
PRNG: Pwning Random Number Generators

George Argyros∗ Aggelos Kiayias∗†

Randomness is a critical security feature of modern web applications. From session identifiers
to password reset cookies and random filenames, web applications are relying on the underlying
run-time environment to provide them with a strong source of randomness. However, PHP until
version 5.3 did not support any cryptographically strong randomness generation function and,
even now, it misses one from its core system. This fact forced developers to either directly use the
insecure PHP functions for security purposes or create their own versions using the underlying
PHP functions. Would you trust the average PHP developer to create a custom XSS filter?
How about a cryptographically strong PRNG? Yet, till today there is a very limited number
of attacks relying on the poor randomness characteristics of PHP applications. We develop a
suite of new techniques and tools to mount attacks against all PRNGs of the PHP core system
even when it is hardened with the Suhosin patch and apply our techniques to create practical
exploits for a number of the most popular PHP applications (including Mediawiki, Gallery,
osCommerce and Joomla) focusing on the password reset functionality. Our exploits allow an
attacker to completely take over arbitrary user accounts. We will also release tools to assist the
exploitation of such vulnerabilities and sample exploits for some of these applications.

In this work, we present, implement and demonstrate a number of novel, practical, tech-
niques for exploiting randomness vulnerabilities in PHP applications. We focus on the pre-
dictability of password reset tokens and demonstrate how an attacker can take over user accounts
in a web application via predicting the PHP core randomness generators.

Our suite of new techniques and tools go far beyond previously known attacks (e.g. those
presented by S. Kamkar and S. Esser) and can be used to mount attacks against all PRNGs
of the PHP core system even when it is hardened with the Suhosin extension. Using them we
demonstrate how to create practical attacks for a number of very popular PHP applications
(including Mediawiki, Gallery, osCommerce and Joomla) that result in the complete take over
of arbitrary user accounts.

While our techniques are designed for the PHP language, the principles behind them are
independent of PHP and readily apply to any system that utilizes weak randomness generators
or low entropy sources.

We also release tools that assist in the exploitation of randomness vulnerabilities and exploits
for some vulnerable applications1 as well as code that can be used as a drop-in replacement for
randomness token generation within a PHP application.

The reader may consult the following pages where we include a complete technical description
of the attacks (in the form of a full version of an extended abstract that appears in USENIX
Security 2012 by the same authors).

∗Department of Informatics and Telecommunications, University of Athens, argyros.george@gmail.com,
aggelos@di.uoa.gr. Research partly supported by ERC Project CODAMODA.
†Computer Science and Engineering, University of Connecticut, Storrs, USA
1Please visit the web-site http://crypto.di.uoa.gr/CRYPTO.SEC/Randomness Attacks.html

1

I Forgot Your Password: Randomness Attacks Against PHP

Applications

George Argyros∗ Aggelos Kiayias∗†

Abstract

We provide a number of practical techniques and algorithms for exploiting randomness
vulnerabilities in PHP applications.We focus on the predictability of password reset tokens
and demonstrate how an attacker can take over user accounts in a web application via pre-
dicting or algorithmically derandomizing the PHP core randomness generators. While our
techniques are designed for the PHP language, the principles behind our techniques and
our algorithms are independent of PHP and can readily apply to any system that utilizes
weak randomness generators or low entropy sources. Our results include: algorithms that
reduce the entropy of time variables, identifying and exploiting vulnerabilities of the PHP
system that enable the recovery or reconstruction of PRNG seeds, an experimental analysis
of the H̊astad-Shamir framework for breaking truncated linear variables, an optimized online
Gaussian solver for large sparse linear systems, and an algorithm for recovering the state of
the Mersenne twister generator from any level of truncation. We demonstrate the gravity
of our attacks via a number of case studies. Specifically, we show that a number of cur-
rent widely used web applications can be broken using our techniques including Mediawiki,
Joomla, Gallery, osCommerce and others.

1 Introduction

Modern web applications employ a number of ways for generating randomness, a feature which
is critical for their security. From session identifiers and password reset tokens, to random
filenames and password salts, almost every web application is relying on the unpredictability of
these values for ensuring secure operation. However, usually programmers fail to understand
the importance of using cryptographically secure pseudorandom number generators (PRNG)
something that opens the potential for attacks. Even worse, the same trend holds for whole
programming languages; PHP for example lacks a built-in cryptographically secure PRNG in
its core and until recently, version 5.3, it tottaly lacked a cryptographically secure randomness
generation function.

This left PHP programmers with two options: They will either implement their own PRNG
from scratch or they will employ whatever functions are offered by the API in a “homebrew”
and ad-hoc fashion. In addition, backwards compatibility and other issues (cf. section 2), often
push the developers away even from the newly added randomness functions, making their use
very limited. As we will demonstrate and heavily exploit in this work, this approach does not
produce secure web applications.

Observe that using a low entropy source or a cryptographically weak PRNG to produce
randomness does not necessarily imply that an attack is feasible against a system. Indeed, so
far there have been a very limited number of published attacks based on the insecure usage
of PRNG functions in PHP, while popular exploit databases1 contain nearly zero exploits for

∗Department of Informatics and Telecommunications, University of Athens, argyros.george@gmail.com,
aggelos@di.uoa.gr. Research partly supported by ERC Project CODAMODA.
†Computer Science and Engineering, University of Connecticut, Storrs, USA
1e.g. http://www.exploit-db.com

1

such vulnerabilities (and this may partially explain the delay in the PHP community adopting
secure randomness generation functions). Showing that such attacks are in fact very practical
is the objective of our work.

In this paper we develop generic techniques and algorithms to exploit randomness vulnera-
bilities in PHP applications. We describe implementation issues that allow one to either predict
or completely recover the initial seed of the PRNGs used in most web applications. We also give
algorithms for recovering the internal state of the PRNGs used by the PHP system, including
the Mersenne twister generator and the glibc LFSR based generator, even when their output is
truncated. These algorithms could be used in order to attack hardened PHP installations even
when strong seeding is employed, as it is done by the Suhosin extension for PHP and they may
be of independent interest.

We also conducted an extensive audit of several popular PHP applications. We focused on
the security of password reset implementations. Using our attack framework we were able to
mount attacks that take over arbitrary user accounts with practical complexity. A number of
widely used PHP applications are affected (see Figure 13), while we believe that the impact is
even larger in less known applications.

Our results suggest that randomness attacks should be considered practical for PHP appli-
cations and existing systems should be audited for these vulnerabilities. Weak randomness is a
grave vulnerability in any secure system as it was also recently demonstrated in the widely pub-
licized discovery of common primes in RSA public-keys by Lenstra et al. [14]. We finally stress
that our techniques apply in any setting beyond PHP, whenever the same PRNG functions are
used and the attack vector relies on predicting a system defined random object.

Overview of the paper. Next, (in section 1.1) we present the attack model that we assume
in this work, followed by an overview of our attacks in section 1.2. Then, in section 2 we discuss
the specifics of the PHP system including the functions that we target. One main source of
entropy for the PHP system is time – we focus on this in section 3 where we also describe two
adversarial strategies for reducing this entropy source substantially. Utilizing this and a number
of other techniques we present our seed attacks which are attacks that recover the seed for the
randomness generators of PHP. The conditions that enable obtaining the seed may not feasible
in many cases — this motivates section 5 where we show how one can calculate entirely the
generator state given sufficient leaks from the generator. In order to achieve this we perform
an experimental analysis of the H̊astad-Shamir framework ([8]), develop an online Gaussian
solver for large sparse linear systems and an algorithm for recovering the state of truncated
Mersenne twister sequences. Our case studies are presented in section 6 and include a number
of popular and current applications including Mediawiki, Gallery, Joomla, osCommerce and
others. In section 7 we present how to defend against our attacks and related work is provided
in section 8.

1.1 Attack model

In Figure 1 we present our general attack template. An attacker is trying to predict the pass-
word reset token in order to gain another user’s privileges (say an administrator’s). Each time
the attacker makes a request to the web server, his request is handled by a web application in-
stance, usually represented by a specific operating system process, which contains some process
specific state. The web application uses a number of application objects with values depending
on its internal state, with some of these objects leaking to the attacker through the web server
responses. Examples of such objects are session identifiers and outputs of PRNG functions.
Although our focus is in password reset functions, the principles that we use and the tech-
niques that we develop can be readily applied in other contexts when the application relies on

2

Figure 1: Attack template.

the generation of random values for security applications. Examples of such applications are
CAPTCHA’s and the production of random filenames.

Attack complexity. Since we present explicit practical attacks, we define next the complex-
ity under which an attack should be consider practical. There are two measure of complexity
of interest. The first is the time complexity and the second is the query or communication
complexity. For some of our attacks the main compuational operation is the calculation of
an MD5 hash. With current GPU technologies an attacker can perform up to 230 MD5 cal-
culations per second with a $250 GPU, while with an additional $500 can reach up to 232

calculations [9]. These figures suggest that attacks that require up to 240 MD5 calculations
can be easilty mounted. In terms of communication complexity, most of our attacks have a
query complexity of a few thousand requests at most, while some have as little as a few tens of
requests. Our most communication intensive attacks (section 5) require less than 35K(≈ 215)
requests. Sample benchmarks that we performed in various applications and server installations
show that on average one can perform up to 222 requests in the course of a day.

1.2 Overview of our attacks

The PHP system utilizes a number of entropy sources in order to produce random numbers.
The web application accesses these sources through a number of functions which we describe in
section 2 that also include pseudorandom number generators seeded with them. We describe
attacks against both the entropy sources and the pseudorandom number generators. Our attacks
can be classified in three different types. The first type is attacks that enable the attacker to
reduce the entropy of the sources and specifically of time. These attacks, namely Adversarial
Time Synchronization (ATS) and Request Twins are presented in section 3. The second type
is attacks against the seeding of the random number generators. The goal of these attacks is to
produce the seed of the generators. We exploit two different principles, that is the reusage of
entropy sources among different objects of the PHP system, and the small size of the seeds. The
former enables us to reconstruct the seed (section 4.2) while the latter to bruteforce (recover)
the seed value (sections 4.1,4.3). In the third type, we exploit the linearity of the pseudorandom
number generators in order to recover their internal state, after observing a sufficient number
of outputs. We describe two attacks against the main PRNG’s used by the PHP system,
i.e., mt rand() (section 5.3) and rand() (section 5.4). These attacks need to obtain all the
PRNG outputs from the same process generator. To meet this goal we design a generic process
distinguisher that enable the attacker to lock into a specific server process. The overview of all
attacks is presented in figure 2.

3

Figure 2: Attacks overview

2 PHP System

We will now describe functionalities of the PHP system that are relevant to our attacks. We first
describe the different modes in which PHP might be running, and then we will do a description
of the randomness generation functions in PHP. We focus our analysis in the Apache web server,
the most popular web server at the time of this writing, however our attacks are easily ported
to any webserver that meets the configuration requirements that we describe for each attack.

2.1 Proccess management

There are different ways in which a PHP script is executed. These ways affect its internal states,
and thus the state of its PRNGs.

