

0x0000

“We are not as strong as we think we are”
● Rich Mullins

<GHz or bust!

leveraging the power of the
chipcon 1111
(and RFCAT)

0x0001 – workshop plan ­ ejercicios

● lessons to teach:

– play around with mods/baud/etc...

– using the dongle to tune in and listen

– using the dongle to determine, and transmit

– playing with the dongle... it's just fun!

● toys to play with:

– Garage door opener

– Keyless entry fob

– Power Meter

– Glucometer

– IMME 1

– IMME 2 / dongle

0x0002 – installing the client

● once you have a cc1111 dongle flashed with RfCat...

● install client according the the README

● blackhat release:

– https://rfcat.googlecode.com/files/rfcat-blackhat2012.tgz

– https://rfcat.googlecode.com/files/rfcatChronos-bh12.hex

– https://rfcat.googlecode.com/files/rfcatDons-bh12.hex

https://rfcat.googlecode.com/files/rfcat-blackhat2012.tgz
https://rfcat.googlecode.com/files/rfcatChronos-bh12.hex
https://rfcat.googlecode.com/files/rfcatDons-bh12.hex

0x1000 – intro to <GHz
● FCC Rules(title 47) parts 15 and 18 allocate and govern parts of the

RF spectrum for unlicensed ISM in the US (US adaptation of the ITU-
R 5.138, 5.150, and 5.280 rules)

– Industrial – power grid stuff and more!

– Science – microwave ovens?

– Medical – insulin pumps and the like

● US ISM bands:

– 300 : 300

– 433 : 433.050 – 434.790 MHz

– 915 : 902.000 – 928.000 MHz

– cc1111 does 300-348, 372-460, 779-928... but we've seen more.

● Popular European ISM band:

– 868 : 863.000 – 870.000 MHz

● Other ISM includes 2.4 GHz and 5.8 GHz

– cc2531.... hmmm... maybe another toy?

0x1010 – what is <GHz? what plays there?

● Industry, Science, Medical bands, US and EU

● Cell phones

● Cordless Phones

● Personal Two-Way Radios

● Car Remotes

● Pink IM-ME Girl Toys!

● TI Chronos Watches

● Medical Devices (particularly 401-402MHz, 402-405MHz, 405-406MHz)

● Power Meters

● custom-made devices

● Old TV Broadcast

● much, much more...

● cc1110/cc1111 do 300-348MHz, 391-464MHz, 782-928MHz

– and more...
● RFCAT uses the CC111x on some common dongles

– Chronos dongle (sold with every TI Chonos watch)

– “Don's Dongles”, aka TI CC1111EMK

– IMME (currently limited to sniffer/detection firmware)
● but there are some catches

– rf comms configuration?

– channel hopping sequence?

– bluetooth and DSSS? (not hap'nin)

0x1020 – how do we play with it?

0x1030 – why do i care!?

● the inner rf geek in all of us
● your security research may require that you consider

comms with a wireless device
● your organization may have 900MHz devices that

should be protected!

0x2000 ­ intro to the cc1111 core

● for the devs in the house...

– mcu

– radio state engine

– radio configuration

– usb

– timers

– dma

0x2010 – cc1111 mcu

● modified 8051 core
– 8-bit mcu

– single-tick instructions

– 256 bytes of iram

– 4kb of xram

– XDATA includes all code, iram, xram

– execution happens anywhere :)

● register access to radio, dma, crypto, usb, timers, adc

● registers are simply memory locations is the XDATA
address space

0x2020 – cc1111 radio state engine

●IDLE
●CAL
●FSTXON
●RX
●TX

0x2030 – cc1111 radio configuration

● configuring the radio is done through updating a set of 1-
byte registers in varying bit-size fields

– MDMCFG4 – MDMCFG0 – modem control

– PKTCTRL1, PKTCTRL0 – packet control

– FSCTRL1, FSCTRL0 – frequency synth control

– FREND1, FREND0 – front end control

– FREQ2, FREQ1, FREQ0 – base frequency

– MCSM1, MCSM0 – radio state machine

– SYNC1, SYNC0 – SYNC word, or the SFD

– CHANNR, ADDR – channel and address

– AGCCTRL2, AGCCTRL1, AGCCTRL0 – gain control

0x2040 ­ Smart RF Studio (ftw)

0x2050 – cc1111 radio notes

● Data Rate, Bandwidth, and Intermediate Frequency and Freq-Deviation
depend on each other

● put the radio in IDLE state before configuring

● put the radio in IDLE state before configuring

● put the radio in IDLE state before configuring

● STROBE (SIDLE, STX, SRX, SCAL...)

