

Bypassing CAPTCHAs by Impersonating
CAPTCHA Providers

Author:

Gursev Singh Kalra
Principal Consultant

Foundstone Professional Services

Bypassing CAPTCHAs by Impersonating CAPTCHA Providers

Table of Contents

Bypassing CAPTCHAs by Impersonating CAPTCHA Providers .. 1

Table of Contents.. 2

Introduction.. 3

Inside a CAPTCHA Provider Integration .. 3

Attack Scenarios ... 4

Private Key Compromise ... 6
The CAPTCHA Clipping Attack ... 6

Introducing clipcaptcha ... 7

clipcaptcha Operational Modes .. 8
Detecting a CAPTCHA Provider .. 9
Responding as a CAPTCHA Provider .. 9
Obtaining Private and Public Keys.. 10
Signature Based Request Detection and Response ... 10

Using clipcaptcha .. 13

Sample Impersonation .. 13
Mitigation ... 14

Conclusion .. 15

About The Author ... 15

About Foundstone Professional Services ... 15

Bypassing CAPTCHAs by Impersonating CAPTCHA Providers

Introduction

reCAPTCHA1 and other CAPTCHA service providers validate millions2 of CAPTCHAs each day and protect

thousands of websites against the bots. A secure CAPTCHA generation and validation ecosystem forms the

basis of the mutual trust model between the CAPTCHA provider and the consumer. A variety of damage can

occur if any component of this ecosystem is compromised.

This whitepaper will introduce a new tool and explain vulnerabilities identified as a result of researching

several CAPTCHA providers’ validation libraries. The identified vulnerabilities can allow attackers to

circumvent the CAPTCHA protection.

Inside a CAPTCHA Provider Integration

CAPTCHA providers generally offer both CAPTCHA generation and validation services. To consume these

services, the subscribing websites either use the existing libraries and plugins; or write their own. A typical

user interaction with a web application that relies on a CAPTCHA provider is summarized below:

1. A user requests a page that requires CAPTCHA validation.

2. The returned page contains an embedded (or <script>) tag to retrieve the CAPTCHA image

from the CAPTCHA provider.

3. Upon parsing the embedded tags, the browser retrieves a CAPTCHA from the CAPTCHA provider and

displays it to the user.

4. The user fills in the form fields, enters the CAPTCHA solution and submits the page to the web

application.

5. The web application then submits the CAPTCHA solution to the CAPTCHA provider for verification.

6. The CAPTCHA provider responds to the web application with success or failure message.

7. Based on CAPTCHA provider’s response, the web application allows or denies the request.

1 http://www.google.com/recaptcha
2 http://www.google.com/recaptcha/faq

Bypassing CAPTCHAs by Impersonating CAPTCHA Providers

Figure 1: A typical validation flow with CAPTCHA providers

Steps 5 and 6 play a crucial role in the CAPTCHA validation scheme and must be securely implemented to

prevent attacks against CAPTCHA validation process.

Attack Scenarios

Analysis of the CAPTCHA integration libraries provided by several CAPTCHA providers (including reCAPTCHA)

revealed that almost all of the CAPTCHA verification API’s relied on plain text HTTP protocol to perform

CAPTCHA validation. Because of this, the CAPTCHA provider’s identity was not validated, message

authentication checks were not performed and the entire CAPTCHA validation was performed on an

unencrypted channel. The two images below show reCAPTCHA’s .Net and Rails plug-ins responsible for

verifying CAPTCHA solutions.

Bypassing CAPTCHAs by Impersonating CAPTCHA Providers

Figure 2: Image shows reCAPTCHA verification URL from the.NET3 plugin (decompiled)

Figure 3: Image highlights reCAPTCHA rails plugin4 operating over plain text HTTP protocol

3 http://code.google.com/p/recaptcha/downloads/list?q=label:aspnetlib-Latest
4 https://github.com/ambethia/recaptcha/

Bypassing CAPTCHAs by Impersonating CAPTCHA Providers

In the current scenario, two types of attacks can be launched against the vulnerable CAPTCHA

implementations.