• mod php: Under this installation the Apache web server is responsible for the process
management. When the server is started a number of child proccesses are created and
each time the number of occupied processes passes a certain threshold a new process is
created. Conversely, if the idle proccesses are too many, some processes are killed. One
can specify a maximum number of requests for each process although this is not enabled
by default. Under this setting each PHP script runs in the context of one of the child
processes, so its state is preserved under multiple connections unless the process is killed
by the web server process manager. The configuration is similar in the case the web server
uses threads instead of processes.

• CGI: Under this installation, scripts are executed with the Common Gateway Interface
(CGI). Each time a request is dispatched to the web server, the server assosiates the
request with an executable and executes it with arguments from the request. Under this
installation each request is handled by a fresh PHP process.

• FastCGI: In order to avoid the overhead of creating one process per request, the FastCGI
protocol was created. Under this protocol, a process manager is created and each request is
dispatched to an external process. However, after completing the processing, the process
does not die, rather it handles other subsequent requests. The setup is like mod php
although under this protocol, depending on the configuration, it is more common to kill
a process after a specific number of requests.

4

Keep-Alive requests. The HTTP protocol offers a request header, called Keep-Alive. When
this header is set in an HTTP request, the web server is instructed to keep the connection alive
after the request is served. Under mod php installations this means that any subsequent request
will be handled from the same process. This is a very important fact, that we will use in our
attacks. However in order to avoid having a process hang from one connection for infinite time,
most web servers specify an upper bound on the number of consequent keep-alive requests. The
default value for this bound in the Apache web server is 100.

2.2 Randomness Generation

In order to satisfy the need for generating randomness in a web application, PHP offers a number
of different randomness functions. We briefly describe each function below.

php combined lcg()/lcg value(): the php combined lcg() function is used internally by
the PHP system, while lcg value() is its public interface. This function is used in order
to create sessions, as well as in the uniqid function described below to add extra entropy.
It uses two linear congruential generators (LCGs) which it combines in order to get better
quality numbers. The output of this function is 64 bits.

uniqid(prefix, extra entropy): This function returns a string concatenation of the
seconds and microseconds of the server time converted in hexadecimal. When given an
additional argument it will prefix the output string with the prefix given. If the second
argument is set to true, the function will suffix the output string with an output from the
php combined lcg() function. This makes the total output to have length up to 15 bytes
without the prefix.

microtime(), time(): The function microtime() returns a string concatenation of the
current microseconds divided by 106 with the seconds obtained from the server clock. The
time() function returns the number of seconds since Unix Epoch.

mt srand(seed)/mt rand(min, max): mt rand is the interface for the Mersenne Twister
(MT) generator [15] in the PHP system. In order to be compatible with the 31 bit output
of rand(), the LSB of the MT function is discarded. The function takes two optional
arguments which map the 31 bit number to the [min, max] range. The mt srand() function
is used to seed the MT generator with the 32 bit value seed; if no seed is provided then the
seed is provided by the PHP system.

srand(seed)/rand(min, max): rand is the interface function of the PHP system to the
rand() function provided by libc. In unix, rand() additive feedback generator (resembling
a Linear Feedback Shift Register (LFSR)), while in Windows it is an LCG. The numbers
generated by rand() are in the range [0, 231− 1] but like before the two optional arguments
give the ability to map the random number to the range [min, max]. Like before the srand()
function seeds the generator similarly to the mt srand() function.

openssl random pseudo bytes(length, strong): This function is the only function avail-
able in order to obtain cryptographically secure random bytes. It was introduced in version
5.3 of PHP and its availability depends on the availability of the openssl library in the
system. In addition, until version 5.3.4 of PHP this function had performance problems [1]
running in Windows operating systems. The strong parameter, if provided, is set to true

if the function returned cryptographically strong bytes and false otherwise. For these
reasons, and for backward compatibility, its use is still very limited in PHP applications.

In addition the application can utilize an operating system PRNG (such as /dev/urandom).
However, this does not produce portable code since /dev/urandom is unavailable in Windows
OS.

5

Figure 3: ATS.

Configuration ATS Req. Twins

CPU(GHz) RTT(ms) min max avg min max avg

1× 3.2 1.1 0 4300 410 0 1485 47

4× 2.3 8.2 5 76693 4135 565 1669 1153

1× 0.3 9 53 39266 2724 1420 23022 4849

2× 2.6 135 73 140886 83573 2 1890 299

Figure 4: Effectiveness of our time entropy lowering techniques against
four servers of different computational power and RTT. Time measure-
ments are in microseconds.

3 The entropy of time measurements

Although ill-advised (e.g., [3]) many web applications use time measurements as an entropy
source. In PHP, time is accessed through the time() and microtime() functions. Consider the
following problem. At some point a script executing a request made by the attacker makes a
time measurement and use the results to, say, generate a password reset token. The attacker’s
goal it to predict the output of the measurement made by the PHP script. The time() function
has no entropy at all from an attacker point of view, since the server reveals its time in the
HTTP response header as dictated by the HTTP protocol. On the other hand, microtime
ranges from 0 to 106 giving a maximum entropy of about 20 bits. We develop two distinct
attacks to reduce the entropy of microtime() that have different advantages and mostly target
two different scenarios.

The first one, Adversial Time Synchronization, aims to predict the output of a specific time
measurement when there is no access to other such measurements. The second, Request Twins,
exploits the fact that the script may enable the attacker to generate a correlated leak to the
target measurement.

Adversarial Time Synchronization (ATS). As we mentioned above, in each HTTP re-
sponse the web server includes a header containing the full date of the server including hour,
minutes and seconds. The basic observation is that although we get no leak regarding the mi-
croseconds from the HTTP date header we know that when a second changes the microseconds
are zeroed. We use this observation to narrow down their value.

In the following we represent time by a tuple T = (Tsec, Tusec) as it is usually represented
in operating system time structures. In addition we define RTT as the time interval between
sending an HTTP request and receiving the response. Finally we denote by DATEsec the
epoch corresponding to the Date HTTP header received. The algorithm proceeds as follows:
We connect to the web server and issue pairs of HTTP requests R1 and R2 in corresponding
times T1 and T2 until a pair is found in which the date HTTP header of the corresponding
responses is different. At that point we know that between the processing of the two HTTP
requests the microseconds of the server were zeroed. We proceed to approximate the time of
this event S in localtime, denoted by the timestamp D, by calculating the average RTT of the
two requests and offsetting the middle point between T2 and T1 by this value divided by two.
Now, whenever the localtime is given by a timestamp D′, the server time is approximated by
S′ = S + (D′ −D).

In the Apache web server the date HTTP header is set after processing the request of the
user. If the attacker requests a non existent file, then the point the header is set is approximatelly
the point that a valid request will start executing the PHP script. It follows that if the attacker
uses ATS with HTTP requests to not existent files then he will synchronize approximately with

6

the beggining of the script’s execution.
If the attacker tries to determine the output of the microtime() function at a point deeper

in a PHP script, then the script’s execution time should be taken into account as well as the
position within the script that the function is called. Calls early in the script are much easier
to synchronize with, than nested calls which are preceded with file and database operations.
In principle, the attacker can improve the accuracy of the algorithm by performing offline
experiments and estimate the average execution time of the script.

Given a steady network where each request takes RTT
2 time to reach the target server, our

algorithm deviation depends only on the rate that the attacker can send HTTP requests. In
practice, we find that the algorithm’s main source of error is the network distance between the
attacker’s system and the server cf. Figure 4. The above implementation we described is a
proof-of-concept and various optimizations can be applied to improve its accuracy.

Request Twins. Consider the following setting: an application uses microtime() to generate
a password token for any user of the system. The attacker has access to a user account of the
application and tries to take over the account of another user. This allows the attacker to obtain
password reset tokens for his account and thus outputs of the microtime() function. The key
observation is that if the attacker performs in rapid succession two password reset requests, one
for his account and one for the target user’s account, then these requests will be processed by
the application with a very small time difference and thus the conditional entropy of the target
user’s password reset token given the attacker’s token will be small. Thus, the attacker can
generate a token for an account he owns and in fast succession a token for the target account.
Then the microtime() used for generating the token of his account can be used to approximate
the microtime() output that was used for the token of the target account.

Experiments. We conducted a series of experiments for both our algorithms using the fol-
lowing setup. We created a PHP “time” script that prints out the current seconds and mi-
croseconds of the server. To evaluate the ATS algorithm we first performed synchronization
between a client and the server and afterwards we sent a request to the time script and tried to
predict the value it would return. To evaluate the Request Twins algorithm we submitted two
requests to the time script in fast succession and measured the difference between the output
of the two responses.

In Figure 4 we show the time difference between the server’s time and our client’s calculation
for four servers with different CPU’s and RTT parameters. Our experiments suggest that both
algorithms significantly reduce the entropy of microseconds (up to an average of 11 bits with
ATS and 14 bits with Request Twins) having different advantages each. Specifically, the ATS
algorithm seems to be affected by large RTT values while it is less affected by differences in
the CPU speed. The situation is reversed for Request Twins where the algorithm is immune to
changes in the RTT however, it is less effective in old systems with low processing speed.

4 Seed Attacks

In this section we describe attacks that allow either the recovery or the reconstruction of the
seeds used for the PHP system’s PRNGs. This allows the attacker to predict all future iterations
of these functions and hence reduces the entropy of functions rand(),mt rand(), lcg value()

as well as the extra entropy argument of uniqid() to zero bits. We exploit two properties of the
seeds used in these functions. The first one is the reusage of entropy sources between different
seeds. This enables us to reconstruct a seed without any access to outputs of the respective
PRNG. The second is the small entropy of certain seeds that allows one to recover its value by
bruteforce.

7

We present three distinct attacks. The first attack allows one to recover the seed of the
internal LCG seed used by the PHP system using a session identifier. Using that seed our
second attack reconstructs the seed of rand() and mt rand() functions from the elements of
the LCG seed without any access to outputs of these functions. Finally, we exploit the fact that
the seed used in these functions is small enough for someone with access to the output of these
functions to recover its value by bruteforce.

Generating fresh processes. Our attacks on this section rely on the ability of the attacker
to connect to a process with a newly initialized state. We describe a generic technique against
mod php in order to achieve a connection to a fresh process. Recall that in mod php when the
number of occupied processes passes a certain threshold new processes are created to handle
the new connections. This gives the attacker a way to force the creation of fresh processes:
The attacker creates a large number of connections to the target server with the keep-alive
HTTP header set. Having occupied a large number of processes the web server will create a
number of new processes to handle subsequent requests. The attacker, keeping the previous
connections open, makes a new one which, given that the attacker created enough connections,
will be handled by a fresh process. In addition, some of our attacks are applicable to cgi mode
where by default each request is handled by a fresh process.

4.1 Recovering the LCG seed from Session ID’s

In this section we present a technique to recover the php combined lcg() seed using a PHP
session identifier. In PHP, when a new session is created using the respective PHP function
(session start()), a pseudorandom string is returned to the user in a cookie, in order to
identify that particular session. That string is generated using a conjuction of user specific and
process specific information, and then is hashed using a hash function which is by default MD5,
however there is an option to use other hash functions such as SHA-1. The values contained in
the hash are:

Client IP address (32 bits).

