Weapons of
Targeted Attack

Modern Document Exploit Techniques

Ming-chieh Pan <naninb@gmail.com
Sung-ting Tsai <ttsecurity@gmail.co

Black Hat

Abstract

The most common and effective way is using document exploit in the targeted attack. Due to
the political issue, we have had opportunities to observe APT (advanced persistent threat)
attacks in Taiwan since 2004. Therefore we have studied and researched malicious document
for a long period of time.

Recently, we found APT attacks (e.g. RSA) used the same technique as we disclosed last year,
e.g. embedding flash exploit in an excel document. In order to protect users against malicious
document and targeted attacks, we would like to discuss the past, present, and future of
document exploit from technical perspective, and predict possible techniques could be used in
a malicious document in the future by demonstrating "proof of concept" exploits.

The presentation will cover four major types of document attacks:

» Advanced fuzzing techniques.

Techniques to against exploit mitigation technologies (DEP/ASLR).
Techniques to bypass sandbox and policy control.

Techniques to defeat behavior based protection, such as host IPS.

Y V V

Contents

Y o Y 4 - [TP PSP P TR UP P STPPTPPPR 1
N 1) { (o To [0 4T] o H TP P RO P U PPPTROPPTRPPRTOPPO 3
0 B = 7= Yol 4= o U 3 o F PP UPRPPR 3
1.2. Targeted Attack and Document EXPlOit........cooviiieiiiiiieeiiiiiiee e e 3
1.3, Cat and MOUSE GAME......uuiiiiiiiiiiee ettt ettt ettt e st e st e e st e e sab e e sabe e s eabeesneeesanee 3
1.4, Contents Of the PAPer ...ttt e e st e e s e e e e errneeeeaas 3
2. Recent Document EXPlOit AttaCKS ...ccoceeeiiiiiiee e e e 4
2.1. Hybrid Document EXPlOituueeieeiieieieieee et 4
D2 B s [ole] 4 oY o] (=Y €SI o o 1 <Tox o o [PR 5
2.3. Advanced Memory Attack TECHNIQUEScciiiiieicieeeee e e 5
D VLY o Vo (o T gl 2 (=T o To T o Y= PR 5
2.5. Our Finding in REal AttaCKS ...vvviiiiii e 5
3. Future Document EXploit AttacksS......cccceiiiiiieiii e 6
3.1. Advanced FUzzing TECHNIQUEScccoceiiiiieeee e e e e e e e e e e e aneaees 6
3.2. Techniques to Against Exploit Mitigation Technologiescccccveeeiriiiiiiiieeeee e, 6
3.3. Techniques to Bypass Sandbox / Policy / Access coONtrol.........cccceeeevveeeeiieeecreeeereeenen, 10

3.4. Techniques to defeat behavior based protection and automatic analyzing sandbox... 13
B O] o Tl (11 T o P OO PPRT PRI 15

Y LT E=] o L= TP TRPRPRTRN 17

1. Introduction

1.1.Background

APT (Advanced Persistent Threat) has become very popular in 2011. Actually we have already
known this kind of attack since 2004. Due to the political issue, Government units and large
enterprises in Taiwan has been targeted for many years. They have kept receiving purpose-
made e-mails and malwares (exploits), never stopped. Thus we have chances to observe the
attack trend and we also spent a lot of time on document exploit research.

Nowadays, not only in Taiwan, this kind of silent threat are attacking whole world, e.g. Google
Aurora attack and recent RSA attack. Unlike normal cyber-criminals, they are hacking for the
information, not for profit. And unfortunately, most of security software couldn’t protect
effectively.

We are going to discuss document exploit from technical perspective, introduce attack
techniques that might be used in future. We wish application and security vendors could be
aware of the attack and have new approaches to protect people.

1.2.Targeted Attack and Document Exploit

Attacker sends an e-mail with specific content and document exploit (antivirus couldn’t detect)
to his targets. After open the document, attacker could take control of the victim’s system. It is
the most common way and not easy to be aware of. The malicious document usually includes
malicious web page (attacking browsers), office document, PDF, and Flash.