– then wait for the MARCSTATE == MARC_STATE_whatever

● CCA impacts entering TX state from RX

– but not from IDLE state

0x2060 – usb

● usb is a world unto itself, with a massive standard and
substandards

– gg: usb-in-a-nutshell

– gg: usb complete jan axelson

● cc1111's usb controller is accessed using:

– registers for config/control of usb

– registers indicating usb events that occur

– endpoint-specific FIFO buffers
● messages go there before sending to host
● messages arrive there from host

– usb “descriptors” as necessary by spec
● host uses these to query the device

● our firmware provides all this and more

0x2100 – RfCat for devs

● cc1111usb.c provides usb descriptors and framework
– shouldn't need much tinkering

● cc1111rf.c provides the core of the radio firmware
– shouldn't need much tinkering

● application.c provides the template for new apps
– copy it and make your amazing toy

● txdata(buffer, length) to send data IN to host

● registerCbEP5OUT() to register a callback function to handle data
OUT from host

– data is in ep5iobuf[]

● transmit(*buf, length) allows you to send on the RF pipeline

● appMainLoop() – modify this for handling RF packets, etc...

● follow the examples, luke!

– RfCat's “application” source is appFHSSNIC.c

0x3000 – radio info do want to know

● frequencies

● modulation (2FSK/GFSK, MSK, ASK/OOK, other)

● intermediate frequency (IF)

● baud rate

● channel width/spacing/hopping?

● bandwidth filter

● sync words / bit-sync

● variable length/fixed length packets

● crc

● data whitening?

● any encoding (manchester, fec, enc, etc...)

0x3010 – interesting frequencies

● 315MHz – car fobs
● 433MHz – medical devices, garage door openers
● 868MHz – EU loves this range
● 915MHz – NA stuff of all sorts (power meters, insulin

pumps, industrial plant equipment, industrial backhaul)
● 2.4GHz – 802.11/wifi, 802.15.4/zigbee/6lowpan, bluetooth

● 5.8GHz – cordless phones
● FREQ2, FREQ1, FREQ0

0x3020 – modulations

● 2FSK/GFSK – Frequency Shift Key
– (digital FM)

– cordless phones (DECT/CT2)

● ASK/OOK – Amplitude Shift Key
– (digital AM)

– morse-code, car-remotes, etc...

● MSK – Minimal Shift Key (a type of quadrature shift
modulation like QPSK)

– GSM

● MDMCFG2, DEVIATN

`

0x3030 – intermediate frequency

● mix the RF and LO frequencies to create an IF (heterodyne)

– improves signal selectivity

– tune different frequencies to an IF that can be manipulated easily

– cheaper/simpler components

● cc1111 supports a wide range of 31 different IF options:

– 23437 hz apart, from 0 – 726.5 khz

● Smart RF Studio recommends:

– 140 khz up to 38.4 kbaud

– 187.5 khz at 38.4 kbaud

– 281 khz at 250 kbaud

– 351.5khz at 500 kbaud

● FSCTRL1

0x3040 – data rate (baud)

● much like your modems or old
● the frequency of bits

– some can overlap and get garbage!
● garbage can be good...

● baud has significant impact on IF, Deviation and
Channel BW

● seeing use of 2400, 19200, 38400, 250000
● MDMCFG3 / 4

0x3050 – channel width / spacing

● simplifying frequency hopping / channelized systems
● real freq = base freq + (CHANNR * width)

● MDMCFG0 / 1

0x3060 – bandwidth filter

● programmable receive filter
● provides for flexible channel sizing/spacing

● total signal bw = signal bandwidth + (2*variance)
● total signal bw wants to be less than 80% bw filter!
● MDMCFG4

0x3070 – preamble / sync words

● identify when real messages are being received!

● starts out with a preamble (1 0 1 0 1 0 1 0...)