A time measurement: Unix epoch and microseconds (32 + 20 bits).

A value generated by php combined lcg() (64 bits).

For the following denote by T0 the time measurement used above. The maximum entropy of
the above values is 148 bits in total, way out of the bruteforce range for any system. However,
because in the context of our attack model the attacker controls each request, he knows exactly
most of the values. Specifically, the client IP address is the attacker’s IP address and the Unix
Epoch can be determined through the date HTTP header.

In addition, if php combined lcg() is not initialized at the time the session is created, as it
happens when a fresh process is spawned, then it is seeded. The state of the php combined lcg()

is two registers s1, s2 of size 32 bits each, which are initialized as follows. Let T1 and T2 be two
subsequent time measurements. Then we have that

s1 = T1.sec⊕ (T1.usec� 11) and s2 = pid⊕ (T2.usec� 11)

where pid denotes the current process id, or if threads are used the current thread id 2.
Process id’s have a range of 215 values in Linux systems 3. In Windows systems the process

id’s (resp. threads) are also at most 215 unless there are more than 215 active processes (resp.
threads) in the system which is a very unlikely occurence.

Observe now that the session calculation involves three time measurements T0, T1 and T2.
Given that these three measurements are conducted succesivelly it is advantageous to estimate

2In PHP versions before 5.3.2 the seed used only one time measurement which made it even weaker.
3On Linux systems thread id’s are 32 bits which makes the attack infeasible. However mod php in most

distributions run exclusively with Apache with multiple processes (prefork server).

8

their entropy by examining the random variables T0,∆1 = T1−T0,∆2 = T2−T1. We conducted
experiments in different systems to estimate the range of values for ∆1 and ∆2. Our experiments
suggest that ∆1 ∈ [1, 4] while ∆2 ∈ [0, 3]. We also found a positive linear correlation in the
values of the two pairs. This enables a cutdown of the possible valid pairs. These results suggest
that the additionally entropy introduced by the two ∆ variables is at most 5 bits.

To summarize, the total remaining entropy of the session identifier hash is the sum of the
microseconds entropy from T0 (≈ 20 bits) the two ∆ variables (≈ 5 bits) and the process
identifier(15 bits). These give a total of 40 bits which is tractable cf. section 1.1. Furthermore
the following improvements can be made: (1) Using the ATS algorithm the microseconds entropy
can be reduced as much as 11 bits on average. (2) The attacker can make several connections
to fresh processes instead of one, in rapid succession, obtaining session identifiers from each of
the processes. Because the requests were made in a small time interval the preimages of the
hashes obtained belong into the same search space, thus improving the probability of inverting
one of the preimages proportionally to the number of session identifiers identifiers obtained.
Our experiments with the request twins technique suggest that at least 4 session identifiers
can be obtained from within the same search space thus offering a reduction of at least two
bits. Adding these improvements reduces the search time up to 227 MD5 computations which is
dramatically shorter than the perceived 2148 and can be achieved in a matter of a few minutes
using a modern GPU.

In summary the technique described in this section allows an attacker to obtain the following
process specific information given access to a session id from a fresh process:

The process id of the process handling the request.

The seed of php combined lcg() function.

4.2 Reconstructing the PRNG Seed from Session ID’s

In this section we exploit the fact that the PHP system reuses entropy sources between different
generators, in order to reconstruct the PRNG seed used by rand() and mt rand() functions
from a PHP session identifier. In order to predict the seed we only need to find a preimage
for the session id, using the methods described in the previous section. One advantage of this
attack is that it requires no outputs from the affected functions.

When a new process is created the internal state of the functions rand() and mt rand() is
uninitialized. Thus, when these functions are called for the first time within the script a seed
is constructed as follows:

seed = (epoch× pid)⊕ (106 × php combined lcg())

where epoch denotes the seconds since epoch and pid denotes the process id of the process
handling the request. It it easy to notice, that an attacker with access to a session id preimage
has all the information needed in order to calculate the seed used to initialize the PRNGs since:

epoch is easily obtained through the HTTP Date header.

pid is known from the seed of the php combined lcg() obtained through the preimage of
the session identifier from section 4.1.

php combined lcg() is also known, since the attacker has access to its seed, he can easily
predict the next iteration after the initial value.

In summary the technique of this section allows the reconstruction of the seed of the mt rand()

and rand() functions given access to a PHP session id of a fresh process. The time complexity
of the attack is the same as the one described in section 4.1 while the query complexity is one
request, given that the attacker spawned a fresh process (which itself requires only a handful of
requests).

9

4.3 Recovering the Seed from Application leaks

In contrast to the technique presented in the previous section, the attack presented here recovers
the seed of the PRNG functions rand() and mt rand() when the attacker has access to the
output of these functions. We exploit the fact that the seed used by the PHP system is only 32
bits. Thus, an attacker who connects to a fresh process and obtains a number of outputs from
these functions can bruteforce the 32 bit seed that produces the same output.

We emphasize that this attack works even if the outputs are truncated or passed through
transformations like hash functions. The requirements of the attack is that the attacker can
define a function from the set of all seeds to a sufficiently large range and can obtain a sample
of this function evaluated on the seed that the attacker tries to recover. Additionally for the
attack to work this function should behave as a random mapping.

Given a sample of this function the attacker tries to find a preimage that will recover the
seed of the PRNG function. The attacker can try all possible seeds until one matches the output
he obtained. In order for the seed obtained to be the correct one the function should be near
collision free. Assuming that the function is a random map we can use the following lemma
to bound the size of the range of the mapping as the function of the probability of whether a
collision exists for the given mapping.

Lemma 4.1. Let f be a random function f : [n]→ [m]. Then the probability that f is 1− 1 is
at least 1− ε assuming logm ≥ 2 log n+ log ε−1.

Proof. The probability of the event A that f is 1− 1 is

Pr[A] =
(m)n
mn

≥ (1− m

n
)n ≥ 1− n2

m

By requiring this probability to be greater than 1− ε we obtain the lemma statement.

Using the above lemma the attacker can define his function to have a large enough range
for his search to be succesful with very high probability. Note that in case of an incorrect seed
calculation due to a collision, the attacker may continue to recover other preimages.

Consider the following example. The attacker has access to a user account of an appli-
cation which generates a password reset token as 6 symbols where each symbol is defined as
g(mt rand()) where g is a table lookup function for a table with 60 entries containing alphanu-
meric characters. The attacker defines the function f to be the concatenation of two password
reset tokens generated just after the PRNG is initialized. The attacker samples the function by
connecting to a fresh process and resetting his password two times. Since the table of function
g contains 60 entries, the attacker obtains 6 bits per token symbol, giving a total range to the
function f of 72 bits. Using the above lemma we get that the function defined by the attacker
has an upper bound on the collision probability of 2−8. This means that the first preimage
returned by the bruteforce search is correct with probability at least 1− 2−8 and if not he may
continue the search to the next preimage.

The time complexity of the attack is 232 calculations of f however, we can reduce the online
complexity of the attack using a time-space tradeoff. In this case the online complexity of the
attack can be as little as 216. The query complexity of the attack depends on the number of
requests needed to obtain a sample of f . In the example given above the query complexity is
two requests.

5 State recovery attacks

One can argue that randomness attacks can be easily thwarted by increasing the entropy of
the seeding for the PRNG functions used by the PHP system. For example, the suhosin PHP

10

Figure 5: Mapping a random number n ∈ [M] to 7 buckets and the respective bits of n that
are revealed given each bucket.

hardening extension replaces the rand() function with a Mersene Twister generator with sepa-
rate state from mt rand() and offers a larger seed for both generators getting entropy from the
operating system4.

We show that this is not the case. We exploit the algebraic structure of the PRNGs used
in order to recover their internal state after a sufficient number of past outputs (leaks) have
been observed by the attacker. Any such attack has to overcome two challenges. First, web
applications usually need only a small range of random numbers, for example to sample a
random entry from an array. To achieve that, the PHP system maps the output of the PRNG
to the given range, an action that may break the linearity of the generators. Second, in order
to collect the necessary leaks the attacker may need to reconnect to the same process many
times to collect the leaks from the same generator instance. Since, usually, there are many PHP
processes running in the system, this poses another challenge for the attacker.

In this section we present state recovery algorithms for the truncated PRNG functions
rand() and mt rand(). The algorithm for the latter function is novel, while regarding the
former we implement and evaluate the H̊astad-Shamir cryptanalytic framework [8] for truncated
linearly related variables. We begin by discussing the way truncation takes place in the PHP
system. Afterwards, we tackle the problem of reconnecting into the same server process. Finally
we present the two algorithms against the generators.

5.1 Truncating PRNG sequences in the PHP system

As mentioned in section 2.2 the rand() and mt rand() functions can map their output to a
user defined range. This has the effect of truncating the functions’ output. Here we discuss the
process of truncating the output and its implications for the attacker.

Let n ∈ [M] = {0, . . . ,M − 1} be a random number generated by rand() or mt rand(),
where M = 231 in the PHP system. In order to map that number in the range [a, b] where a < b
the PHP system maps n to a number l ∈ [a, b] in the following way:

l = a+
n · (b− a+ 1)

M

We can view the process above as a mapping from the set of numbers in the range [M] to
b − a + 1 “buckets.” Our goal is to recover as many bits as possible of the original number n.
Observe that given l it is possible to recover immediately up to blog(b−a+ 1)c most significant
bits (MSB) of the original number n as follows:

Given that n belongs to bucket l we obtain the following range for possible values for n:

b(l − a) ·M
b− a+ 1

c ≤ n ≤ b(l − a+ 1) ·M
b− a+ 1

c − 1

4The suhosin patch installed in some Unix operating systems by default does not include the randomness
patches, rather than it mainly offers protection from memory corruption attacks. The full extension is usually
installed separately from the PHP packages.

11

Therefore, given a bucket number l we are able to find an upper and lower bound for the
original number denoted respectively by Ll and Ul. In order to recover a part of the original
number n one can simply find the number of most significant bits of Ll and Ul that are equal
and observe that these bits would be the same also in the number n. Therefore, given a bucket
l we can compare the MSBs of both numbers and set the MSBs of n to the largest sequence of
common most significant bits of Ll, Ul.

Notice that in some cases even the most significant bit of the two numbers are different, thus
we are be unable to infer any bit of the original number n with absolute certainty. For example,
in Figure 5 given that a number falls in bucket 3 we have that 920350134 ≤ n ≤ 1227133512.
Because 920350134 < 230 and 1227133512 > 230 we are unable to infer any bit of the original
number n.

Another important observation is that this specific truncation algorithm allows the recovery
of a fragment of the MSBs of the original number. Therefore, in the following sections we will
assume that the truncation occurs in the MSBs and we will describe our algorithms based on
MSB truncated numbers. However, all algorithms described work for any kind of truncation.

