

Weapons of

Targeted Attack

Modern Document Exploit Techniques

Ming-chieh Pan <naninb@gmail.com>

Sung-ting Tsai <ttsecurity@gmail.com>

Black Hat USA 2011

Abstract

The most common and effective way is using document exploit in the targeted attack. Due to

the political issue, we have had opportunities to observe APT (advanced persistent threat)

attacks in Taiwan since 2004. Therefore we have studied and researched malicious document

for a long period of time.

Recently, we found APT attacks (e.g. RSA) used the same technique as we disclosed last year,

e.g. embedding flash exploit in an excel document. In order to protect users against malicious

document and targeted attacks, we would like to discuss the past, present, and future of

document exploit from technical perspective, and predict possible techniques could be used in

a malicious document in the future by demonstrating "proof of concept" exploits.

The presentation will cover four major types of document attacks:

 Advanced fuzzing techniques.

 Techniques to against exploit mitigation technologies (DEP/ASLR).

 Techniques to bypass sandbox and policy control.

 Techniques to defeat behavior based protection, such as host IPS.

Contents
Abstract ... 1

1. Introduction ... 3

1.1. Background ... 3

1.2. Targeted Attack and Document Exploit ... 3

1.3. Cat and Mouse Game ... 3

1.4. Contents of the Paper .. 3

2. Recent Document Exploit Attacks ... 4

2.1. Hybrid Document Exploit ... 4

2.2. Incomplete Protection ... 5

2.3. Advanced Memory Attack Techniques .. 5

2.4. Vendor Responses .. 5

2.5. Our Finding in Real Attacks .. 5

3. Future Document Exploit Attacks .. 6

3.1. Advanced Fuzzing Techniques ... 6

3.2. Techniques to Against Exploit Mitigation Technologies .. 6

3.3. Techniques to Bypass Sandbox / Policy / Access control... 10

3.4. Techniques to defeat behavior based protection and automatic analyzing sandbox ... 13

4. Conclusion ... 15

Reference .. 17

1. Introduction

1.1. Background

APT (Advanced Persistent Threat) has become very popular in 2011. Actually we have already

known this kind of attack since 2004. Due to the political issue, Government units and large

enterprises in Taiwan has been targeted for many years. They have kept receiving purpose-

made e-mails and malwares (exploits), never stopped. Thus we have chances to observe the

attack trend and we also spent a lot of time on document exploit research.

Nowadays, not only in Taiwan, this kind of silent threat are attacking whole world, e.g. Google

Aurora attack and recent RSA attack. Unlike normal cyber-criminals, they are hacking for the

information, not for profit. And unfortunately, most of security software couldn’t protect

effectively.

We are going to discuss document exploit from technical perspective, introduce attack

techniques that might be used in future. We wish application and security vendors could be

aware of the attack and have new approaches to protect people.

1.2. Targeted Attack and Document Exploit

Attacker sends an e-mail with specific content and document exploit (antivirus couldn’t detect)

to his targets. After open the document, attacker could take control of the victim’s system. It is

the most common way and not easy to be aware of. The malicious document usually includes

malicious web page (attacking browsers), office document, PDF, and Flash.

Document exploit is actually the weapon of targeted attack.

1.3. Cat and Mouse Game

Exploit attack and defense is like a cat and mouse game. Vendors keep patching application and

inventing new technologies to prevent attack, however attackers always can find ways to

defeat those protections. So if we could be ahead of attackers by guessing their next tricks, we

might have better protections for people.

1.4. Contents of the Paper

In this paper we will discuss document exploit from technical perspective. Recent document

exploit techniques will be introduced in chapter 2.

Chapter 3 will cover four major types of new document attacks, including our latest findings:

 Advanced fuzzing techniques: our flash AVM fuzzing technique will be introduced.

 Techniques to against exploit mitigation technologies: our new JIT spraying techniques

will be introduced.

 Techniques to bypass sandbox and policy control: a flash vulnerability will be introduced

as an example.

 Techniques to defeat behavior based protection: new approaches to write a document

exploit. This will make security vendors headache.

2. Recent Document Exploit Attacks

2.1. Hybrid Document Exploit

If you have installed all Microsoft office patches, and there is no 0-day vulnerability and exploit.

Will it be 100% safe to open a word or excel document? The answer is no. Modern document

application is very complicated. Most of them could embed document objects of other

applications. For example, the Excel could embed an Adobe flash object. In this case, even your

Excel is up to date, it is still not 100% safe when you open an Excel document which includes a

flash object and your flash application is vulnerable.

Most of people know browser could include a lot of document objects, such as PDF, flash, and

other multimedia files. So they are cautious when they open web page. However, when they

open a document in the e-mail, they would not be aware of the danger.

This kind of attack is very popular recently. A flash vulnerability could be repacked as a

malicious web page, a PDF exploit, or even an office document exploit.

2.2. Incomplete Protection

Application vendors delivered new technologies to make their application safer. Especially the

exploit mitigation techniques could do really good jobs to avoid execution of exploits, e.g. DEP

and ASLR.

However, it is very difficult to do protections completely. Because application is very

complicated as well as the environment of operating system, it is not possible to update every

component, every tool to adopt the protection technologies. And you don’t need to think that

you could ask all users to install updates or manually enable protections.

