc1111usb.c provides usb descriptors and framework
– shouldn't need much tinkering

● cc1111rf.c provides the core of the radio firmware
– shouldn't need much tinkering

● application.c provides the template for new apps
– copy it and make your amazing toy 

● txdata(buffer, length) to send data IN to host 

● registerCbEP5OUT() to register a callback function to handle data 
OUT from host

– data is in ep5iobuf[]

● transmit(*buf, length) allows you to send on the RF pipeline

● appMainLoop() – modify this for handling RF packets, etc...

● follow the examples, luke!

– RfCat's “application” source is appFHSSNIC.c



  

0x3000 – radio info do want to know

● frequencies

● modulation (2FSK/GFSK, MSK, ASK/OOK, other)

● intermediate frequency (IF)

● baud rate

● channel width/spacing/hopping?

● bandwidth filter

● sync words / bit-sync

● variable length/fixed length packets

● crc

● data whitening?

● any encoding (manchester, fec, enc, etc...)



  

0x3010 – interesting frequencies

● 315MHz – car fobs
● 433MHz – medical devices, garage door openers
● 868MHz – EU loves this range
● 915MHz – NA stuff of all sorts (power meters, insulin 

pumps, industrial plant equipment, industrial backhaul) 
● 2.4GHz – 802.11/wifi, 802.15.4/zigbee/6lowpan, bluetooth

● 5.8GHz – cordless phones
● FREQ2, FREQ1, FREQ0



  

0x3020 – modulations

● 2FSK/GFSK – Frequency Shift Key 
– (digital FM)

– cordless phones (DECT/CT2)

● ASK/OOK – Amplitude Shift Key 
– (digital AM)

– morse-code, car-remotes, etc...

● MSK – Minimal Shift Key (a type of quadrature shift 
modulation like QPSK)

– GSM

● MDMCFG2, DEVIATN

`



  

0x3030 – intermediate frequency

● mix the RF and LO frequencies to create an IF  (heterodyne)

– improves signal selectivity

– tune different frequencies to an IF that can be manipulated easily

– cheaper/simpler components 

● cc1111 supports a wide range of 31 different IF options:

– 23437 hz apart, from 0 – 726.5 khz

● Smart RF Studio recommends:

– 140 khz up to 38.4 kbaud

– 187.5 khz at 38.4 kbaud

– 281 khz at 250 kbaud

– 351.5khz at 500 kbaud

● FSCTRL1



  

0x3040 – data rate (baud)

● much like your modems or old
● the frequency of bits

– some can overlap and get garbage!
● garbage can be good...

● baud has significant impact on IF, Deviation and 
Channel BW

● seeing use of 2400, 19200, 38400, 250000
● MDMCFG3 / 4



  

0x3050 – channel width / spacing

● simplifying frequency hopping / channelized systems
● real freq = base freq + (CHANNR * width)

● MDMCFG0 / 1



  

0x3060 – bandwidth filter

● programmable receive filter
● provides for flexible channel sizing/spacing

● total signal bw = signal bandwidth + (2*variance)
● total signal bw wants to be less than 80% bw filter!
● MDMCFG4



  

0x3070 – preamble / sync words

● identify when real messages are being received!

● starts out with a preamble (1 0 1 0 1 0 1 0...)

● then a sync word (programmable bytes)

– marking the end of the preamble 

– aka 'SFD' – start of frame delimiter
● configurable to:

– nothing (just dump received crap)

– carrier detect (if the RSSI value indicates a message)

– 15 or 16 bits of the SYNC WORD identified

– 30 out of 32 bits of double-SYNC WORD

● SYNC1, SYNC0, MDMCFG2



  

0x3080 – variable / fixed­length packets

● packets can be fixed length or variable length
● variable length assumes first  byte is the length byte
● both modes use the PKTLEN register:

– Fixed: the length

– Variable: MAX length
● PKTCTRL0, PKTLEN



  

0x3090 – CRC – duh, but not

● crc16 check on both TX and RX

● uses the internal CRC (part of the RNG) seeded by 0xffff

● DATA_ERROR flag triggers when CRC is enabled and fails

● some systems do this in firmware instead

● PKTCTRL0



  

0x30a0 – data whitening – 9 bits of pain

● ideal radio data looks like random data

● real world data can contain long sequences of 0 or 1

● data to be transmitted is first XOR'd with a 9-bit sequence

– sequence repeated as many times as necessary to 
match the data

● PKTCTRL0



  

0x30b0 – encoding

● manchester

– MDMCFG2
● forward error correction

– convolutional
● MDMCFG1

– reed-solomon (not supported)
● encryption - AES in chip



  

0x30c0 – MDMCFG2 register



  

sorry, couldn't resist



  

0x3100 – how can we figure it out!?