Document exploit is actually the weapon of targeted attack.

1.3.Cat and Mouse Game

Exploit attack and defense is like a cat and mouse game. Vendors keep patching application and
inventing new technologies to prevent attack, however attackers always can find ways to
defeat those protections. So if we could be ahead of attackers by guessing their next tricks, we
might have better protections for people.

1.4.Contents of the Paper
In this paper we will discuss document exploit from technical perspective. Recent document
exploit techniques will be introduced in chapter 2.

Chapter 3 will cover four major types of new document attacks, including our latest findings:

» Advanced fuzzing techniques: our flash AVM fuzzing technique will be introduced.

» Techniques to against exploit mitigation technologies: our new JIT spraying techniques
will be introduced.

» Techniques to bypass sandbox and policy control: a flash vulnerability will be introduced
as an example.

» Techniques to defeat behavior based protection: new approaches to write a document
exploit. This will make security vendors headache.

2. Recent Document Exploit Attacks

If you have installed all Microsoft office patches, and there is no 0-day vulnerability and exploit.
Will it be 100% safe to open a word or excel document? The answer is no. Modern document
application is very complicated. Most of them could embed document objects of other
applications. For example, the Excel could embed an Adobe flash object. In this case, even your
Excel is up to date, it is still not 100% safe when you open an Excel document which includes a
flash object and your flash application is vulnerable.

Most of people know browser could include a lot of document objects, such as PDF, flash, and
other multimedia files. So they are cautious when they open web page. However, when they
open a document in the e-mail, they would not be aware of the danger.

This kind of attack is very popular recently. A flash vulnerability could be repacked as a
malicious web page, a PDF exploit, or even an office document exploit.

2.2.Incomplete Protection

Application vendors delivered new technologies to make their application safer. Especially the
exploit mitigation techniques could do really good jobs to avoid execution of exploits, e.g. DEP
and ASLR.

However, it is very difficult to do protections completely. Because application is very
complicated as well as the environment of operating system, it is not possible to update every
component, every tool to adopt the protection technologies. And you don’t need to think that
you could ask all users to install updates or manually enable protections.

For example, even you have adopted DEP and ASLR, there are always some researchers could
find some modules are not protected by ASLR, and they could use the module to do ROP
(return-oriented programming) and make effective exploits.

2.3.Advanced Memory Attack Techniques

Researchers are also finding some new approaches to bypass DEP and ASLR. Flash JIT spraying
techniques has been introduced in BHDC2010. Flash JIT could bypass DEP, and the spraying
technique could defeat ASLR. This technique could exploit the newest Office 2010 and Internet
Explorer.

2.4.Vendor Responses

Vendors have been working hard to patch vulnerabilities and adopt new protections in
applications. Flash has started to encode/encrypt AVM code area since version 10.1, and the
memory area has become non-executable. Also it has better ASLR to arrange its memory
sections. These new techniques effectively mitigate JIT spraying exploit.

And Microsoft released Enhanced Mitigation Experience Toolkit 2.0 in Blue Hat v10. The EMET
tool could provide a lot of memory protections for applications. It could effectively defeat most
of exploits with ROP techniques.

2.5.0ur Finding in Real Attacks

Recently we found exploit is using the same trick as we disclosed in Syscan 10’. Do you know
why attackers don’t include a flash exploit in web page or PDF file, and they only use Excel to
spread malicious e-mails. The reason is Excel will turn off DEP when a flash object is embedded.
It is much easier for attackers to write exploits.

3. Future Document Exploit Attacks

3.1.Advanced Fuzzing Techniques

File format fuzzing is the most common way to discover a vulnerability of document application.
We believe most of document vulnerability discovers (including vendors) are keeping improving
their fuzzing tools. We are going to introduce our Flash AVM fuzzing techniques.