● then a sync word (programmable bytes)

– marking the end of the preamble

– aka 'SFD' – start of frame delimiter
● configurable to:

– nothing (just dump received crap)

– carrier detect (if the RSSI value indicates a message)

– 15 or 16 bits of the SYNC WORD identified

– 30 out of 32 bits of double-SYNC WORD

● SYNC1, SYNC0, MDMCFG2

0x3080 – variable / fixed­length packets

● packets can be fixed length or variable length
● variable length assumes first byte is the length byte
● both modes use the PKTLEN register:

– Fixed: the length

– Variable: MAX length
● PKTCTRL0, PKTLEN

0x3090 – CRC – duh, but not

● crc16 check on both TX and RX

● uses the internal CRC (part of the RNG) seeded by 0xffff

● DATA_ERROR flag triggers when CRC is enabled and fails

● some systems do this in firmware instead

● PKTCTRL0

0x30a0 – data whitening – 9 bits of pain

● ideal radio data looks like random data

● real world data can contain long sequences of 0 or 1

● data to be transmitted is first XOR'd with a 9-bit sequence

– sequence repeated as many times as necessary to
match the data

● PKTCTRL0

0x30b0 – encoding

● manchester

– MDMCFG2
● forward error correction

– convolutional
● MDMCFG1

– reed-solomon (not supported)
● encryption - AES in chip

0x30c0 – MDMCFG2 register

sorry, couldn't resist

0x3100 – how can we figure it out!?

● open / public documentation

– insulin pump published frequency
● open source implementation / source code

● “public” but harder to find (google fail!)

– fcc.gov – search for first part of FCC ID
● http://transition.fcc.gov/oet/ea/fccid/ -bookmark it

– patents – amazing what people will patent!
● http://freepatentsonline.com
● french patent describing the whole MAC/PHY of one meter
● and another:

http://www.freepatentsonline.com/8189577.html
http://www.freepatentsonline.com/20090168846.pdf

http://transition.fcc.gov/oet/ea/fccid/
http://freepatentsonline.com/
http://www.freepatentsonline.com/8189577.html
http://www.freepatentsonline.com/20090168846.pdf

0x3101 – how can we figure it out!? ­part2

● reversing hw

– tapping bus lines – logic analyzer
● grab config data
● grab tx/rx data

– pulling and analyzing firmware
● hopping pattern analysis

– arrays of dongles – space them out and record results

– hedyattack, or something similar

– spectrum analyzer

– USRP2 or latest gadget from Michael Ossman
● trial and error – rf parameters

● MAC layer? - takes true reversing.. unless you find a patent :)

0x4000 – intro to FHSS

● FHSS is common for devices in the ISM bands

– provides natural protection against unintentional
jamming /interferance

– US Title 47 CFR 15.247 affords special power
considerations to FHSS devices

● >25khz between channels
● pseudorandom pattern
● each channel used equally (avg) by each transmitter
● if 20db of hopping channel < 250khz:

– must have at least 50 channels
– average <0.4sec per 20 seconds on one channel

● if 20dB of hopping channel >250khz:

– must have at least 25 channels
– average <0.4sec per 10 seconds on one channel

0x4010 – FHSS, the one and only ­ NOT!

● different technologies:

– DSSS – Direct Sequence Spread Spectrum

● hops happen more often than bytes (ugh)
● typically requires special PHY layer

– “FHSS”

● hops occur after a few symbols are transmitted

● different topologies: (allow for different synch methods)

– point-to-point (only two endpoints)

– multiple access systems (couple different options)

● each cell has their own hopping pattern
● each node has own hopping pattern

● different customers:

– military has used frequency hopping since Hedy and George submitted the
patent in 1941.

– commercial folks (WiFi, Bluetooth, proprietary stuff like power meters)

0x4020 – FHSS intricacies

● what's so hard about FHSS?

– must know or be able to come up with the hopping pattern
● can be anywhere from 50 to a million distinct channel hops

before the pattern repeats (or more)

– must be able to synchronize with an existing cell or partner
● or become your own master!