Private Key Compromise

Most of CAPTCHA providers issue private and public keys to identify a particular consumer and to enforce an

upper limit on the number of CAPTCHAs used by them. Private keys are often sent over to the CAPTCHA

provider during the CAPTCHA validation process. If the public and private keys are sent using plain text

HTTP, an attacker could:

1. Use the CAPTCHA service for free by using the keys to imitate the target web site

2. Exhaust the target web site’s CAPTCHA quota for the service, which depending on the CAPTCHA

provider may cause a wide variety of unexpected issues

The CAPTCHA Clipping Attack

Since the website’s application server acts as a client to CAPTCHA provider during steps 5 and 6 (in Figure 1),

and the application server often neglects to validate the CAPTCHA provider’s identity and the session

integrity checks, an attacker may be able to impersonate the CAPTCHA provider and undermine the anti-

automation protection.

CAPTCHA validation responses are mostly Boolean (true or false, success or failure, pass or fail, 0 or 1). The

response format and its content are also publicly available as part of CAPTCHA provider’s API documentation.

This allows an attacker to easily construct the finite set of possible responses, impersonate the CAPTCHA

provider, and perform malicious CAPTCHA validation for the application servers.

To exploit this vulnerability an attacker performs the following:

1. The attacker acts as a legitimate application user and submits a large number of requests to the web

application.

2. At the same time, he/she intercepts CAPTCHA validation requests, masquerades as the CAPTCHA

provider and approves all submitted requests.

Masquerading as the CAPTCHA provider and not forwarding the CAPTCHA validation requests to the actual

CAPTCHA provider is the CAPTCHA Clipping Attack.

Bypassing CAPTCHAs by Impersonating CAPTCHA Providers

Figure 4: Image demonstrates CAPTCHA Clipping Attack

Introducing clipcaptcha

clipcaptcha is a proof of concept exploitation tool that specifically targets the vulnerabilities discussed above

and allows complete bypass of CAPTCHA provider protection. To download see

http://www.mcafee.com/us/downloads/free-tools/index.aspx. clipcaptcha is built on sslstrip5 codebase and

has the following features:

1. It performs signature based CAPTCHA provider detection and clipping.

2. It can be easily extended to masquerade as any CAPTCHA provider by adding corresponding

signatures.

3. It has built in signatures of several CAPTCHA providers including reCAPTCHA, OpenCAPTCHA,

Captchator etc…

5 http://www.thoughtcrime.org/software/sslstrip/

Bypassing CAPTCHAs by Impersonating CAPTCHA Providers

4. It logs GET and POST requests that match any supported CAPTCHA provider to capture private and

public keys. Unmatched requests are forwarded as is.

5. clipcaptcha supports five operational modes. These are “monitor”, “stealth”, “avalanche”, “denial of

service” and “random”.

Figure 5: Image shows clipcaptcha help

Figure 6: Image shows a sample clipcaptcha run

clipcaptcha Operational Modes

clipcaptcha can be run in any one of its operational modes and they are explained below:

1. Monitor Mode: Signature based CAPTCHA provider detection is performed and all CAPTCHA

validation requests are logged to a local file. The CAPTCHA validation requests and corresponding

responses are allowed to complete without any modifications.

2. Avalanche Mode: “Success” response is returned on the matching CAPTCHA provider for all

validation requests. It is recommended to not run clipcaptcha in this mode as a surge in successful

account creation or registrations may be detected.

3. Stealth Mode: Stealth is the recommended mode for running clipcaptcha. This mode relies on the

fact that all CAPTCHA validation API’s need to send user supplied “CAPTCHA solution” to the

CAPTCHA providers for validation. clipcaptcha banks on this behavior to operate stealthily and return

“Success” status only for the requests that contain a secret string. In its current implementation,

clipcaptcha parses the entire CAPTCHA validation request (initial line, headers and body) and returns

success if the secret string is found or allows the request to complete without any modifications.