Focus on AVM instructions. Take the CVE-2010-1297 as example. Traditional one-byte fuzzing
technique modifies each byte of the sample file with 256 values. We found we can focus on the
AVM (action script) part, the method_body of code area. And we also found there are only
around 170 AVM instructions. So our fuzzing tool could only try the AVM part with 170 values.
It reduces the testing range and save a lot of time, and we could still find similar vulnerabilities.

We use the approach to fuzz the CVE-2010-1297, and we also discovered APSB11-12 before it
was disclosed. (By inserting a Setlocal_1 (0xd5) in code area)

o~ method_bodies[122] : method_body
o- method_bodies[123] : method_body
o~ method_bodies[124] : method_body
o~ method_bodies[125] : method_body
o- method_bodies[126] : method_body
o~ method_bodies[127] : method_body

00009690
000096A0
000096E0
000096C0
000096D0
000096ED

0000 SD01 0409 0509 7ADO D520 8009 6305 | ..0..... z00 O.c
2085 6306 S500 5009 DEDL 66A7 0274 D724 Oc.U.0.00£0. O
0074 6304 1052 0000 09D1 6204 66D3 0480 | .tc..R...0Ob.£f0.
0963 0524 0063 0762 0582 6308 1029 0000 | .c.§.c.b.Oc..).
0962 0862 071E 8563 06D2 6206 66D3 0420 | .b.b..0c.Ob.£0.
1304 0000 1011 0000 D262 06D1 6204 66D3 | ..vvunnn Ob.0Ob. 1

00009750
00009760
00009770
00009780
00009790
00009740
000097B0
000037C0

A801 005D 9CO1 602E 6698 034F 9COL 01SE
A004 DOG0 1BB3 65A0 04SE ES04 2768 B504
60A0 0412 3C00 00SD 9804 600F 66B9 0460 | 'O..<..]0.°.f0.
B301 4F98 0402 SD9S 0460 0F66 BAO4 6054 | 0.00..]0. . £0.

014F 9804 025D 95804 6010 66BE 0460 ADOLl | .00..]0.".£0.°C
4F98 0402 5D98 0460 1066 D404 60BC 014F | 00..]0.°.£0.°0.
9804 025D ACO1 4FAC 0100 SDSS 0460 0C66 | O..]0.00..]0.°.
DS04 60D0 0127 2400 264F 9804 0547 0000 | O.'0.'§.400..6G.

max_scope_depth : u30 (9)
code_length : u30 (122)
exception_count : u30 (0)
exceptions : exception_info[0]
trait_count: u30 (0)

¢ method_bodies[128] : method_body GIIIEISMl 0462 0666 D304 6103 0432 0807 11D0 FFFF | .b.£0.a0.2...0.
method : u30 (157) DLLLEYHEN 0808 0807 6204 2174 6304 6204 D315 A7FF |b.0Otc.b.0.U
ORI (ICRIGMl FFD2 4800 00SE 0106 0109 0OABL 01DO 3000 | .OH..O.....0.00
e GNP POl 4900 SECC 0155 0068 CCOL SECZ 0155 0068 | I.+0.U.hO.*0.U.
local_count: u30 (9) (IOEVEGI C201 SECL 0155 0068 C10L1 SESE 015D 344A | 0.+0.U.hO.*0.]4
init_scope_depth : u30 (8) GNP EUM 3400 585E 0160 32D0 4FBA 0301 SDAS 014F | 4.hO. *2000..]0.

0..]

o

Furthermore, we accidently found the JIT spraying technique could still work during the
automatic fuzzing process.

3.2.Techniques to Against Exploit Mitigation Technologies

Many researchers are looking for new techniques to bypass DEP and ASLR. We are the same. In
this chapter we are going to explain how we bring JIT spraying back, and our JIT spraying
improvements.

The magic B4 (IN) instruction:

The original JIT spraying is use '35 90 90 90 3C’ to fill up the code area. By our fuzzing technique,
we found if we replace the first XOR(AA) with IN(B4), the AVM code area will not be encoded in
memory, and memory section will become executable (like before).