5.2 Process distinguisher

As we mentioned in section 2.1, if one wants to receive a number of leaks from the same PHP
process one can use keep-alive requests. However, there is an upper bound that limits the
number of such requests (by default 100). Therefore, if the attacker needs to observe more
outputs beyond the keep-alive limit the connection will drop and when the attacker connects
back to the server he may be served from a different process with a different internal state.
Therefore, in order to apply state recovery attacks (which typically require more than 100
requests), we must be able to submit all the necessary requests to the same process. In this
section, we will describe a generic technique that finds the same process over and over using
the PHP session leaks described in section 4.1.

While we cannot avoid disconnecting from a process after we have submitted the maximum
number of keep-alive requests, we can start reconnecting back to the server until we hit the
process we were connected before and continue to submit requests. The problem in applying
this approach is that it is not apparent to distinguish whether the process we are currently
connected to is the one that was serving us in the previous connection. To distinguish between
different processes, we can use the preimage from a session identifier. Recall that the session
id contains a value from the php combined lcg() function, which in turn uses process specific
state variables. Thus, if the session is produced from the same process as before then the
php combined lcg() will contain the next state from the one it was before. This gives us a way
to find the correct process among all the server processes running in the server. In summary
the algorithm will proceed as follows:

1. The attacker obtains a session identifier and a preimage for that id using the techniques
discussed in section 4.1.

2. The attacker submits the necessary requests to obtain leaks from the PRNG he is at-
tacking, using the keep-alive HTTP header until the maximum number of requests is
reached.

3. The attacker initiates connections to the server requesting session identifiers. He at-
tempts to obtain a preimage for every session identifier using the next value of the
php combined lcg() from the one used before or, if the server has high traffic, the next
few iterations. If a preimage is obtained the attacker repeats step 2, until all necessary
leaks are obtained.

Notice that obtaining a preimage after disconnecting requires to bruteforce a maximum
number of 20 bits (the microseconds), and thus testing for the correct session id is an efficient

12

procedure. Even if the application is not using PHP sessions, or if a preimage cannot be
obtained, there are other, application specific, techniques in order to find the correct process.
We describe some possibilites:

Getting a leak from the lcg value() or uniqid() with the extra entropy option set to
true. This will have the same effect of leaking an output of the php combined lcg() to the
attacker.

Combining vulnerabilities. For example, a file read vulnerability in a Linux system will
allow one to read the world readable /proc/self/stat file which contains the pid of the
process handling the request.

A generic technique for Windows. In the case of Windows systems the attacker can
employ another technique to collect the necessary leaks from the same process in case the
server has low traffic. In unix servers with apache preforked server + mod php all idle processes
are in a queue waiting to handle an incoming client. The first process in the queue handles
a client and then the process goes to the back of the queue. Thus, if an attacker wants to
reconnect to the same process without using some process distinguisher he will need to know
exactly the number of processes in the system and if there are any intermediate requests by
other clients while the attacker tries to reconnect to the same process. However, in Windows
prethreaded server with mod php things are slightly better for an attacker. Threads are in a
priority queue and when a thread in the first place of the queue handles a request from a
client it returns again in that first place and handles the first subsequent incoming request.
Thus, an attacker which manages to connect to that first thread of the server, can rapidly close
and reopen the connections thus leaving a very small window in which that thread could be
occupied by another client. Of course, in high traffic servers the attacker would have a difficulty
connecting in a time when the server is idle in the first place. Nevertheless, techniques exist [16]
to remotely determine the traffic of a server and thus allow the attacker to find an appropriate
time window within which he will attempt this attack.

Based on the above, in the following sections we will assume that the attacker is able to
collect the necessary number of leaks from the targeted function.

5.3 State recovery for mt rand()

The mt rand() function uses the Mersenne Twister generator in order to produce its output. In
this section we give a description of the Mersenne Twister generator and present an algorithm
that allows the recovery of the internal state of the generator even when the output is truncated.
Our algorithm also works in the presence of non consecutive outputs as in the case resulting
from the buckets truncation algorithm of the PHP system (cf. section 5.1).

Mersenne Twister. Mersenne Twister, and specifically the widely used MT19937 variant,
is a linear PRNG with a 624 32-bit word state. The MT algorithm is based on the following
recursion: for all k,

xk+n = xk+m ⊕ ((xk ∧ 0x80000000)|(xk+1 ∧ 0x7fffffff))A

where n = 624 and m = 397. The logical AND operation with 0x80000000 discards all but the
most significant bit of xk while the logical AND with 0x7fffffff discards only the MSB of xk+1.
A is a 32× 32 matrix for which multiplication by a vector x is defined as follows:

xA =

{
(x� 1) if x31 = 0
(x� 1)⊕ a if x31 = 1

Here a = (a0, a1, ..., a31) = 0x9908B0DF is a constant 32-bit vector (note that we use x31 to
denote the LSB of a vector x). The output of this recurrence is finally multiplied by a 32× 32
non singular matrix T , called the tempering matrix, in order to produce the final output z = xT .

13

State recovery. Since the tempering matrix T is non singular, given 624 outputs of the
MT generator one can easily compute the original state by multiplying the output z with the
inverse matrix T−1 thus obtaining the state variable used as xi = ziT

−1. After recovering 624
state variables one can predict all future iterations. However, when the output of the generator
is truncated, predicting future iterations is not as straightforward as before because it is not
possible to locally recover all needed bits of the state variables given the truncated output.

The key observation in recovering the internal state is that due to the fact that the generator
is in GF(2) the truncation does not introduce non linearity even though there are missing bits
from the respective equations. Thus, we can express the output of the generator as a set of
linear equations in GF(2) which, when solved, yield the initial state that produced the observed
sequence. From the basic recurrence of MT we can derive the following equations for each
individual bit:

Lemma 5.1. Let x0, x1, . . . be an MT sequence and j > 0. Then the following equations hold
for any k ≥ 0:

1. x0jn+k = x0(j−1)n+k+m ⊕ (x31(j−1)n+k+1 ∧ a
0)

2. x1jn+k = x1(j−1)n+k+m ⊕ x
0
(j−1)n+k ⊕ (x31(j−1)n+k+1 ∧ a

1)

3. ∀i, 2 ≤ i ≤ 31 : xijn+k = xi(j−1)n+k+m ⊕ x
i−1
(j−1)n+k+1 ⊕ (x31(j−1)n+k+1 ∧ a

i)

Proof. The equations follow directly from the basic recurrence.

In addition since the tempering matrix is only a linear transformation of the bits of the state
variable xi, we can similarly express each bit of the final output of MT as a linear equation of
the bits of the respective state variable. The explicit form of the equations of the tempering
matrix is given in Appendix A.

To recover the initial state of MT, we generate all equations over the state bit variables
x0, x1, . . . , x19936. To map any position in the MT sequence in an equation over this set of
variables, we apply the equations of the lemma above recursively until all variables in the right
hand side have index below 19937.

Depending on the positions observed in the MT sequence the resulting linear system will be
different. We provide a visualization of the system for different truncation levels in Appendix C.
The question that remains is whether that system is solvable. Regarding the case of the 31-bit
truncation, i.e. only the MSB of the output word is revealed, we can use known properties of
the generator in order to easily prove the following:

Lemma 5.2. Suppose we obtain the MSB of 19937 consecutive words from the MT generator.
Then the resulting linear system is uniquely solvable.

Proof. It is known that the MT sequence is 19937-distributed to 1-bit accuracy5. The linear
system is uniquely solvable iff the rows are linearly independent. Suppose that a set k ≤ 19937
of rows are lineary dependent. Then the last row of the set k obtained is computable from the
other members of the k-set something that contradicts the order of equidistribution of MT.

The above result is optimal in the sense that this is the minimum number of observed outputs
needed for the system to become fully determined. In the case we obtain non consecutive outputs
due to truncation or application behavior, linear dependencies may arise between the resulting
equations and therefore we may need a larger number of observed outputs.

Because we cannot know in advance when the system will become solvable or the equations
that will be included, we employ an online version of Gaussian elimination in order to form and

5Suppose that a sequence is k-distributed to u-bit accuracy. Then knowledge of the u most significant bits
of l words does not allow one to make any prediction for the u bits of the next word when l < k. This is the
cryptographic interpretation of the “order of equidistribution” whose exact definition can be found in [15].

14

Figure 6: Solving MT; y-axis:number of equations; x-axis: number of buckets (logarithm –
powers of 2).

solve the resulting system. In this way, the attacker can begin collecting leaks and gradually
feed them to our Gaussian solver until he is notified that a sufficient number of independent
equations have been collected. Note that regular Gaussian elimination uses both elementary row
and elementary column operations. However, because we do not have in advance the entire linear
system we cannot use elementary column operations. Instead we make Gaussian elimination
using only elementary row operations and utilize a bookkeeping system to enter equations in
their place as they are produced by the leaks supplied to the solver. The pseudocode is shown
in Appendix B. Our solver employs a sparse vector representation and is capable of solving
overdetermined sparse systems of tens of thousands of equations in a few minutes.

We ran a sequence of experiments to determine the solvability of the system when a different
number of bits is truncated from the output. In addition we ran experiments when the outputs
of the MT generator is passed through the PHP truncation algorithm, with different user defined
ranges. All experiments were conducted in a 4× 2.3 GHz machine with 4 GB of RAM.

In Figure 6 we present the number of equations needed for recovering the state of the MT
sequence when a constant number of bits is truncated from the output. As it is demonstrated in
the figure the number of equations needed fluctuates at or above 19937 (which is the theoretical
lower bound). For the same run of experiments in Figure 7 we present the running time as a
function of the number of bits obtained. Notice that worse running times occur when a large
number of bits is truncated. This is probably related to the fact that the system tends to get
denser when a large number of bits is truncated, cf. Appendix C.

In Figure 8 we present the number of equations needed when the PHP truncation algorithm
is used. In the x-axis we have the logarithm of the number of buckets. We also show the
standard deviation appearing as vertical bars. It can be seen that the number of equations
needed is much higher than the theoretical lower bound of 19937 and fluctuates between 27000
and 33000. In Figure 9 we show how the number of leaks required to recover the state decreases
as the number of buckets increase. Finally, for the same set of data, we present running time
in seconds plotted against the number of buckets in Figure 10. As before it can be seen that
the worse running times occur at smaller bucket numbers. Note that the worse running times
here are bigger than the ones in Figure 7 because not only we have uneven levels of truncation
but also non-consecutive leaks.

15

Figure 7: Solving MT; y-axis:time in seconds; x-axis: number of buckets (logarithm – powers
of 2).

Figure 8: Solving MT; y-axis:number of equations; x-axis: number of buckets (logarithm).
Standard deviation shown as vertical bars.

Figure 9: Solving MT; y-axis:number of leaks needed; x-axis: number of buckets (logarithm).
Standard deviation shown as vertical bars.

16

Figure 10: Solving MT; y-axis:run time in seconds; x-axis: number of buckets (logarithm).
Standard deviation shown as vertical bars.