● open / public documentation

– insulin pump published frequency
● open source implementation / source code

● “public” but harder to find (google fail!)

– fcc.gov – search for first part of FCC ID
● http://transition.fcc.gov/oet/ea/fccid/ -bookmark it

– patents – amazing what people will patent!
● http://freepatentsonline.com
● french patent describing the whole MAC/PHY of one meter
● and another:

http://www.freepatentsonline.com/8189577.html
http://www.freepatentsonline.com/20090168846.pdf

http://transition.fcc.gov/oet/ea/fccid/
http://freepatentsonline.com/
http://www.freepatentsonline.com/8189577.html
http://www.freepatentsonline.com/20090168846.pdf


  

0x3101 – how can we figure it out!? ­part2

● reversing hw

– tapping bus lines – logic analyzer
● grab config data
● grab tx/rx data

– pulling and analyzing firmware
● hopping pattern analysis

– arrays of dongles – space them out and record results

– hedyattack, or something similar

– spectrum analyzer

– USRP2 or latest gadget from Michael Ossman
● trial and error – rf parameters

● MAC layer?  - takes true reversing.. unless you find a patent :)



  

0x4000 – intro to FHSS

● FHSS is common for devices in the ISM bands

– provides natural protection against unintentional 
jamming /interferance

– US Title 47 CFR 15.247 affords special power 
considerations to FHSS devices 

● >25khz between channels
● pseudorandom pattern
● each channel used equally (avg) by each transmitter
● if 20db of hopping channel < 250khz:

– must have at least 50 channels
– average <0.4sec per 20 seconds on one channel

● if 20dB of hopping channel >250khz:

– must have at least 25 channels
– average <0.4sec per 10 seconds on one channel



  

0x4010 – FHSS, the one and only ­ NOT!

● different technologies:

– DSSS – Direct Sequence Spread Spectrum

● hops happen more often than bytes (ugh)
● typically requires special PHY layer

– “FHSS”

● hops occur after a few symbols are transmitted

● different topologies: (allow for different synch methods)

– point-to-point (only two endpoints)

– multiple access systems (couple different options)

● each cell has their own hopping pattern
● each node has own hopping pattern

● different customers:

– military has used frequency hopping since Hedy and George submitted the 
patent in 1941.

– commercial folks (WiFi, Bluetooth, proprietary stuff like power meters)



  

0x4020 – FHSS intricacies

● what's so hard about FHSS?

– must know or be able to come up with the hopping pattern
● can be anywhere from 50 to a million distinct channel hops 

before the pattern repeats (or more)

– must be able to synchronize with an existing cell or partner
● or become your own master!

– must know channel spacing

– must know channel dwell time (time to sit on each channel)

– likely need to reverse engineer your target

– DSSS requires that you have special hardware

● military application will be very hard to crack, as it typically will have hops 
based on a synchronized PRNG to select channels



  

0x4030 – FHSS, the saving graces 

● any adhoc FHSS multi-node network: (power meters / sensor-nets)

– node sync in a reasonable timeframe
● limited channels in the repeated pattern

– each node knows how to talk to a cell
● let one figure it out, then tap the SPI bus to see what the 

pattern is...

● two keys to determining hopping pattern:

– hop pattern generation algorithm 
● often based on the CELL ID

– one pattern gets you the whole cell :)
● others generate a unique pattern per node

– some sync information the cell gives away for free
● gotta tell the n00bs how to sync up, right?
● for single-pass repeating sequences, it's just the channel



  

0x4040 – FHSS summary

● FHSS comes in different forms for different uses and 
different users

● FHSS is naturally tolerant to interference, and allows a 
device to transmit higher power than nonFHSS comms

● getting the FHSS pattern, timing, and appropriate sync  
method for proprietary comms can be a reversing 
challenge

● getting a NIC to do something with the knowledge gained 
above has – to date – been very difficult



  

0x5000 – intro to RfCat

● RfCat: RF Chipcon-based Attack Toolset

● background...

● goals...

● plans...

● where we're at so far...



  

0x5010 – rfcat background

● the power grid

– power meters and the folks who love them (yo cutaway, 
q, travis and josh!)

– no availability of good attack tools for RF
● vendor at Distributech 2008:

“Our Frequency Hopping Spread Spectrum is too fast 
for hackers to attack.”

● OMFW!  really?



  

0x5020 – rfcat goals

● RE tools - “how does this work?”

● security analysis tools - “your FHSS and Crypto is weak!”