COh: 01 16 OC 17 01 00 OA 07 01 02 07 04 03 07 02 ©

(O
)DOh: 07 02 04 07 03 05 07 01 06 07 01 07 07 01 08 O DOh: 07 02 04 07 03 05 07 01 06 07 01 07 07 01 08 ©
DEOh: 01 09 04 00 00 00 00 00 00 00 00 00 00 00 00 © EOh: 01 09 04 00 00 00 00 00 00 00 00 00 00 00 00 O
JFOh: 00 00 00 00 01 03 01 01 00 02 01 02 01 01 01 O FOh: 00 00 00 00 01 03 01 01 00 02 01 02 01 01 01 0
100h: 00 01 00 01 03 04 01 00 04 00 03 01 00 08 25 D 00h: 00 01 00 01 03 04 01 00 04 00 03 01 00 08 25 D
110h: 30 64 60 04 30 60 05 30 60 06 30 60 07 30 60 0 10h: 30 64 60 04 30 60 05 30 60 06 30 60 07 30 60 O
120h: 30 60 09 30 60 01 2A 30 58 00 1D 1D 1D 1D 1D 1 20h: 30 60 09 30 60 01 2A 30 58 00 1D 1D 1D 1D 1D 1
130h: 1D 6D 01 47 00 00 01 02 02 08 08 14 2D 01 2D O 30h: 1D 6D 01 47 00 00 01 02 02 08 08 14 2D 01 2D (
140h: E¥A PD 01 AA 2D 01 AA 2D 01 AA 82 63 01 62 01 4 40n: [2D 01 AA 2D 01 AA 2D 01 AA 82 63 01 62 01 4
150h: 00 00 02 01 01 08 08 08 DO 49 00 DO 4F 02 00 4 SOh: 00 00 02 01 01 08 08 08 DO 49 00 DO 4F 02 00 4
60h: 00 00 03 00 01 08 08 01 47 00 00 09 13 01 00 O 60h: 00 00 03 00 01 08 08 01 47 00 00 09 13 01 00 O

Old trick (the XOR trick) could be used again. However, the improved ASLR reduced the success
rate. We need some other techniques.

O
E
F
2]
!

Continuity of sprayed area:

Original trick used a loop to load the spraying file a lot of times to do JIT spraying. However, this
approach has bad continuity in new version of Flash.

In order to have better continuity, instead of reloading another swf file, we make a lot of
method_body in a swf file directly. This approach has much better result.

In our testing, we have around 10000 method_body in the sample file and each method_body
(function) includes 2048 XOR instructions. Yes, this technique produces a huge file (58.7MB).
Zlib could help us to solve the problem. After compression, the sample file size is 268k bytes.

Following picture shows content of the swf file:

Use OR:

Instead of XOR instruction, we found a better solution. We use OR(A9) instead of XOR(AA) to
spray the memory. Instead of 35 90 90 90 3C’, the content in memory will be ‘OD OD 0D 0D 0C'.
This technique makes it easier to jump into our sprayed area when trigger the vulnerability.

We use MS11-050 as the example:

SA0EC2FD
SADBCIFE
SA0ACIFF
& A0EC4EE

&ADBC4EE
cADBC4E7
GR0BC4ER
cA0EC4EE
SADEC4E0
SADBC412

23
~E2 F7AEFFFF
S

MO ER:, OWORD PTR D5:LECK]

MO EDX, OWORD PTR DS:[EAX+7E]

CALL EDi

HD¥HEHH.DNDHD FTR DS: [ERR+C]

RE

»0R ERX, ERR

JHMP mshtml. GADET 2GS
HOP

Fegisters (FFUI

BCACACAC
B4FLEELE
BEBEEAEE
BAICECES
BZA4ELFC
B2E4E214
BZE4EZ22
[ala]alslalslsls)

SADBC4E2 mshtml. GADECAEZ

While the vulnerability is being triggered, you can see the EDX value is important. The value of
EDX would be the value of [EAX+70]. In this case, it is actually [0x0cOc0cO0c+70]. If we still use
XOR trick, the value of EDX would be one of DWORD value of ‘35 90 90 90 3C’ sprayed area.