Implementation error in the PHP system. The PHP system up to current version,
5.3.10, has an error in the implementation of the Mersenne Twister generator (we discovered
this during the testing of our solver). Specifically the following basic recurrence is effectively
used in the PHP system due to a programming error:

xk+n = xk+m ⊕ ((xk ∧ 0x80000000)|(xk+1 ∧ 0x7ffffffe)|(xk ∧ 0x1))A

As a result the PHP system uses a different generator which, as it turns out, has slightly
more linear dependencies than the MT generator. This means that probably the randomness
properties of the PHP generator are poorer compared to the original MT generator.

5.4 State recovery for rand()

We turn now to the problem of recovering the state of rand() given a sequence of leaks from this
generator. While mt rand() is implemented within the PHP source code and thus is unchanged
across different enviroments, the rand() function uses the respective function defined from
the standard library of the operating system. This results in different implementations across
different operating systems. There are mainly two different implementations of rand() one
from the glibc and one from the Windows library.

Windows rand(). The rand() function defined in Windows is a Linear Congruential Gen-
erator (LCG). An LCG is defined by a recurrence of the form

Xn+1 = (aXn + c) mod m

Although LCGs are fast and require a small memory footprint there are many problems which
make them insufficient for many uses, including of course cryptographic purposes. The parame-
ters used by the Windows LCG are a = 214013, c = 2531011,m = 232. In addition, the output is
truncated by default and only the top 15 bits are returned. If PHP is running in a threaded server
in Windows then the parameters of the LCG used are a = 1103515245, c = 12345,m = 215.

Glibc rand(). In the past, glibc also used an LCG for the rand() function. Subsequently an
LFSR-like “additive feedback” design was adopted. The generator has a state of 31 words (of
32 bits each), over which it is defined by the following recurrence:

ri = (ri−3 + ri−31) mod 232

17

In addition the LSB of each word is discarded and the output returned to the user is oi = ri � 1.
An interesting note is that the man page of rand() states that rand is a non-linear generator.
Nevertheless, the non linearity introduced by the truncation of the LSB is negligible and one
can easily recover the initial values given enough outputs of the generator.

State recovery. Notice that if the generators used have a small state such as the Windows
LCGs then state recovery is easy, by applying the attack from section 4 to bruteforce the
entire state of the generator. However, on the Glibc generator, which has a state of 992 bits,
these attacks are infeasible assuming that the state is random. Although LCGs and the Glibc
generators are different, they both fall into the same cryptanalytic framework introduced by
H̊astad and Shamir in 1985 for recovering values of truncated linear variables. This framework
allows one to uniquely solve an underdefined system of linear equations when the values of the
variables are partially known. In this section we will discuss our experiences with applying this
technique in the two aforementioned generators: The LCG and the additive-feedback generator
of glibc. We will briefly describe the algorithm for recovering the truncated variables in order
to discuss our experiments and results. The interested reader can find more information about
the algorithm in the original paper [8].

Suppose we are given a system with l linear equations on k variables modulo m denoted by
x1, x2, . . . , xk,

a11x1 + a12x2 + · · ·+ a1kxk = 0 mod m

a21x1 + a22x2 + · · ·+ a2kxk = 0 mod m

. . .

al1x1 + al2x2 + · · ·+ alkxk = 0 mod m

where l < k and each variable xi is partially known. We want to solve the system uniquely
by utilizing the partial information of the k variables xi.

We use the coefficients of the l equations to create a set of l vectors, where each vector is of
the form vi = (a1, . . . , ak). In addition we add to this set the k vectors m · ei, 0 < i ≤ k. The
cryptanalytic framework exploits properties of the lattice L that is defined as the linear span
of these vectors. Observe that the dimension of L is k and in addition for every vector v ∈ L
we have that

k∑
i=1

vixi = 0 mod m

Given the above the attack works as follows: first a lattice is defined using the recurrence
that defines the linear generator; then, a lattice basis reduction algorithm is employed to create
a set of linearly independent equations modulo m with small coefficients; finally, using the
partially known values for each variable, we convert this set of equations to equations over the
integers which can be solved uniquely. Specifically, we use the LLL [13] algorithm in order to
obtain a reduced basis B for the lattice L. Now because B = {wj} is a basis, the vectors
of B are linearly independent. The key observation is that the lattice definition implies that
wj ·x = wj ·(xunknown+xknown) = dj ·m for some unknown dj . Now as long as xunknown·wj < m/2
(this is the critical condition for solvability) we can solve for dj and hence recover k equations
for xunknown which will uniquely determine it.

The original paper provided a relation between the size of xknown and the number of leaks
required from the generator so that the upper bound of m/2 is ensured given the level of basis
reduction achieved by LLL. In the case of LCGs the paper demanded the modulo m to be
squarefree. However, as shown above, in the generators used it holds that m = 232 and thus
their arguments do not apply. In addition, the lattice of the additive generator of glibc is
different than the one generated by an LCG and thus needs a different analysis.

18

We conducted a thorough experimental analysis of the framework focusing on the two types
of generators above. In each case we tested the maximum possible value of xknown to see if the
m/2 bound holds for the reduced LLL basis. In the following paragraphs we will briefly discuss
the results of these experiments for these types of generators.

Figure 11: Solving LCGs with LLL; y-axis:number of leaks; x-axis: number of bits truncated.

In Figure 11 we show the relationship between the number of leaks required for recovering
the state with the lattice-attack and the number of leaks that are truncated for four LCGs: the
Windows LCG, the glibc LCG (which are both 32 bits), the Visual Basic LCG (which is 24
bits) and an LCG used in the MMIX of Knuth (which is 64 bits). It is seen that the number
of leaks required is very small but increases sharply as more bits are truncated. In all cases
the attack stops being useful once the number of truncated bits leaves none but the logw − 1
most significant bits where w is the size of the LCG state. The logarithm barrier seems to
be uniformly present and hints that the MSB’s of a truncated LCG sequence may be hard to
predict (at least using the techniques considered here). A similar logarithmic barrier was also
found in the experimental analysis that was conducted by Contini and Shparlinski [2] when
they were investigating Stern’s attack [18] against truncated LCG’s with secret parameters.

In Figure 12 (left) we present the results of applying the lattice-based framework against
additive feedback generators similar to the one used in glibc. We demonstrate that there is a
linear relation exhibited between the number of truncated bits and the number of leaks required.
In the diagram, three “toy” generators with different depth of recursion (2,3 and 4) are targeted.
The angle of the linear relation becomes sharper as the depth of recursion increases (for the glibc
generator with its 32 depth the angle is much sharper - not shown here). In Figure 12(right)
we present the running time of the algorithm for the glibc generator measured in seconds. Here
the time complexity of LLL combined with the high dimension lattices required due to the
32 recursion depth of the glibc additive feedback generator take its toll in the running time.
Our testing system (a 3.2GHz cpu with 2GB memory) ran out of memory when 7 bits were
truncated. The version of LLL we employed (SageMath 4.8) has time complexity O(k5) where
k is the dimension of the lattice (which represents roughly the number of leaks). The best time-
complexity known is O(k3 log k) derived from [12]; this may enable much higher truncation levels
to be recovered for the glibc generator, however we were not able to test this experimentally as
no implementation of this algorithm is publicly available.

19

Figure 12: Solving additive feedback generators with LLL; y-axis: (left) number of leaks for
“toy” generators, (right) time in seconds for glibc generator; x-axis: number of bits truncated.

We conclude that truncated LCG type of generators can be broken (in the sense of entirely
recovering their internal state) for all but extremely high levels of truncation (e.g. in the case
of 32-bit state LCG’s modulo 232 when they are truncated to 16 buckets or less). For additive
feedback type of generators, such as the one in glibc, the situation is similar, however higher
recursion depths require more leaks (with a linear relationship) that in turn affect the lattice
dimension resulting in longer running times. Comparing the results between the LCGs and the
additive feedback generators one may find some justification for the adoption of the latter in
recent versions of glibc : it appears that - at least as far as lattice-based attacks are concerned
- it is harder to predict truncated glibc sequences (compared to say, Windows LCG’s) due to
the higher running times of LLL reduction (note though that this does not mean that these are
cryptographically secure).

6 Experimental results and Case studies

In order to evaluate the impact of our attacks on real applications we conducted an audit to
the password reset function implementations of popular PHP applications. Figure 13 shows the
results from our audit. In each case succesfully exploiting the application resulted in takeover
of arbitrary user accounts 6 and in some cases, when the administrator interface was affected, of
the entire application. In addition to identifiying these vulnerabilities we wrote sample exploits
for some types of attack we presented, each on one affected application.

6.1 Selected Audit Results

Many applications we audited where trivially vulnerable to our attacks since they used the
affected PRNG functions in a straightforward manner, thus making it pretty easy for an attacker
to apply our techniques and exploit them. However some applications attempted to defend
against randomness attacks by creating custom token generators. We will describe some attacks
that resulted from using our framework against custom generators.

6The only exception to that is the HotCRP application where passwords were stored in cleartext thus there
was no password reset functionality. However, in this case we were able to spoof registrations for arbitrary email
accounts.

20

App / Attack Time Seed State recovery

Section ATS RT 4.1 4.2 4.3 5.3 5.4

mediawiki • • •
Open eClass • • •

taskfreak • • •
zen-cart • •

osCommerce 2.x • •
osCommerce 3.x • • •

elgg •c • •
Gallery •c •c •c
Joomla •
MyBB ◦c ◦c ◦c

IP Board •c •c •c
phorum • • •
HotCRP • • •
gazelle • •

tikiWiki • • •
SMF ◦c ◦c

Figure 13: Summary of audit results. The c superscript denotes that the attack need to be used
in combination with other attacks with the same superscript. The • denotes a full attack while
◦ denotes a weakness for which the practical exploitation is either unverified or requires very
specific configurations.

Gallery. PHP Gallery is a very popular web based photo album organizer. In order for a user
to reset his password he has to click to a link, which contains the security token. The function
that generates the token is the following:

function hash($entropy="") {

return md5($entropy . uniqid(mt_rand(), true));

}

The token is generated using three entropy sources, namely a time measurement from uniqid(),
an output from the MT generator and an output from the php combined lcg() through the
extra argument in the uniqid() function. In addition the output is passed through the MD5
hash function so its infeasible to recover the initial values given the output of this function.
Since we do not have access to the output of the function, the state reconstruction attack
seems an appropriate choice for attacking this token generation algorithm. Indeed, the Gallery
application uses PHP sessions thus an attacker can use them to predict the php combined lcg()

and mt rand() outputs. In addition by utilizing the request twins technique from section 3 the
attacker can further reduce the search space he has to cover to a few thousand requests.

MyBB. MyBB is a popular bulletin board application. In 2010, a bug was reported in
the password reset functionality[5]. A patch was released shortly after that replaced the old
generator with a new one that hides the output of MT from the user by xoring it with a random
value and in addition it supplies a secure seed to the generator. The attack presented here works
only in systems where /dev/urandom is unavailable and the suhosin extension is installed. This
attack highlights the need for a universal secure PRNG that is OS independent and transparent
to the developer.