Bypassing CAPTCHAs by Impersonating CAPTCHA Providers

4. DoS Mode: “Failure” response is returned for all CAPTCHA validation requests. This leads to a Denial

of Service condition on the target web application for all forms that require CAPTCHA validation.

5. Random Mode: Random “Success” and “Failure” responses are returned as per the matching

CAPTCHA provider for all validation requests and exits only as a teaser mode.

Selecting more than one operation mode is an error.

Detecting a CAPTCHA Provider

For each request received, clipcaptcha tries to identify if request is a CAPTCHA validation request. It achieves

this by making the following comparisons:

1. The host header value should match one of the CAPTCHA provider’s hostname.

2. The URL path should also match the CAPTCHA provider’s validation path.

The request is flagged as a CAPTCHA validation request if both the above conditions are met, else it is

forwarded without any modifications. The table below shows CAPTCHA provider request formats for

reCAPTCHA and OpenCAPTCHA extracted from their documentation.

Table 1: Example CAPTCHA Provider Request Formats

CAPTCHA Provider => reCAPTCHA OpenCAPTCHA

Validating Host www.google.com www.opencaptcha.com

CAPTCHA Validation Request

Validation Path /recaptcha/api/verify /validate.php

Query String None
ans=<CAPTCHA

Solution>&img=<CAPTCHA Identifier>

Request Headers None mandated None mandated

POST Contents

privatekey=<privateKey>&remoteip=<

remoteIP>&challenge=<CAPTCHA

Identifier>&response=<CAPTCHA

Solution>

None

Responding as a CAPTCHA Provider

Once a CAPTCHA validation request and the corresponding CAPTCHA provider are identified, clipcaptcha

responds to the request as per its operation mode. clipcaptcha constructs a response by choosing from a

finite set of possible responses for the CAPTCHA provider and sends it back to the web application initiating

the validation request. The table below shows CAPTCHA provider response formats for reCAPTCHA and

OpenCAPTCHA extracted.

Bypassing CAPTCHAs by Impersonating CAPTCHA Providers

Table 2: Example CAPTCHA Provider Response Formats

CAPTCHA Provider => reCAPTCHA OpenCAPTCHA

Validating Host www.google.com www.opencaptcha.com

CAPTCHA Validation Response

Success Status Line HTTP/1.0 200 OK HTTP/1.0 200 OK

Success Response Headers None mandated None mandated

Success Body true Pass

Failure Status Line HTTP/1.0 200 OK HTTP/1.0 200 OK

Failure Response Headers None mandated None mandated

Failure Body
false

<ErrorCode>
Fail

Obtaining Private and Public Keys

Every request for which a CAPTCHA provider match is found, clipcaptcha logs the request for all operational

mode. These logs contain the private and public keys for a website and can be used to impersonate the

target website’s CAPTCHA implementation.

Signature Based Request Detection and Response

All CAPTCHA providers are basically HTTP based custom web services. These services accept CAPTCHA

validation requests in a particular format and respond with finite set of responses that allow the clients to

make Boolean choices to allow or disallow the request. clipcaptcha takes advantage of this finite and

predictable request and response data set to implement signature based request detection and response

system. Figure 5 below shows the configuration file (template) for clipcaptcha.

Bypassing CAPTCHAs by Impersonating CAPTCHA Providers

Figure 7: Image shows clipcaptcha’s configuration template with success and failure response information

The configuration file format is explained below:

1. “clipcaptcha” is the root element of the configuration XML file with several “provider” child elements.

2. Minimum of one provider element must be present.

3. Each provider element must have one occurrence of the following elements:

a. name: The name element indicates the name to uniquely identify the CAPTCHA provider.

b. hostname: The HTTP host header for the CAPTCHA provider.

c. path: The CAPTCHA provider path to which the validation request will be sent. clipcatpcha

uses hostname and path to uniquely identify providers.

d. success: This contains success message for CAPTCHA verification.

e. failure: This contains failure message for CAPTCHA verification.