If we use the OR instruction, it would be easier to spray the possible destination addresses (the
value of EDX).

Address |Hex durmp ASCII
ACACACTC
ACACAC S
BCECECEC
ACECEAC Y4
ACECEACIC
ACACACAS
ACECACAC
HCHCECES
BCACACET
ACACACCY
ACACACCT
BCEacacod
BCECACOC
HCECACES
ACACACEC
HACACACE 4

It works everywhere.

Our approach can defeat DEP and ASLR effectively, even the EMET all functions are enabled.

Protection New JIT Spraying with
Flash Player 10.3.181.34
(Released 6/28/2011)

Office2000 ~Office 2010 (DEP AlwaysOn, ASLR) | works

Internet Explorer (DEP AlwaysOn, ASLR) works
Adobe PDF (DEP AlwaysOn, ASLR) works
EMET v2.1 (Enabled all functions) works

When EMET is adopted, the sprayed memory layout would be like:

Address | Size Cwin e Section |Contains Tupe| Access
BISHEEER | BEZBEEEE Friv|R E
BIAABEER | BBZBEEEE Friv|R E
BICHBEER | BBZBEEEE Friu|R E
BIEABEEA | BEE 26866 Friv|R E
AIECAHEA | BBA 28866 Friv|R E
HIEEBHEE | BEE2EEEE Friv|R E
BIFEEEEE | BE85EREE Friv|R E
BIFEEEEE | BB 26066 Friv|R E
BIFSEEEE | 88820000 Friv|R E
BIFABEEE | 88820005 Friv|R E
BIFCHEEE | BBASEEEE Frivw|R E
BABZAEEE | BBE2EEEE Friv|R E
BABEREER | BEZBEEEE Friu|R E
BAZEEEEE | BEZ2REEEE Friv|R E
BAR4EEEEE | BE2BEEEE Friv|R E
BASEEEEE | BE2BEEEE Friv|R E
GASEEEEE | BE20EE6EE Friv|R E
BAAEEEEE | BEZBEEEE Friv|R E
BACEREEE | 88280009 Friv|R E
BAEEBEEE | BBZBEEEE Frivw|R E
BEACHEEE | BEZBEEEE Frivw|R E
BEZCHEER | BBZBEEEE Friv|R E
BE4CHAEE | BEZBEEEE Friu|R E
BESCAEEE | BRZ2REREE Friv|R E
HESCHEEE | BE2BEEEE Friv|R E
HEACHEEE | BE2BEEEE Friv|R E
GECCEE8E | BBZ20E06EE Friv|R E
GEECEEEE | 98126666 Friv|R E
BCEDEEEE | BEZB0a0E Friv|R E
BCZ0BEEE | BEZBEEEE Frivw|R E
BCA0BEEE | BEZBEEEE Frivw|R E
BCEDREER | BBZBEEEE Friv|R E
BCE0REEE | BEZBEEEE Friu|R E
BCADBEEE | BE2REEEE Friv|R E
BCCOEEEE | BE2BEEEE Friv|R E
GCEDBEE8E | 98208066 Frivw|R E
GOEEBEEE | BE20EEGEE Friv|R E
GOZEBEEE | BBZBEREE Friv|R E
BO4EREEE | BEZBEEEE Friv|R E
BOSEREER | BEZBEEEE Frivw|R E
BOSERRER | BBZBEEEE Friv|R E
BOAEREER | BBZBEEEE Friv|R E
BOCERRER | BBZBEEEE Friv[R E