The password reset token is an 8 character string produced by the custom PRNG of the
application. To produce the string the application samples the characters randomly from an

21

array which contains upper/lowercase letters and digits. The random number generator code
follows:

function my_rand($min=null, $max=null,

$force_seed=false)

{

static $seeded = false;

static $obfuscator = 0;

if($seeded == false || $force_seed == true)

{

mt_srand(secure_seed_rng());

$seeded = true;

$obf = abs((int) secure_seed_rng());

[...]

}

[...]

$distance = $max - $min;

return $min+($distance+1)*

(mt_rand()^ $obf)/(mt_getrandmax() + 1));

[...]

}

function secure_seed_rng($count=8)

{

$output = ’’;

// Try the unix/linux method

if(@is_readable(’/dev/urandom’) &&

($handle = @fopen(’/dev/urandom’, ’rb’)))

{

$output = @fread($handle, $count);

@fclose($handle);

}

if(strlen($output) < $count)

{

$output = ’’;

$unique_state = microtime().@getmypid();

for($i = 0; $i < $count; $i += 16)

{

$unique_state = md5(microtime().$unique_state);

$output .= pack(’H*’, md5($unique_state));

}

}

$r=hexdec(substr(dechex(crc32(base64_encode($output))),

0, $count));

return $r;

}

In the case that /dev/urandom does not exist, or is inaccesible, the seed and obfuscator
used are created using two time measurements and the process id of the process handling the
request. In suhosin protected installations the seed is ignored by the PHP system, so we are
interested only in the obfuscator. This random value is then xored with the output of the MT

22

generator to hide its internal state. Even though the obfuscator does not have a very large
entropy when xored with the output of MT gives a value which have a large enough entropy
to be unpredictable for any practical purposes and indeed, if we just observe one output from
this generator this seems to be the case. However, notice that the user obtains a token which
is the result of 8 samples of that function, all using the same obfuscator. Thus, if we xor two
such samples the obfuscator will be cancelled and we will be left with the result of xoring two
outputs of the MT generator. This is enough to obtain the MT internal state, and subsequently
bruteforce the obfuscator value.

Assume that x0, . . . , x7 are the 8 values returned in the security token to the attacker. For
each of these values we have that xi = zk ⊕ obf , where zk is the k − th output of the MT
generator and obf is the obfuscator value which is common along the eight values returned. We
define ri = xi ⊕ xi+1 = zi ⊕ zi+1. Notice that ri is also a linear sequence like MT, so we can
apply the same techniques from section 5.3 in order to recover its internal state. Thus, when we
collect enough leaks we can recover the internal state of ri and subsequently the MT internal
state. All that is left now is to guess the obfuscator value which is used in the token generated
for the target user. Notice that if the request that the attacker makes to reset the target user’s
password leaks back to the attacker even one output of my rand() then the attacker, having
access to the output of mt rand() using the previous technique, can immediately recover the
used obfuscator. This already presents a significant weakness of the generator. Nevertheless, to
the best of our knowledge no such leak occurs in the generation of tokens. However, in systems
where /dev/urandom is unavailable the attacker only needs to guess the process identifier along
with two time measurements. The first one can be recovered through the session identifier using
the techniques of section 4.1 while the time measurements can be approximated using the ATS
algorithm.

Simple Machine Forums (SMF). Simple Machines Forums is another popular bulletin
board application. In 2008 a bug was identified in the password reset function implementation
as the application was leaking a rand() output through the token. In windows systems the state
of rand() is 15 bits so it was fairly easy to use that output to predict the next token. However,
that bug was exploitable even in Unix enviroments using our techniques. A patch was released
afterwards that added an internal state variable and increased the overall entropy of the token.
The SMF application is interesting because it utilizes many sources of entropy to generate
the token including the PRNG of the MySQL database. All sources of entropy within the
PHP system are predictable using our framework, however the database PRNG implementation
details are not included within the MySQL documentation therefore, it is uncertain yet whether
the application can be practically exploited. Nevertheless, we find interesting the approach in
which an attacker can determine all other entropy sources. The code generating the security
token is the following:

function generateValidationCode()

{

[...]

$t = sha1(microtime() . mt_rand() .

$dbRand . $modSettings[’rand_seed’]);

return substr(preg_replace(’/\W/’,

’’, $t, 0, 10);

}

The $dbRand variable is set by using the RAND() built-in function of MySQL while the
rand seed variable is the internal state variable. The value of rand seed changes at random
interval with the following code located in the main application file index.php

23

if (empty($modSettings[’rand_seed’])

|| mt_rand(1, 250) == 69)

smf_seed_generator();

where the smf seed generator() function is defined as follows:

function smf_seed_generator()

{

global $modSettings;

[...]

$seed = ($modSettings[’rand_seed’] +

((double) microtime() * 1000003)) & 0x7fffffff;

mt_srand($seed);

// Change the seed.

updateSettings(array(’rand_seed’ => mt_rand()));

}

The application leaks outputs of mt rand() in various places, either directly or in the form of
an MD5 hash, thus a seed recovery attack is possible by spawning a new process and bruteforcing
its seed. This allows to recover the mt rand() part of the token. To recover the rand seed one
proceeds as follows: Since the interval in which the rand seed is updated is determined from
an output of mt rand() the attacker can predict in which request the generator will update the
seed and subsequently the state of the MT generator with the same value. Thus, the attacker
can submit requests until the value that will update the seed will be generated. Afterwards,
the attacker causes another mt rand() leak and bruteforces the seed once again. This new
seed that will be recovered is the value of the rand seed variable. Since microtime() is easily
bruteforcable using the time algorithms described all that is left to recover the security token is
the dbRand value. The MySQL documentation does not mention any implementation details
on the RAND() function, it mentions however that it is not cryptographically secure. Thus, we
believe that is will be easy for an attacker with access to the same database, for example in
a shared hosting enviroment, to recover the state of the database generator. For completely
remote attacks, more investigation is needed to determine whether we can practically predict
its output in the context of the SMF application.

Joomla. Joomla is one of the most popular CMS applications, and it also have a long history
of weaknesses in its generation of password reset tokens[6, 11]. Until recently, the code for the
random token generation was the following:

function genRandomPassword($length=8) {

$salt = abc...xyzABC...XYZ0123456789 ;

$len = strlen ($salt);

$makepass = ‘‘’’;

- $stat = @stat (FILE) ;

- if (empty($stat) || !isarray($stat))

- $stat=array(phpuname());

- mt_srand(crc32(microtime().implode(|,$stat)));

for($i=0;$i<$length;$i++){

$makepass .= $salt[mt_rand(0,$len1)];

}

24

return $makepass;

}

In addition the output of this function is hashed using MD5 along a secret, 16 bytes, key
(config.secret) which is created at installation using the function above. The config.secret
value was also used to create a “remember me” cookie in the following way:

cookie = md5(config.secret+’JLOGIN REMEMBER’)

Since the second part of the string is constant and the config.secret is generated through the
genRandomPassword function which has only 232 possible values for each length, one could
bruteforce all possible values and recover config.secret. All that was left was the prediction
of the output of the genRandomPassword() function in order to predict the security token used
to reset a password. One then observes that although the contents of the $stat variable in the
genRandomPassword() function are sufficiently random, the fact that crc is used to convert this
value to a 4 byte seed allows one to predict the seed generated and thus the token. This attack
was reported in 2010 in [11] and a year after, Joomla released a patch for this vulnerability
which removed the custom seeding (dashed lines) from the token generation function. The
idea was that because the generator is rolling constantly without reseeding one will be unable
to recover the config.secret and thus the generator will be secure due to its secret state.
Unfortunately, this may not be the case. If at the installation time the process handling the
installation script is fresh, a fact quite probable if we consider dedicated servers that do not
run other PHP applications, then the search space of the config.secret will be again 232 and
thus an attacker can use the same technique as before to recover it. After the config.secret is
recovered, exploitation of the password reset implementation is straightforward using our seed
recovery attack from section 4.3. A similar attack also holds when mod cgi is used for script
execution as each request will be handled by a fresh process again reducing the search space for
config.secret in 232 values.

However, the low entropy of the config.secret key is not the only problem of this im-
plementation. Even if the key had enough entropy to be totally unpredictable, the generator
would still be vulnerable. Notice that in case the genRandomPassword() is called with a newly
initialized MT generator then there at most 232 possible tokens, independently of the entropy of
config.secret. This gives an interesting attack vector: We generate two tokens from a fresh
process sequentially for a user account that we control. Then we start to connect to a fresh
process and request a token for our account. If the token matches the token generated before
then we can submit a second request for the target user’s account which, since the first token
matched the token we own, will match the second token that we requested before (recall that the
tokens are not bound to users). Observe that if we generate only one pair of tokens this attack
is expected to succeed after 232 requests, assuming that the seed is random. Nevertheless, we
can request more than one pair of tokens thus increasing our success probability. Specifically,
if we have n pairs of tokens then at the second phase the attack is expected to succeed after
232/n requests. Therefore, if we denote by r(n) the expected requests that the attack needs
to hit a “good” token given n initial token pairs, then we have that r(n) = 2n + 232/n. Our
goal is to minimize the function r(n); this function obtains a positive minimum at n = 231/2,
for which we have that r(231/2) ≈ 185000. A simple bruteforcing framework that we wrote was
able to achieve around 2500 requests per minute, a rate at which an attacker can compromise
the application in a little more than one hour. To be fair, we have to add the requests that are
required to spawn new processes but even if we go as far as to double the needed requests (and
this is grossly overestimating) we still have a higly practical attack.

Gazelle. Gazelle is a torrent tracker application, which includes a frontend for building torrent
sharing communities. It’s been under active development for the last couple of years and
its gaining increasing popularity. The interesting characteristic of the application’s password

25

reset implementation is that it uses two generators of the PHP system (namely rand() and
mt rand(). The code that generates a token is shown below:

function make_secret($Length = 32) {

$Secret = ’’;

$Chars=’abcdefghijklmnopqrstuvwxyz0123456789’;

for($i=0; $i<$Length; $i++) {

Rand = mt_rand(0, strlen($Chars)-1);

$Secret .= substr($Chars, $Rand, 1);

}

return str_shuffle($Secret);

}

The code generates a random string using mt rand() and then shuffles the string using the
str shuffle() function which internally uses the rand() function. If we try to apply directly
the seed recovery attack, i.e. try to ask a question of the form “which seed produces this token”
then we will run into problems because we have to take into account two seeds, and a total
search space of 64 bits which is infeasible. The normal action would be to follow the same
path as we did in the Gallery application where we had a similar problem and utilize the seed
reconstruction attack which does not require an output of the PRNGs. However, the Gazelle
application uses custom sessions (which are generated using the same function), and thus we
cannot apply that attack either. The solution lies into slightly mofiying the seed recovery attack.
Instead of asking the question “which seed produces this mt rand() sequence”, which is shuffled
and thus affected by the second PRNG, we instead ask which seed produces the unsorted set
which contains the characters of our string. This set is not affected by the shuffling and thus we
can effectively bruteforce the mt rand() seed independently. After recovering the mt rand()

seed we know the initial sequence that was produced and we can subsequently recover the seed
of rand() using the same attack.