– must know channel spacing

– must know channel dwell time (time to sit on each channel)

– likely need to reverse engineer your target

– DSSS requires that you have special hardware

● military application will be very hard to crack, as it typically will have hops
based on a synchronized PRNG to select channels

0x4030 – FHSS, the saving graces

● any adhoc FHSS multi-node network: (power meters / sensor-nets)

– node sync in a reasonable timeframe
● limited channels in the repeated pattern

– each node knows how to talk to a cell
● let one figure it out, then tap the SPI bus to see what the

pattern is...

● two keys to determining hopping pattern:

– hop pattern generation algorithm
● often based on the CELL ID

– one pattern gets you the whole cell :)
● others generate a unique pattern per node

– some sync information the cell gives away for free
● gotta tell the n00bs how to sync up, right?
● for single-pass repeating sequences, it's just the channel

0x4040 – FHSS summary

● FHSS comes in different forms for different uses and
different users

● FHSS is naturally tolerant to interference, and allows a
device to transmit higher power than nonFHSS comms

● getting the FHSS pattern, timing, and appropriate sync
method for proprietary comms can be a reversing
challenge

● getting a NIC to do something with the knowledge gained
above has – to date – been very difficult

0x5000 – intro to RfCat

● RfCat: RF Chipcon-based Attack Toolset

● background...

● goals...

● plans...

● where we're at so far...

0x5010 – rfcat background

● the power grid

– power meters and the folks who love them (yo cutaway,
q, travis and josh!)

– no availability of good attack tools for RF
● vendor at Distributech 2008:

“Our Frequency Hopping Spread Spectrum is too fast
for hackers to attack.”

● OMFW! really?

0x5020 – rfcat goals

● RE tools - “how does this work?”

● security analysis tools - “your FHSS and Crypto is weak!”

● satiate my general love of RF

● a little of Nevil Maskelyne

● “I will not demonstrate to any man who throws doubt upon the
system” - Guglielmo Marconi, 1903

– lulwut?

0x5030 – this is not HedyAttack

● but leveraged the knowledge from HA...
● cc1111usb is the base code which HedyAttack started

– forms the USB base for RfCat

● less "researchy"
– this project won't find hopping patterns

– it's goal is to provide you something to do with that infoz

● “so, we determined this hopping pattern... now what?”

● more utilitarian
– give us comms parameters and a hopping pattern, and we'll

be a NIC, sniffer, and interact with RF gadgets

– some devices will require more customization than other

0x5040 – rfcat's interface

● rfcat is many things, but I like to think of it as an interactive
python access to the <GHz spectrum!

– <insert pic>
● rfcat

– FHSS-capable NIC
● some assembly may be required for FHSS to arbitrary devices

– toolset for discovering/interfacing with RF devices
● rfcat_server

– access the <GHz band over an IP network or locally and
configure on the fly

– connect to tcp port 1900 for raw data channel

– connect also to tcp port 1899 for configuration

0x5050 – rfcat

● customizable NIC-access to the ISM bands

● ipython for best enjoyment

● lame spoiler: you get a global object called “d” to talk to the
dongle

– d.RFxmit('blah')

– data = d.RFrecv()

– d.discover(lowball=1)

– d.RFlisten()

– help(d)

0x5060 – rfcat_server

● bringing <GHz over the IP network!

● connect on TCP port 1900 to access the wireless network

● connect on TCP port 1899 to access the wireless configuration

● created to allow non-python clients to play too

– stdin is not always the way you want to interact with
embedded wireless protocols

0x5070 – rfsniff (pink version too!)

● focused primarily on capturing data from the wireless network

● IMME used to provide a nice simple interface

● RF config adjustment using keyboard!

0x5065 – rfsniff – key bindings

0x5080 – rfcat wicked coolness

● d._debug = 1 – dump debug messages as things happen

● d.debug() - print state infoz once a second

● d.discover() - listen for specific SYNCWORDS

● d.lowball() - disable most “filters” to see more packets

● d.lowballRestore() - restore the config before calling lowball()

● d.RFlisten() - simply dump data to screen

● d.RFcapture() - dump data to screen, return list of packets

● d.scan() - scan a configurable frequency range for “stuff”

● print d.reprRadioConfig() - print pretty config infoz

0x5090 – lowball and discover
● lowball mode stores current radio config

>>> d.lowball() # drops most blocks to pkts (CARRIER)