We can see that EMET would skip the sensitive address range, e.g. 0x0c0c0OcOc or 0x0d0d0dO0d.
However, if the vulnerability is the traditional stack overflow, like CVE-2010-3333, we can still
control EIP, so we can fill 0x0c0dOcOd to enter the sprayed area.

wocaORcan, ac 35 OF AL, 35

BCEDECEF | B0 B0E0Ec3s OF ERX, S5@CEDE0
BCEDEC14| B0 BDE0ECc3S OF ERX, S5@CEDE0
BCEDEC1S| B0 BDE0EC3S OF ERX, S5@CEDE0
BCEDECIE| B0 BDE0EC3sS OF ERX, S5@CEDE0
BCEDECZE| B0 BDE0EC3S OF ERX, S5@CEDE0
QocEbpcz2s) B0 BDE0Ec3s OF ER#, 35@CA0GE0
Qoabpczh, 80 BDE0Ec3s OF ER#, 35@CA0GE0
HCAOBCIZ| B0 BDE0BEC3S OF ER#, 35ECADE0
HCEADBCSY| B0 B0DEa0BEC35S OF ER#, 35ECADE0
BCADBC2C, B0 BDA0BEC3S OF ER#, 35ECADE0
ataDacdi| o0 eDaDaCiE | OR ERd: 35acenan

There is one thing we would like to mention: when you are writing shellcode, you need some
efforts to bypass EAF protection. You need to look for functions in DLLs to access Export
Address Table. (ref: http://skypher.com/index.php/2010/11/17/bypassing-eaf/)

Except for memory exploitation, the attack to design of security policy and resource access
control will be another topic for document exploit researchers.

http://skypher.com/index.php/2010/11/17/bypassing-eaf/

In order to provide secure execution environment for clients and users, vendors are starting to
adopt sandbox technologies to their applications. The sandbox usually has complicated policy
and permission control to isolate access to each resource. There might be some logic design
flaws in applications.

Flash Sandbox Problem

We take a policy design flaw that we found in Flash as the example. There are 4 types of

properties in Flash Security.SandboxType: Security.REMOTE, Security.LOCAL WITH FILE,
Security.LOCAL WITH NETWORK, and Security.LOCAL TRUSTED. The basic idea is if
you can access network, you can’t access local resource, vice versa. The flaw
is in its ‘url protocol’ design.

Internet
A

We embed a Flash object in an Office document. This flash object is allowed to access local files,
and not allowed to access internet. However there is a problem when handling the ‘mms’
protocol. When the flash object opens an mms link, IE will be launched, and then media player
will also be launched (by IE) as well. The media player will connect to the link.

Using this flaw, we could retrieve user information, and use mms protocol to send information
to internet. For example, we might steal user’s cookie, user’s saved password, etc. And we
could use this technique to probe user environment.

It is not allowed to directly identify a file existing or not. However, we may use
‘addEventListener’ to monitor the IOErrorEvent.|IO_ERROR event if file doesn’t exist. And
Event.COMPLETE could help us to know the file loading action has been completed.

There is still a problem that we need to know where user’s home path is, for example, user’s
cookie or saved password. Actually there are many log files that show this information. In our
approach, we use setupapi.app.log. (Windows 7: ‘C:\Windows\inf\setupapi.app.log’, Windows
XP: ‘C:\WINDOWS\setupapi.log’)

var uname = "mms://x.x.x.x:1755/"+secret.contents+".asx";
var req = new URLRequest (uname) ;
navigateToURL (req," blank");

In case of IE6 or IE7, as you can see, the code launches IE and media player automatically. The
information would be transferred out. However, there will be a pop-up warning message
before opening media player when you are using IE8 and IE9. For this situation, we may use

some tricks to interact with users, for example we can create some animation with links. | think
most of users would still click ‘Yes’ to allow the connection.

In case of exploit is launched, traditional signature based malware protection is useless,
because the exploit or malware is usually 'customized'. Users can only rely on behavior based
protection. For example, the HIPS could block your connection to Internet, block file dropping
to system folders, and block access to sensitive registries. Therefore defeating HIPS will become
exploit writer's next major task.