● satiate my general love of RF

● a little of Nevil Maskelyne

● “I will not demonstrate to any man who throws doubt upon the 
system” - Guglielmo Marconi, 1903

– lulwut?



  

0x5030 – this is not HedyAttack

● but leveraged the knowledge from HA...
● cc1111usb is the base code which HedyAttack started

– forms the USB base for RfCat

● less "researchy" 
– this project won't find hopping patterns

– it's goal is to provide you something to do with that infoz

● “so, we determined this hopping pattern... now what?”

● more utilitarian
– give us comms parameters and a hopping pattern, and we'll 

be a NIC, sniffer, and interact with RF gadgets

– some devices will require more customization than other



  

0x5040 – rfcat's interface

● rfcat is many things, but I like to think of it as an interactive 
python access to the <GHz spectrum!

– <insert pic>
● rfcat

– FHSS-capable NIC 
● some assembly may be required for FHSS to arbitrary devices

– toolset for discovering/interfacing with RF devices
● rfcat_server

– access the <GHz band over an IP network or locally and 
configure on the fly

– connect to tcp port 1900 for raw data channel

– connect also to tcp port 1899 for configuration



  

0x5050 – rfcat

● customizable NIC-access to the ISM bands

● ipython for best enjoyment

● lame spoiler:  you get a global object called “d” to talk to the 
dongle

– d.RFxmit('blah')

– data = d.RFrecv()

– d.discover(lowball=1)

– d.RFlisten()

– help(d)



  

0x5060 – rfcat_server

● bringing <GHz over the IP network!

● connect on TCP port 1900 to access the wireless network

● connect on TCP port 1899 to access the wireless configuration

● created to allow non-python clients to play too

– stdin is not always the way you want to interact with 
embedded wireless protocols



  

0x5070 – rfsniff  (pink version too!)

● focused primarily on capturing data from the wireless network

● IMME used to provide a nice simple interface

● RF config adjustment using keyboard!



  

0x5065 – rfsniff – key bindings



  

0x5080 – rfcat wicked coolness

● d._debug = 1 – dump debug messages as things happen

● d.debug() - print state infoz once a second

● d.discover() - listen for specific SYNCWORDS

● d.lowball() - disable most “filters” to see more packets

● d.lowballRestore() - restore the config before calling lowball()

● d.RFlisten() - simply dump data to screen

● d.RFcapture() - dump data to screen, return list of packets

● d.scan() - scan a configurable frequency range for “stuff”

● print d.reprRadioConfig() - print pretty config infoz



  

0x5090 – lowball and discover
● lowball mode stores current radio config

>>> d.lowball() # drops most blocks to pkts (CARRIER)

>>> d.lowballRestore() # returns original config

>>> d.lowball(0) # dumps all sorts of crap (SYNCM_NONE)

>>> d.lowball(1) # default... same as no argument

● discover() uses lowball mode, adds value

d.discover(lowball, debug, length, IdentSyncWord, SyncWordMatchList)

>>> d.discover() # enters lowball mode, dumps pkts

>>> d.discover(lowball=0) # dumps way more pkts

>>> d.discover(IdentSyncWord=True)

>>> d.discover(SyncWordMatchList=[0xdead, 0xbeef])



  

0x5100 – example lab setup

● example RF attack lab setup:

– dongle “Gina” running hedyattack spec-an code

– dongle “Paul” running rfcat

– IMME running rfsniff

– (possibly an IMME's running SpecAn)

– saleae logic analyzer for hacking of the wired variety

– FunCube Dongle and quisk/qthid or other SDR



  

rf attack form
● base freq:

● modulation:

● baud/bandwidth: 

● deviation:

● channel hopping?

– how many channels: channel spacing:

– pattern and effective sync method? dwell period (ms):

● fixed-/variable-length packets: len/maxlen:

● “address”:

● sync word (if applicable):

● crc16 (y/n): does chip do correct style?

● fec (y/n): type (convolutional/reed-soloman/other):

● manchester encoding (y/n):

● data whitening? and 9bit pattern:

● more complete information: 
http://atlas.r4780y.com/resources/rf-recon-form.pdf

http://atlas.r4780y.com/resources/rf-recon-form.pdf


  

0x6000 – playing with medical devices

● CAUTION: MUCKING WITH THESE CAN KILL PEOPLE.  

– THIS FIRMWARE AND CLIENT NOT PROVIDED

● found frequency in the pdf manual from the Internet

– what random diabetic cares what frequency his pump 
communicates with!?  ok, who cares!

● modulation guessed based on spectrum analysis and trial/error

– the wave form just looks like <blah> modulation!
● other characteristics discovered using a USRP and baudline 

(and some custom tools, thanks Mike Ossman!)