>>> d.lowballRestore() # returns original config

>>> d.lowball(0) # dumps all sorts of crap (SYNCM_NONE)

>>> d.lowball(1) # default... same as no argument

● discover() uses lowball mode, adds value

d.discover(lowball, debug, length, IdentSyncWord, SyncWordMatchList)

>>> d.discover() # enters lowball mode, dumps pkts

>>> d.discover(lowball=0) # dumps way more pkts

>>> d.discover(IdentSyncWord=True)

>>> d.discover(SyncWordMatchList=[0xdead, 0xbeef])

0x5100 – example lab setup

● example RF attack lab setup:

– dongle “Gina” running hedyattack spec-an code

– dongle “Paul” running rfcat

– IMME running rfsniff

– (possibly an IMME's running SpecAn)

– saleae logic analyzer for hacking of the wired variety

– FunCube Dongle and quisk/qthid or other SDR

rf attack form
● base freq:

● modulation:

● baud/bandwidth:

● deviation:

● channel hopping?

– how many channels: channel spacing:

– pattern and effective sync method? dwell period (ms):

● fixed-/variable-length packets: len/maxlen:

● “address”:

● sync word (if applicable):

● crc16 (y/n): does chip do correct style?

● fec (y/n): type (convolutional/reed-soloman/other):

● manchester encoding (y/n):

● data whitening? and 9bit pattern:

● more complete information:
http://atlas.r4780y.com/resources/rf-recon-form.pdf

http://atlas.r4780y.com/resources/rf-recon-form.pdf

0x6000 – playing with medical devices

● CAUTION: MUCKING WITH THESE CAN KILL PEOPLE.

– THIS FIRMWARE AND CLIENT NOT PROVIDED

● found frequency in the pdf manual from the Internet

– what random diabetic cares what frequency his pump
communicates with!? ok, who cares!

● modulation guessed based on spectrum analysis and trial/error

– the wave form just looks like <blah> modulation!
● other characteristics discovered using a USRP and baudline

(and some custom tools, thanks Mike Ossman!)

0x6010 – the discovery process

● glucometer was first captured using Spectrum Analyzer
(IMME/hedyattack) to validate frequency range from the lay-
documentation

● next a logic analyzer (saleae) used to tap debugging lines

● next, the transmission was captured using a USRP (thank you
Mike Ossman for sending me your spare!)

● next, the “packet capture” was loaded into Baudline, and
analysis performed to identify baudrate and modulation
scheme, and get an idea of bits

● next, Mike Ossman did amazing-sauce, running
the capture through GnuRadio Companion
(the big picture on next slide)

● RF parameters confirmed through RF analysis,
and real-life capture.

0x6011 – discovery reloaded

0x6020 –the immaculate reception

● punched in the RF parameters into a RFCAT dongle

– created subclass of RFNIC (in python) for new RF config

● dropped into “discover” mode to ensure I had the modem right

●

●

●

●

●

● returned to normal NIC mode to receive real packets

● now need the pump to reverse the bi-dir protocol

0x6100 – playing with a power meter

● CAUTION: MUCKING WITH POWER SYSTEMS WITHOUT APPROPRIATE
AUTHORIZATION IS ILLEGAL, EVEN IF IT IS ON THE SIDE OF YOUR HOUSE!

● most power meters use their own proprietary “Neighborhood Area Network”
(NAN), typically in the 900MHz range and sometimes 2.4GHz or licensed
spectrum.

● to get the best reception over distance and gain tolerance to interference, all
implement FHSS to take advantage of the Title 47: Part 15 power
allowances

● many of the existing meters use the same cc1111 or cc1110 chips, or the
cc1101 radio core

● this is the reason I'm here today

0x6110 – as sands through the hourglass

● power meter RF comms have long been “unavailable” for
most security researchers

● some vendors understand the benefits of security
rigor by outside researchers

– others, however, do not.
● the gear used in my presentation was given to me by one

who understands

– for various reasons, they have asked to remain
anonymous, however, their security team has a
well founded approach to finding out “how their
baby is ugly” I would like to give them credit for
their commitment to the improved security of their
products.

atlas, tell us what you really think

0x6120 – smart meter – the complication

● power meters are not so simple as glucometers

– proprietary FHSS in a multiple-access topology

– have to endure the RF abuse of the large metropolis

● complex mac sync/net-registration

● not easy to show with a single meter without a Master node.