Inline Hook Bypassing

Many HIPS use inline hook to intercept APl and monitor behaviors. Most of them are using
Microsoft Detour library or Detour-like approach. Bypassing this kind of API hooking, we many
just skip a few begging bytes.

APl is hooked by
Detours

(@
=
=
oQ
©
=
>
s

WMI and COM Objects

The HIPS usually does hook to observe malicious behaviors (No matter in ring0 or ring3). Once it
detects a suspicious behavior, it would check ‘who’ is doing this by identifying the process. If
the process is not in its legitimate (white) process list, it could block the action.

Try to imagine, if legitimate process could do things for us, the HIPS would become useless. Do
injection to those system (legitimate) processes? No, the injection could be blocked.

We noticed that Microsoft has already provided complete solutions —the WMI and many useful
COM obijects. By leveraging the technologies, system process could do everything for us,
including connecting to Internet, access files/registries, and even installing a MSl file.

Installed
Apps

Not only defeating HIPS, the approach could also defeat automation analyzing sandbox system.
The malware ‘process’ actually does nothing directly. The sandbox could record nothing if the
sandbox only tracks malware process.

COM| Malware [COM

WMI / COM Shellcode

Writing shellcode to use WMI, we need to include some functions in ole32.dll: CoUninitialize(),
ColnitializeSecurity(), ColnitializeEx(), CoCreatelnstance(), CoSetProxyBlanket().

Get instance via CLSID_WbemLocato(), and connect ROOT\\CIMV2. GetObject can get
‘Win32_Process’, and GetMethod can have ‘Create’. Then use ExecMethod to launch
notepad.exe.

4. Conclusion

We have discussed complete solutions to make a weapon of targeted attack with many new
techniques:

» How to find vulnerabilities: AVM fuzzing technique.
How to defeat exploit mitigation technologies: new JIT spraying.
How to make an exploit without memory hard work: attack policy flaw.

Y V VYV

How to defeat desktop protection and analyzing system: WMI and COM.

We believe attackers are working hard on these topics. We wish security vendors could address
these problems to come out solutions ahead of attackers.

Probe victim's
environment
and collect
information.
(embed swf in
office)

Use New JIT
techniques with Use COM
browser, PDF, technique to
Office bypass HIPS
vulnerabilities.

Future APT
attack?

Reference

Office is Still Yummy
Ming-chieh Pan and Sungting Tsai,
2010.

http://exploitspace.blogspot.com/2011/06/our-
presentation-in-syscan-10-singapore.html

as3compile.exe

http://www.swftools.org/

Adobe Virtual Machine 2 (AVM2)

http://www.adobe.com/devnet/actionscript/articles/avm
2overview.pdf

INTERPRETER EXPLOITATION:
POINTER INFERENCE AND JIT
SPRAYING

http://www.semantiscope.com/research/BHDC2010/BHD
C-2010-Paper.pdf

Writing JIT-Spray Shellcode for fun
and profit

http://dsecrg.com/files/pub/pdf/Writing%20JIT-
Spray%20Shellcode%20for%20fun%20and%20profit.pdf

Enhanced Mitigation Experience
Toolkit v2.1

http://www.microsoft.com/download/en/details.aspx?id=
1677

swfretool

https://github.com/sporst/SWFREtools

MS11-050 IE
mshtml!CObjectElement.
Use After Free

http://d0Ocs4vage.blogspot.com/2011/06/insecticides-
dont-kill-bugs-patch.html

Win32_Process Class

http://msdn.microsoft.com/en-
us/library/aa394372(v=VS.85).aspx

Bypassing Export address table
Address Filter (EAF)

http://skypher.com/index.php/2010/11/17/bypassing-
eaf/

Heap Feng Shui in JavaScript

https://www.blackhat.com/presentations/bh-europe-
07/Sotirov/Presentation/bh-eu-07-sotirov-aprl9.pdf