  

0x6010 – the discovery process

● glucometer was first captured using Spectrum Analyzer 
(IMME/hedyattack) to validate frequency range from the lay-
documentation

● next a logic analyzer (saleae) used to tap debugging lines

● next, the transmission was captured using a USRP (thank you 
Mike Ossman for sending me your spare!)

● next, the “packet capture” was loaded into Baudline, and 
analysis performed to identify baudrate and modulation 
scheme, and get an idea of bits

● next, Mike Ossman did amazing-sauce, running 
the capture through GnuRadio Companion 
(the big picture on next slide)

● RF parameters confirmed through RF analysis, 
and real-life capture.



  

0x6011 – discovery reloaded



  

0x6020 –the immaculate reception

● punched in the RF parameters into a RFCAT dongle

– created subclass of RFNIC (in python) for new RF config

● dropped into “discover” mode to ensure I had the modem right

●

●

●

●

●

● returned to normal NIC mode to receive real packets

● now need the pump to reverse the bi-dir protocol



  

0x6100 – playing with a power meter

● CAUTION: MUCKING WITH POWER SYSTEMS WITHOUT APPROPRIATE 
AUTHORIZATION IS ILLEGAL, EVEN IF IT IS ON THE SIDE OF YOUR HOUSE!

● most power meters use their own proprietary “Neighborhood Area Network” 
(NAN), typically in the 900MHz range and sometimes 2.4GHz or licensed 
spectrum.

● to get the best reception over distance and gain tolerance to interference, all 
implement FHSS to take advantage of the Title 47: Part 15 power 
allowances

● many of the existing meters use the same cc1111 or cc1110 chips, or the 
cc1101 radio core

● this is the reason I'm here today



  

0x6110 – as sands through the hourglass

● power meter RF comms have long been “unavailable” for 
most security researchers

● some vendors understand the benefits of security 
rigor by outside researchers

– others, however, do not.
● the gear used in my presentation was given to me by one 

who understands

– for various reasons, they have asked to remain 
anonymous, however, their security team has a 
well founded approach to finding out “how their 
baby is ugly”  I would like to give them credit for 
their commitment to the improved security of their 
products.



  

atlas, tell us what you really think



  

0x6120 – smart meter – the complication

● power meters are not so simple as glucometers

– proprietary FHSS in a multiple-access topology

– have to endure the RF abuse of the large metropolis

● complex mac sync/net-registration

● not easy to show with a single meter without a Master node.

● initial analysis was performed via my saleae LA:

● SpecAn code on IMME's and hedyattack dongles

– good for identifying periods of scanning

● although the dongle can hop along with the meter, we won't be 
demoing synching with the meter today



  

0x6130 – the approach
● determine the rf config and hopping pattern through SPI Bus sniffing 

(and my saleae again)

●

●



  

0x6135 – Logic Analyzer

● decoding:
● custom parser for the

target radio--->>>



  

0x6140 – the approach (2)

● discover mode:

– disables sync-word so radio sends unaligned bits

– algorithm looks for preamble (0xaa or 0x55)

– then determines possible dwords
● ummm... but that's not any bit-derivation of the sync word(s) I 

expect.  wut? I am confident those are coming from the meter

– intro: Bit Inversion (see highlighted hex)



  

0x6145 – new developments

● vendors filed numerous patents with hopping pattern 
calculations, communications parameters, etc...

– WIN!

– plenty of work to be done!  jump right in!
● http://www.patentstorm.us/patents/7064679/fulltext.html
● http://www.patentstorm.us/patents/7962101/fulltext.html
● http://www.patentstorm.us/applications/20080204272/fulltext.html
● http://www.patentstorm.us/applications/20080238716/fulltext.html

http://www.patentstorm.us/patents/7064679/fulltext.html
http://www.patentstorm.us/patents/7962101/fulltext.html
http://www.patentstorm.us/applications/20080204272/fulltext.html
http://www.patentstorm.us/applications/20080238716/fulltext.html


  

“Abuse is no argument” 

- Nevil Maskelyne



  

0x6150 ­ conclusions

● rfcat discover mode roxors

● rfcat is a foundation for your attack tool

– way more than just a tool in itself

● we are responsible for ensuring our devices use 
appropriate security.  do not simply expect someone else 
to do it.  the first med-device death could be your best 
friend.
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0xgreetz

● power hardware folk who play nice with security researchers

● cutaway and q (awesome hedyattackers)

● gerard van den bosch

● travis and mossman

● sk0d0 and the four J's

● invisigoth and kenshoto

● Jewel, bug, ringwraith, diva

● Jesus Christ



  

0xE1 – workshop ej 1 – getting started

$ tar zxf rfcat-blackhat2012.tgz

$ cd rfcat-blackhat2012

$ sudo python setup.py install (trust me!)