6.2 Attacks Implementation

In addition to auditing the applications, we implemented a number of our attacks targeting
selected applications. In particular, we implemented a seed recovery attack against Mediawiki,
a state reconstruction attack against the Phorum application and the request twins technique
against Zen-cart. In the following sections we will briefly describe each vulnerability and the
results of our attacks implementation.

Mediawiki. Mediawiki is a very popular wiki application used, among others, by Wikipedia.
Mediawiki uses mt rand() in order to generate a new password when the user requests a pass-
word reset. In order to predict the generated password we use the seed recovery attack of
section 4.3. The function f that we sample is the one used to generate a CSRF token which is
the following:

function generateToken($salt = ’’) {

$token = dechex(mt_rand()).dechex(mt_rand());

return md5($token . $salt);

}

Our function f given a seed s first seeds the mt rand() generator and then uses that gener-
ator to produce a token as the function above. To fully evaluate the practicality of the attack
we implemented the attack online, without any time-space tradeoff. Our implementation was
able to cover around 1300000 seed evaluations of f per second in a dual-core laptop with two
2.3 GHz processors. This allowed us to cover the full 232 range in about 70 minutes. Of course,
using a time-space tradeoff the search time could be further reduced to a few minutes.

26

Zen cart. Zen-Cart is a popular eCommerce application. At the time of this writing, a sample
database which shops enter volunterily numbers about 2500 active e-shops 7. In order to reset a
user’s password zen-cart first seeds the mt rand() generator with the microtime() function and
then uses the mt rand() function to produce a new password for the user. Thus, there at most
106 possible passwords which could be produced. Our exploit used the request twins technique
to reset both our password and the target user’s password. Afterwards, we bruteforced the
generated password for our account to recover the microtime() value that produced it. This
takes at most a few seconds on any modern laptop. Then, our exploit bruteforces the passwords
generated by microtime() values close to the one that generated our own new password. We
ran our exploit in a network with RTT around 9 ms, and Zen-Cart was installed in a 4 × 2.3
GHz server. The average difference of the two passwords was about 3600 microseconds, and
the exploit needed at most two times that requests since we don’t know which password was
produced first. With the rate of 2500 requests per minute that our implementation achieves,
the attack is completed in a few minutes.

Phorum. Phorum is a classic bulletin board application. It was used, among others, by the
eStream competition as an online discussion platform. In order for a user to reset his password
the following function is used:

function phorum_gen_password($charpart=4, $numpart=3)

{

$vowels = ... //[char array];

$cons = ... //[char array];

$num_vowels = count($vowels);

$num_cons = count($cons);

$password="";

for($i = 0; $i < $charpart; $i++){

$password .= $cons[mt_rand(0, $num_cons - 1)]

. $vowels[mt_rand(0, $num_vowels - 1)];

}

$password = substr($password, 0, $charpart);

if($numpart){

$max=(int)str_pad("", $numpart, "9");

$min=(int)str_pad("1", $numpart, "0");

$num=(string)mt_rand($min, $max);

}

return strtolower($password.$num);

}

What makes this function interesting in the context of state recovery is that at if called with
no arguments (as it is in the application), at least four mt rand() leaks are discarded in each
call. We implemented the attack having the application installed in a Windows server with the
Apache web server and we used our generic technique for Windows in order to reconnect to the
same process. On average, the attack required around 1100 requests and 11 reconnections of
our client. The running time was about 30 minutes, and the main source of overhead was the
system solving. This fact is mainly explained from the small number of buckets and the lost
leaks of each iteration. Neverthless, the attack remained highly practical, as we were able to
compormise any user account (including the administrator) within half an hour.

7http://www.zen-cart.com/index.php?main_page=showcase

27

7 Defending Against Randomness Attacks

We believe that a major shortcoming of the PHP core is that it does not provide a native
cryptographically secure PRNG and token generator. In fact, a pseudorandom function (PRF)
would be the most suitable cryptographic primitive for generating random tokens based on
program defined labels; PRF’s can be constructed by PRNG’s [7]. We feel that this is a
shortcoming since developers tend to prefer functions from the core as they are compatible with
every different enviroment PHP is running in. A possible solution would be to introduce a secure
PRNG in the PHP core (as a new function). We proposed this solution to the PHP development
team which informed us that the development overhead would be too big for supporting such a
function and the solution of using openssl random pseudo bytes() (which requires OpenSSL)
is their recommendation.

On the other hand, administrators can take a number of precautions to defend against
randomness attacks using current PHP versions. The Suhosin extension provides a secure seed
in the mt rand() and rand() functions. The seed exploits the fact that the Mersenne Twister
has a large state and fills that state using a hash function. Because rand() may have a small
state and is dependent from the operating system, the Suhosin extension replaces rand() with
a Mersenne twister generator with a different state from mt rand(). The hashed values of the
seed used are a concatenation of predictable values such as process identifiers and timestamps,
along with, potentially, unpredictable ones such as memory addresses of variables and input
from /dev/urandom. Because the addresses in any modern operating system are randomized
through ASLR, as a security precaution, using them as a seed should provide enough additional
entropy to make the two seed attacks (sections 4.2, 4.3) infeasible (assuming ASLR addresses
are unpredictable). In addition, the suhosin extension ignores the calls to the seeding functions
mt srand(), srand() in order to defend against weak seeding from the application. Although
this may introduce a state recovery vulnerability, in the majority of our case studies, custom
seeding was pretty weak and this measure (of securely seeding once and ignoring application
based reseeding) increases security. We strongly believe that securely seeding the generators,
when possible, is a very useful exploit mitigation for the attacks we presented. Although state
recovery attacks would still be possible, these attacks are more complex than the seed attacks
which require a handful of requests and commodity hardware to compromise the applications.
Furthermore, creating a secure seed from such sources has a negligible performance overhead.
Therefore, such measures should be employed by the PHP system as safeguards for applications
that misuse the PHP core PRNGs.

Our session preimage attack (section 4.1) can be mitigated by utilizing an option (dis-
abled by default) of PHP to add extra entropy, from a file, in the session identifier. By
specifying /dev/urandom as the entropy file, a user can increase the entropy of a session ar-
bitrarily thus making it infeasible for an attacker to obtain a preimage. In Windows, because
/dev/urandom is not available this option gathers entropy using the same algorithm as in the
openssl random pseudo bytes() function. The PHP developement team informed us that the
above option will be enabled by default in the upcoming version, PHP 5.4.

The above workarounds, if employed, will kill our seed attacks and the generic process
distinguisher we devised. However, state recovery attacks would still be possible either through
some application specific leak, or using the generic technique described for Windows operating
systems (section 5.2). In addition, we find the possibility of the existence of other process
distinguishers very probable; after all, the process identifier is not considered a cryptographic
secret and could be leaked either through the application or the web server or even the operating
system itself. Therefore, we feel that even using these workarounds, one should consider state
recovery attacks practical.

With the present state of the PHP system, developers should avoid using directly the PRNGs
of the PHP core for security purposes. Any application that requires a security token should

28

employ a custom generator, that will either use the functions from the PHP extensions such as
the openssl random pseudo bytes(), if available, or it will use other entropy sources. We give
an example of one such function in appendix D.

8 Related Work

The first randomness attack in PHP that we are aware of appeared in a blog post by Stefan Esser
[3, 4], where he described basic system properties such as keep-alive connection handling by web
server processes, and described how misusing mt srand() could result in security vulnerabilities
that he demonstrated in some popular applications. Shortly after, the same author released
an update of the Suhosin extension which included the randomness features for strong seeding
mentioned above. Our preimage attack on PHP sessions was insipired by an attack introduced
by Samy Kamkar [10], in which he described some cases where an adversary would be able
to guess a PHP session. However these attacks assumed a side-channel of server information.
Finally Gregor Kopf [11] described, along other attacks, the vulnerability in the password reset
implementation of Joomla. This work describes some type of seed recovery attacks but only for
the case that a fresh seeding occurs within the PHP script executed.

9 Conclusions

We find the fact that the most popular programming language in a domain (cf. [19]) that has a
clear need for cryptographically strong randomness does not have such a generator within its core
system to be a security hazard. Still, even if such a generator existed in the language, the misuse
of other functions would not disappear immediately as API misusage is a very common security
problem in modern systems. Therefore, we believe that research in the practical exploitation of
such insecure functions should be continued and extended to other environments even if they do
offer better security features in their API than PHP. In this paper we explored the case of PHP
installed in the Apache web server along with mod php. We also showed the applicability of
some of our attacks in cgi mode where each request is handled by a new process. However, the
case of fast cgi needs further investigation as its behavior depends highly on its configuration.
In addition, it would be interesting to check other languages and web servers, such as PHP on
an IIS web server, or Python and Ruby on Rails web applications in Apache. A problem that
is also of theoretical interest is the development of faster algorithms for recovering truncated
linear variables and finding an explanation for the logarithmic barrier we encountered when
experimenting with the H̊astad-Shamir framework. To conclude, despite the fact that linear
generators are cryptographically insecure, the fact that developers misuse them for security
critical features makes the analysis of their practical security within a certain application context
an interesting research question which we believe needs further attention and awareness.

References

[1] Unknown Author. openssl random pseudo bytes() painfully slow. PHP Bug 51636, https:
//bugs.php.net/bug.php?id=51636, 2010.

[2] Scott Contini and Igor Shparlinski. On stern’s attack against secret truncated linear con-
gruential generators. In Colin Boyd and Juan Manuel González Nieto, editors, ACISP,
volume 3574 of Lecture Notes in Computer Science, pages 52–60. Springer, 2005.

[3] Stefan Esser. Lesser known security problems in php applications. In Zend Conference,
2008.

29

[4] Stefan Esser. mt srand and not so random numbers. http://www.suspekt.org/2008/08/
17/mt_srand-and-not-so-random-numbers/, 2008.

[5] Stefan Esser. Mybb password reset weak random numbers vulnerability. SektionEins
GmbH, Security Advisory 2010/04/13, http://sektioneins.de/en/advisories/

advisory-022010-mybb-password-reset-weak-random-numbers-vulnerability/,
2010.

[6] Stefan Esser. Joomla Weak Random Password Reset Token Vulnerability. SektionEins
GmbH, Security Advisory 2008/09/11, http://www.sektioneins.de/advisories/

SE-2008-04.txt, 2008.

[7] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986.

[8] Johan H̊astad and Adi Shamir. The cryptographic security of truncated linearly related
variables. In Robert Sedgewick, editor, STOC, pages 356–362. ACM, 1985.

[9] Robert ”Hackajar” Imhoff-Dousharm. Economics of password cracking in the gpu era. In
DEFCON 19, 2011.

[10] Samy Kamkar. phpwn: Attacking sessions and pseudo-random numbers in php. In Blackhat
USA, Las Vegas, NV 2010, 2010.

[11] Gregor Kopf. Non-obvious bugs by example. In 27th Chaos Communication Congress
CCC, 2010.

[12] Henrik Koy and Claus-Peter Schnorr. Segment lll-reduction of lattice bases. In Joseph H.
Silverman, editor, CaLC, volume 2146 of Lecture Notes in Computer Science, pages 67–80.
Springer, 2001.