Bypassing CAPTCHAs by Impersonating CAPTCHA Providers

4. clipcaptcha uses success and failure elements to construct responses for CAPTCHA validation

requests. A response is created from the XML as follows:

HTTP/1.1 <rcode> <rcodestr>

<rheaders�header�name>: <rheaders�header�value>

<rheaders�header�name>: <rheader�header�value>

<rbody>

Figure 8: Image shows clipcapthca’s configuration file with two CAPTCHA provider signatures

Bypassing CAPTCHAs by Impersonating CAPTCHA Providers

Using clipcaptcha

We will use a condensed version of reCAPTCHA verification plugin (for Ruby on rails) on an interactive Ruby

shell for demonstration. As per reCAPTCHA verification procedure, the demo code shown below must always

return invalid-request-cookie error because the challenge parameter contains an invalid value. The

challenge parameter typically contains the unique CAPTCHA identifier issued when CAPTCHA retrieval request

is sent to the reCAPTCHA website:

Figure 9: Image shows example code that must always returns an error message

Figure 10: Image shows the error message returned for reCAPTCHA validation requests

Sample Impersonation

The steps below show how to run clipcaptcha as CAPCHA provider:

1. Enable forwarding mode on your machine (echo "1" > /proc/sys/net/ipv4/ip_forward)

2. Setup iptables to redirect HTTP traffic to clipcaptcha. (iptables -t nat -A PREROUTING -p

tcp --destination-port 80 -j REDIRECT --to-port <listeningPort>)

3. Run arpspoof to redirect the traffic to your machine. (arpspoof -i <interface> -t

<targetIP> <gatewayIP>)

Bypassing CAPTCHAs by Impersonating CAPTCHA Providers

4. Run clipcaptcha in one of its mode of operation. (clipcaptcha.py <mode> -l

<listeningPort>)

Once clipcaptcha instance starts running, all CAPTCHA validation requests will be administered by clipcaptcha.

Figure 11: Image shows results when sample script was run with various clipcaptcha modes

Mitigation

CAPTCHA providers should support SSL for CAPTCHA validation, update their plug-ins and libraries to support

SSL. Further, application developers should enforce the use of SSL and server certificate validation for all

CAPTCHA validation requests.

Sample code to verify SSL certificate in Ruby is provided in the table below. The rootcerts.pem file referenced

in the code was downloaded from curl6 project website.

require 'rubygems'

require 'net/https'

q = Net::HTTP.new('mail.google.com',443,'localhost',8888)

q.use_ssl = true

q.ca_file = "rootcerts.pem"

begin

 q.get("/")

rescue

 puts "Invalid Digital Certificate"

end

6 http://curl.haxx.se/ca/cacert.pem

Bypassing CAPTCHAs by Impersonating CAPTCHA Providers

Conclusion

CAPTCHA providers allow websites to integrate anti-automation mechanisms by offering CAPTCHA generation

and verification services along with the libraries to consume those services. Insecurely written libraries give a

false sense of security and can be exploited. Web application developers are advised to perform security

reviews of the third party libraries before deploying them in their applications.

About The Author

Gursev Singh Kalra serves as a Principal Consultant with Foundstone Professional Services, a division of

McAfee. Gursev has done extensive security research on CAPTCHA schemes and implementations. He has

written a Visual CAPTCHA Assessment tool TesserCap that was voted among the top ten web hacks of 2011.

He has identified CAPTCHA implementation vulnerabilities like CAPTCHA Re-Riding Attack, CAPTCHA Fixation

and CAPTCHA Rainbow tables among others. OData security research is also one of his interests and he has

authored OData assessment tool Oyedata. He has also developed open source SSL Cipher enumeration tool

SSLSmart and has spoken at conferences like ToorCon, OWASP, NullCon, Infosec Southwest and Clubhack.

About Foundstone Professional Services

Foundstone® Professional Services, a division of McAfee, Inc., offers expert services and education to help

organizations continuously and measurably protect their most important assets from the most critical threats.

Through a strategic approach to security, Foundstone identifies and implements the right balance of

technology, people, and process to manage digital risk and leverage security investments more effectively.

The company’s professional services team consists of recognized security experts and authors with broad

security experience with multinational corporations, the public sector, and the US military.