$ rfcat -r



  

0xE2 – workshop ej 2 – listen to teacher

$ rfcat -r 

>>> d.setMdmModulation(MOD_ASK_OOK)

>>> d.setMaxPower()

>>> d.setMdmDRate(9600)

>>> d.makePktVLEN() # variable length packet

>>> d.RFlisten()



  

0xE3 – heartfelt communication

● pick a friend (or set of friends)

● agree on who will xmit and who will recv

$ rfcat -r # common (xmit/recv)

>>> d.setMdmModulation(MOD_GFSK)

>>> d.makePktFLEN(20)

>>> d.setFreq( 915200000 )

--- recver ---

>>> d.RFlisten()

--- xmitter ---

>>> d.RFxmit(“hello my name is <name>”)

● what happened?



  

0xE3.5 – your closer friends...

● two problems: length and sync word!

● both xmitter and recver (not necessarily at once):

– increase the packet length

>>> d.makePktFLEN(35)

– now agree upon a 16-bit sync word (0 – 0xffff)

>>> d.setMdmSyncWord(<syncword>)

– now try again

– then reverse roles

– now learn the power of the dark side!

>>> d.discover()

>>> d.discover(IdentSyncWord=True)

>>> help(d) # ahhhhhhhh.....



  

0xE4 ­ mismatching

● xmitter and recver pick the same config (last ej)

● select random quiet frequency (same as each other)

● xmitter change something and transmit, talk to recver (use 
your mouth) to discuss results)

>>> d.setMdmModulation(MOD_*)
 (MOD_ASK_OOK, MOD_GFSK, MOD_2FSK, MOD_MSK)

>>> d.setMdmDRate (baud)

>>> d.setMdmDeviatn(<deviation_number>)

>>> d.makePktFLEN() and d.makePktVLEN()  # vary len too!

>>> 



  

0xE5 – lowball, discovery, and scanning
● enter lowball mode (which stores config)

>>> d.lowball() # (SYNCM_CARRIER)

>>> print d.reprClientState()

>>> d.lowballRestore() # restore the config

>>> d.RFrecv()  # and again, until you receive a timeout error

● now use lowball level  0:

>>> d.lowball(0) # dumps all sorts of crap (SYNCM_NONE)

>>> print d.reprRadioConfig()

>>> d.lowballRestore() # restores original config

>>> d.RFrecv() # grab raw packet

>>> d.recvAll(APP_NIC, NIC_RECV) # dump all buffered pkts



  

0xE5.1 – discover mode

● now use discover()

>>> d.discover() # press <enter> to leave discover mode

>>> d.discover(lowball=0) # what do you see?

>>> d.discover(IdentSyncWord=True) # what's that?!

>>> d.discover(SyncWordMatchList=[0x0c4e, 0xf432])



  

0xE5.2 – looking for trouble (kick in a door)

● frequency scanning (based on lowball)

>>> d.scan( basefreq, inc, count, delaysec, drate, lowball )

>>> d.scan(902e6, 250e3, 104, 2, 38400, 1)



  

0xE6 – car keyless entry

configuring the dongle – Keyless Entry Fob

● start RfCat

– set Frequency to 315mhz

– set Modulation to ASK_OOK

– set SyncWord to FFFE and SyncMode to 
SYNCM_16_of_16

– set Packet Length: 12

– enable Manchester Encoding

– play around with baud rates... end up at 4761.9 baud

– d.RFlisten()



  

0xE7 – genie!  oh genie!

configure the dongle / determine correct parameters: genie

● start RfCat

– set Frequency to 315mhz

– set Modulation to ASK_OOK

– set SyncWord to AA00 and SyncMode to 
SYNCM_16_of_16

– set Packet Length: 30

– play around with baud rates... end up at 5200 baud

– d.RFlisten()



  

0xE8 – hop hop hopping along...

>>> d.getFHSSstate()

● import friend.  decide who will be Sync Master. 

● non-Master starts first:

>>> d.setFHSSstate(FHSS_STATE_DISCOVER)

● now the Sync Master:

>>> d.setFHSSstate(FHSS_STATE_SYNCINGMASTER)

● once sync'd:

>>> d.getMACdata()

>>> print d.reprMACdata()



  

0xE8.1 – FHSS xmit and recv

● now, one of you send (notice, different function)

>>> d.FHSSxmit('yo yo! wazgud!?')

● and the other of you receive:

>>> d.RFrecv() # nothing special here

>>> d.RFlisten() # same thing here
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