● initial analysis was performed via my saleae LA:

● SpecAn code on IMME's and hedyattack dongles

– good for identifying periods of scanning

● although the dongle can hop along with the meter, we won't be
demoing synching with the meter today

0x6130 – the approach
● determine the rf config and hopping pattern through SPI Bus sniffing

(and my saleae again)

●

●

0x6135 – Logic Analyzer

● decoding:
● custom parser for the

target radio--->>>

0x6140 – the approach (2)

● discover mode:

– disables sync-word so radio sends unaligned bits

– algorithm looks for preamble (0xaa or 0x55)

– then determines possible dwords
● ummm... but that's not any bit-derivation of the sync word(s) I

expect. wut? I am confident those are coming from the meter

– intro: Bit Inversion (see highlighted hex)

0x6145 – new developments

● vendors filed numerous patents with hopping pattern
calculations, communications parameters, etc...

– WIN!

– plenty of work to be done! jump right in!
● http://www.patentstorm.us/patents/7064679/fulltext.html
● http://www.patentstorm.us/patents/7962101/fulltext.html
● http://www.patentstorm.us/applications/20080204272/fulltext.html
● http://www.patentstorm.us/applications/20080238716/fulltext.html

http://www.patentstorm.us/patents/7064679/fulltext.html
http://www.patentstorm.us/patents/7962101/fulltext.html
http://www.patentstorm.us/applications/20080204272/fulltext.html
http://www.patentstorm.us/applications/20080238716/fulltext.html

“Abuse is no argument”

- Nevil Maskelyne

0x6150 ­ conclusions

● rfcat discover mode roxors

● rfcat is a foundation for your attack tool

– way more than just a tool in itself

● we are responsible for ensuring our devices use
appropriate security. do not simply expect someone else
to do it. the first med-device death could be your best
friend.

References
● http://rfcat.googlecode.com

● http://en.wikipedia.org/wiki/Part_15_(FCC_rules)

● http://en.wikipedia.org/wiki/ISM_band

● http://www.ti.com/lit/ds/swrs033g/swrs033g.pdf - “the” manual

● http://edge.rit.edu/content/P11207/public/CC1111_USB_HW_User_s_Guide.pdf

● http://www.ti.com/litv/pdf/swru082b

● http://www.ti.com/product/cc1111f32#technicaldocuments

● http://www.ti.com/lit/an/swra077/swra077.pdf

● http://www.newscientist.com/article/mg21228440.700-dotdashdiss-the-gentleman-hackers-1903-lulz.html

● http://saleae.com/

● http://zone.ni.com/devzone/cda/epd/p/id/5150 - FSK details (worthwhile!)

● http://www.radagast.org/~dplatt/hamradio/FARS_presentation_on_modulation.pdf

– very good detailed discussion on deviation/modulation

● http://en.wikipedia.org/wiki/Frequency_modulation

● http://en.wikipedia.org/wiki/Minimum-shift_keying

http://rfcat.googlecode.com/
http://www.ti.com/lit/ds/swrs033g/swrs033g.pdf
http://saleae.com/
http://zone.ni.com/devzone/cda/epd/p/id/5150
http://www.radagast.org/~dplatt/hamradio/FARS_presentation_on_modulation.pdf
http://en.wikipedia.org/wiki/Frequency_modulation

0xgreetz

● power hardware folk who play nice with security researchers

● cutaway and q (awesome hedyattackers)

● gerard van den bosch

● travis and mossman

● sk0d0 and the four J's

● invisigoth and kenshoto

● Jewel, bug, ringwraith, diva

● Jesus Christ

0xE1 – workshop ej 1 – getting started

$ tar zxf rfcat-blackhat2012.tgz

$ cd rfcat-blackhat2012

$ sudo python setup.py install (trust me!)