[13] A.K. Lenstra, H.W.jun. Lenstra, and Lászlo Lovász. Factoring polynomials with rational
coefficients. Math. Ann., 261:515–534, 1982.

[14] Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W. Bos, Thorsten Kleinjung,
and Christophe Wachter. Ron was wrong, whit is right. IACR Cryptology ePrint Archive,
2012:064, 2012.

[15] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul.,
8(1):3–30, 1998.

[16] HD Moore and Valsmith. Tactical exploitation. In DEFCON 15, 2007.

[17] Matthew J. B. Robshaw and Olivier Billet, editors. New Stream Cipher Designs - The
eSTREAM Finalists, volume 4986 of Lecture Notes in Computer Science. Springer, 2008.

[18] Jacques Stern. Secret linear congruential generators are not cryptographically secure. In
FOCS, pages 421–426. IEEE Computer Society, 1987.

[19] W3 Techs. Usage of server-side programming languages for websites. W3 Web Technol-
ogy Surveys, http://w3techs.com/technologies/overview/programming_language/

all, 2012.

30

A Explicit Form of Tempering Matrix Equations

The tempering matrix T used by Mersenne Twister can be viewed as a set of linear equations.
We use this representation to generate the linear equations in our state recovery algorithm.
Below, we list the explicit form of these equations.
z0 = x0 ⊕ x4 ⊕ x7 ⊕ x15
z1 = x1 ⊕ x5 ⊕ x16
z2 = x2 ⊕ x6 ⊕ x13 ⊕ x17 ⊕ x24
z3 = x3 ⊕ x10
z4 = x0 ⊕ x4 ⊕ x8 ⊕ x11 ⊕ x15 ⊕ x19 ⊕ x26
z5 = x1 ⊕ x5 ⊕ x9 ⊕ x12 ⊕ x20
z6 = x6 ⊕ x10 ⊕ x17 ⊕ x21 ⊕ x28
z7 = x3 ⊕ x7 ⊕ x11 ⊕ x14 ⊕ x18 ⊕ x22 ⊕ x29
z8 = x8 ⊕ x12 ⊕ x23
z9 = x9 ⊕ x13 ⊕ x20 ⊕ x24 ⊕ x31
z10 = x6 ⊕ x10 ⊕ x17
z11 = x0 ⊕ x11
z12 = x1 ⊕ x8 ⊕ x12 ⊕ x19
z13 = x2 ⊕ x9 ⊕ x13 ⊕ x17 ⊕ x20 ⊕ x28
z14 = x3 ⊕ x14 ⊕ x18 ⊕ x29
z15 = x4 ⊕ x15
z16 = x5 ⊕ x16
z17 = x6 ⊕ x13 ⊕ x17 ⊕ x24
z18 = x0 ⊕ x4 ⊕ x15 ⊕ x18
z19 = x1 ⊕ x5 ⊕ x8 ⊕ x15 ⊕ x16 ⊕ x19 ⊕ x26
z20 = x2 ⊕ x6 ⊕ x9 ⊕ x13 ⊕ x17 ⊕ x20 ⊕ x24
z21 = x3 ⊕ x17 ⊕ x21 ⊕ x28
z22 = x0 ⊕ x4 ⊕ x8 ⊕ x15 ⊕ x18 ⊕ x19 ⊕ x22 ⊕ x26 ⊕ x29
z23 = x1 ⊕ x5 ⊕ x9 ⊕ x20 ⊕ x23
z24 = x6 ⊕ x10 ⊕ x13 ⊕ x17 ⊕ x20 ⊕ x21 ⊕ x24 ⊕ x28 ⊕ x31
z25 = x3 ⊕ x7 ⊕ x11 ⊕ x18 ⊕ x22 ⊕ x25 ⊕ x29
z26 = x8 ⊕ x12 ⊕ x15 ⊕ x23 ⊕ x26
z27 = x9 ⊕ x13 ⊕ x16 ⊕ x20 ⊕ x24 ⊕ x27 ⊕ x31
z28 = x6 ⊕ x10 ⊕ x28
z29 = x0 ⊕ x11 ⊕ x18 ⊕ x29
z30 = x1 ⊕ x8 ⊕ x12 ⊕ x30
z31 = x2 ⊕ x9 ⊕ x13 ⊕ x17 ⊕ x28 ⊕ x31

31

B Online Gaussian Elimination

Algorithm 1 Online Gaussian Elimination

Equations← 0
∀t, row[t].set← false
while Equations < V ariables do
eq ← getNextEquation()
while eq.size > 0 do
t← eq.getF irstNonZeroTerm()
if row[t].set then
eq ← eq ⊕ row[t].eq

else
row[t].set← true
row[t].eq = eq
Equations← Equations+ 1

end if
end while

end while

Algorithm 1 gives the pseudocode of our online Gaussian elimination algorithm. Some
explanation on the notation of the algorithm follows:

• The getNextEquation() function fetches the next equation to be added to the system.

• The getF irstNonZeroTerm() function returns the position of the first non zero term in
the equation in ascending order.

• The row variable is an array which holds the equations as we add them to the system.

• The eq.size variable describes the number of non zero terms in the equation.

The algorithm works exactly as the ordinary Gaussian elimination with one difference: In-
stead of switching two columns to bring the non-zero term in the diagonal as we would do with
the normal Gaussian elimination we place the current equation in a row where the non zero
term it has falls in the diagonal. If that row is occupied by another equation then we proceed
normally by XORing the two equations and we check the next non zero term. If the length
of the equation reaches zero before we add it in the system then we conclude that it is linear
dependent to the other equations already present in the system thus we skip it. This enables
to complete the elimination while avoiding column operations altogether. This is particularly
suitable for our setting where the linear system is built gradually as we obtain leaks from the
generator function under attack.

32

Figure 14: A visual representation of the system of linear equations produced by the MT
algorithm for the cases of 32, 16, 8, 4, 2, 1 bit leaks.

C A visualization of the MT system

To make the difficulties in solving the linear system of MT clearer, we created in Figure 14 a
visualization of the system of linear equations created by unrolling the equations of Mersenne
twister. The black pixels in the images represent variables with coefficient one, while the white
pixels represent a coefficient zero. Notice that the more bits we truncate from each word the
denser system one is called to solve. This justifies the increase in the time required to solve the
system, since our implementation uses a sparse representation of each equation and thus tends
to handle more poorly dense systems. Each picture is of size 19937× 19937 pixels.

33

D A secure PHP token generation function

function secure_random_string($len = 20)

{

// if a secure randomness generator exists and we don’t have a buggy PHP version use it.

if (function_exists(’openssl_random_pseudo_bytes’) &&

(version_compare(PHP_VERSION, ’5.3.4’) >= 0 || substr(PHP_OS, 0, 3) !== ’WIN’))

{

$str = bin2hex(openssl_random_pseudo_bytes(($len/2)+1, $strong));

if ($strong == true)

return substr($str, 0, $len);

}

//collect any entropy available in the system along with a number

//of time measurements or operating system randomness.

$str = ’’;

$bits_per_round = 2;

$msec_per_round = 400;

$hash_len = 20; // SHA-1 Hash length

$total = ceil($len/2); // total bytes of entropy to collect

do

{

$bytes = ($total > $hash_len)? $hash_len : $total;

$total -= $bytes;

//collect any entropy available from the PHP system and filesystem

$entropy = rand() . uniqid(mt_rand(), true);

$entropy .= implode(’’, @fstat(fopen(__FILE__, ’r’)));

$entropy .= memory_get_usage();

if(@is_readable(’/dev/urandom’) && ($handle = @fopen(’/dev/urandom’, ’rb’)))

{

$entropy .= @fread($handle, $bytes);

@fclose($handle);

}

else

{

// Measure the time that the operations will take on average

for ($i = 0; $i < 3; $i ++)

{

$c1 = microtime() * 1000000;

$var = sha1(mt_rand());

for ($j = 0; $j < 50; $j++)

{

$var = sha1($var);

}

$c2 = microtime() * 1000000;

$entropy .= $c1 . $c2;

}

if ($c1 > $c2) $c2 += 1000000;

// Based on the above measurement determine the total rounds

// in order to bound the total running time.

$rounds = (int)(($msec_per_round / ($c2-$c1))*50);

// Take the additional measurements. On average we can expect

// at least $bits_per_round bits of entropy from each measurement.

$iter = $bytes*(int)(ceil(8 / $bits_per_round));

for ($i = 0; $i < $iter; $i ++)

34

{

$c1 = microtime();

$var = sha1(mt_rand());

for ($j = 0; $j < $rounds; $j++)

{

$var = sha1($var);

}

$c2 = microtime();

$entropy .= $c1 . $c2;

}

}

// We assume sha1 is a deterministic extractor for the $entropy variable.

$str .= sha1($entropy);

} while ($len > strlen($str));

return substr($str, 0, $len);

}

The implementation above provides a function that can be used as a drop-in replacement
for any token generator. Since it does not keep any internal state it is easy to replace any func-
tion with it. It is secure under the assumption that SHA-1 is a deterministic extractor for the
$entropy variable as defined in the source code, and that the $entropy variable itself has suffi-
cient entropy. In summary, the function works as follows: If the openssl random pseudo bytes()

is available and the PHP version is not affected by the bug we mentioned before, then we use
this function to get a random string. If the function is not available then we use all the PRNGs
available in the system. Although these are predictable as this paper demonstrated, these calls
are fast and may increase the entropy collected by a few bits. Afterwards, we add the stat

structure of the file in which the source code is located as an entropy source. The stat structure
has some bits of entropy since it contains some values that are difficult to predict including the
inode of the file and the file creation and last modification timestamps. Then, the memory
usage of the current script is added. This value varies from system to system because of dif-
ferences in the system configuration, memory allocators and others. Although, these sources
may provide some bits of entropy we cannot rely solely on them. Ideally, even if the attacker
is running the function he should not be able to predict the result even given control of the
environment. Therefore, we then try to utilize the operating system generator of Unix systems;
if the /dev/urandom generator is available then we collect additional entropy from there. Oth-
erwise, since we are left we no entropy source, we make a number of computationally expensive
operations and measure the time they take to complete. Specifically, we calculate the SHA-1 of
a random number for a number of times and measure the time this operation takes to complete.
In order to keep a balance between running time and security, we set the total running time
to be around 400 microseconds for each round. We conducted experiments in systems with
different hardware and configurations which suggest that in each round one could extract two
bits of entropy. Therefore, the running time for n bits of entropy would be n/2× 400. For the
default entropy length (80 bits), the function is executed in about 15 miliseconds, which is quite
acceptable for the desired level of security. Finally, we use SHA-1 to extract the entropy from
the $entropy variable and return a substring of that hash depending on the user requested
length.

To produce a secure token it is prudent that applications use also user-specific data combined
with the token to avoid attacks such as the one we demonstrated for Joomla (cf. section 6).
Thus, the final token could look like this:

$token = sha1(secure_random_string() . $old_user_password_hash);

where the $old user password hash variable denotes the password hash for the user that
requested the password reset.

35

	wpaper-bh
	paper