$ rfcat -r

0xE2 – workshop ej 2 – listen to teacher

$ rfcat -r

>>> d.setMdmModulation(MOD_ASK_OOK)

>>> d.setMaxPower()

>>> d.setMdmDRate(9600)

>>> d.makePktVLEN() # variable length packet

>>> d.RFlisten()

0xE3 – heartfelt communication

● pick a friend (or set of friends)

● agree on who will xmit and who will recv

$ rfcat -r # common (xmit/recv)

>>> d.setMdmModulation(MOD_GFSK)

>>> d.makePktFLEN(20)

>>> d.setFreq(915200000)

--- recver ---

>>> d.RFlisten()

--- xmitter ---

>>> d.RFxmit(“hello my name is <name>”)

● what happened?

0xE3.5 – your closer friends...

● two problems: length and sync word!

● both xmitter and recver (not necessarily at once):

– increase the packet length

>>> d.makePktFLEN(35)

– now agree upon a 16-bit sync word (0 – 0xffff)

>>> d.setMdmSyncWord(<syncword>)

– now try again

– then reverse roles

– now learn the power of the dark side!

>>> d.discover()

>>> d.discover(IdentSyncWord=True)

>>> help(d) # ahhhhhhhh.....

0xE4 ­ mismatching

● xmitter and recver pick the same config (last ej)

● select random quiet frequency (same as each other)

● xmitter change something and transmit, talk to recver (use
your mouth) to discuss results)

>>> d.setMdmModulation(MOD_*)
 (MOD_ASK_OOK, MOD_GFSK, MOD_2FSK, MOD_MSK)

>>> d.setMdmDRate (baud)

>>> d.setMdmDeviatn(<deviation_number>)

>>> d.makePktFLEN() and d.makePktVLEN() # vary len too!

>>>

0xE5 – lowball, discovery, and scanning
● enter lowball mode (which stores config)

>>> d.lowball() # (SYNCM_CARRIER)

>>> print d.reprClientState()

>>> d.lowballRestore() # restore the config

>>> d.RFrecv() # and again, until you receive a timeout error

● now use lowball level 0:

>>> d.lowball(0) # dumps all sorts of crap (SYNCM_NONE)

>>> print d.reprRadioConfig()

>>> d.lowballRestore() # restores original config

>>> d.RFrecv() # grab raw packet

>>> d.recvAll(APP_NIC, NIC_RECV) # dump all buffered pkts

0xE5.1 – discover mode

● now use discover()

>>> d.discover() # press <enter> to leave discover mode

>>> d.discover(lowball=0) # what do you see?

>>> d.discover(IdentSyncWord=True) # what's that?!

>>> d.discover(SyncWordMatchList=[0x0c4e, 0xf432])

0xE5.2 – looking for trouble (kick in a door)

● frequency scanning (based on lowball)

>>> d.scan(basefreq, inc, count, delaysec, drate, lowball)

>>> d.scan(902e6, 250e3, 104, 2, 38400, 1)

0xE6 – car keyless entry

configuring the dongle – Keyless Entry Fob

● start RfCat

– set Frequency to 315mhz

– set Modulation to ASK_OOK

– set SyncWord to FFFE and SyncMode to
SYNCM_16_of_16

– set Packet Length: 12

– enable Manchester Encoding

– play around with baud rates... end up at 4761.9 baud

– d.RFlisten()

0xE7 – genie! oh genie!

configure the dongle / determine correct parameters: genie

● start RfCat

– set Frequency to 315mhz

– set Modulation to ASK_OOK

– set SyncWord to AA00 and SyncMode to
SYNCM_16_of_16

– set Packet Length: 30

– play around with baud rates... end up at 5200 baud

– d.RFlisten()

0xE8 – hop hop hopping along...

>>> d.getFHSSstate()

● import friend. decide who will be Sync Master.

● non-Master starts first:

>>> d.setFHSSstate(FHSS_STATE_DISCOVER)

● now the Sync Master:

>>> d.setFHSSstate(FHSS_STATE_SYNCINGMASTER)

● once sync'd:

>>> d.getMACdata()

>>> print d.reprMACdata()

0xE8.1 – FHSS xmit and recv

● now, one of you send (notice, different function)

>>> d.FHSSxmit('yo yo! wazgud!?')

● and the other of you receive:

>>> d.RFrecv() # nothing special here

>>> d.RFlisten() # same thing here

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