For example, even you have adopted DEP and ASLR, there are always some researchers could

find some modules are not protected by ASLR, and they could use the module to do ROP

(return-oriented programming) and make effective exploits.

2.3. Advanced Memory Attack Techniques

Researchers are also finding some new approaches to bypass DEP and ASLR. Flash JIT spraying

techniques has been introduced in BHDC2010. Flash JIT could bypass DEP, and the spraying

technique could defeat ASLR. This technique could exploit the newest Office 2010 and Internet

Explorer.

2.4. Vendor Responses

Vendors have been working hard to patch vulnerabilities and adopt new protections in

applications. Flash has started to encode/encrypt AVM code area since version 10.1, and the

memory area has become non-executable. Also it has better ASLR to arrange its memory

sections. These new techniques effectively mitigate JIT spraying exploit.

And Microsoft released Enhanced Mitigation Experience Toolkit 2.0 in Blue Hat v10. The EMET

tool could provide a lot of memory protections for applications. It could effectively defeat most

of exploits with ROP techniques.

2.5. Our Finding in Real Attacks

Recently we found exploit is using the same trick as we disclosed in Syscan 10’. Do you know

why attackers don’t include a flash exploit in web page or PDF file, and they only use Excel to

spread malicious e-mails. The reason is Excel will turn off DEP when a flash object is embedded.

It is much easier for attackers to write exploits.

3. Future Document Exploit Attacks

3.1. Advanced Fuzzing Techniques

File format fuzzing is the most common way to discover a vulnerability of document application.

We believe most of document vulnerability discovers (including vendors) are keeping improving

their fuzzing tools. We are going to introduce our Flash AVM fuzzing techniques.

Focus on AVM instructions. Take the CVE-2010-1297 as example. Traditional one-byte fuzzing

technique modifies each byte of the sample file with 256 values. We found we can focus on the

AVM (action script) part, the method_body of code area. And we also found there are only

around 170 AVM instructions. So our fuzzing tool could only try the AVM part with 170 values.

It reduces the testing range and save a lot of time, and we could still find similar vulnerabilities.

We use the approach to fuzz the CVE-2010-1297, and we also discovered APSB11-12 before it

was disclosed. (By inserting a Setlocal_1 (0xd5) in code area)

Furthermore, we accidently found the JIT spraying technique could still work during the

automatic fuzzing process.

3.2. Techniques to Against Exploit Mitigation Technologies

Many researchers are looking for new techniques to bypass DEP and ASLR. We are the same. In

this chapter we are going to explain how we bring JIT spraying back, and our JIT spraying

improvements.

The magic B4 (IN) instruction:

The original JIT spraying is use ’35 90 90 90 3C’ to fill up the code area. By our fuzzing technique,

we found if we replace the first XOR(AA) with IN(B4), the AVM code area will not be encoded in

memory, and memory section will become executable (like before).

Old trick (the XOR trick) could be used again. However, the improved ASLR reduced the success

rate. We need some other techniques.

Continuity of sprayed area:

Original trick used a loop to load the spraying file a lot of times to do JIT spraying. However, this

approach has bad continuity in new version of Flash.

In order to have better continuity, instead of reloading another swf file, we make a lot of

method_body in a swf file directly. This approach has much better result.

In our testing, we have around 10000 method_body in the sample file and each method_body

(function) includes 2048 XOR instructions. Yes, this technique produces a huge file (58.7MB).

Zlib could help us to solve the problem. After compression, the sample file size is 268k bytes.

Following picture shows content of the swf file:

Use OR:

Instead of XOR instruction, we found a better solution. We use OR(A9) instead of XOR(AA) to

spray the memory. Instead of ’35 90 90 90 3C’, the content in memory will be ‘0D 0D 0D 0D 0C’.

This technique makes it easier to jump into our sprayed area when trigger the vulnerability.

We use MS11-050 as the example:

While the vulnerability is being triggered, you can see the EDX value is important. The value of

EDX would be the value of [EAX+70]. In this case, it is actually [0x0c0c0c0c+70]. If we still use

XOR trick, the value of EDX would be one of DWORD value of ‘35 90 90 90 3C’ sprayed area.

If we use the OR instruction, it would be easier to spray the possible destination addresses (the

value of EDX).

It works everywhere.

Our approach can defeat DEP and ASLR effectively, even the EMET all functions are enabled.

Protection New JIT Spraying with
Flash Player 10.3.181.34
(Released 6/28/2011)

Office2000 ~Office 2010 (DEP AlwaysOn, ASLR) works

Internet Explorer (DEP AlwaysOn, ASLR) works

Adobe PDF (DEP AlwaysOn, ASLR) works

EMET v2.1 (Enabled all functions) works

When EMET is adopted, the sprayed memory layout would be like:

We can see that EMET would skip the sensitive address range, e.g. 0x0c0c0c0c or 0x0d0d0d0d.

However, if the vulnerability is the traditional stack overflow, like CVE-2010-3333, we can still

control EIP, so we can fill 0x0c0d0c0d to enter the sprayed area.

There is one thing we would like to mention: when you are writing shellcode, you need some

efforts to bypass EAF protection. You need to look for functions in DLLs to access Export

Address Table. (ref: http://skypher.com/index.php/2010/11/17/bypassing-eaf/)

3.3. Techniques to Bypass Sandbox / Policy / Access control

Except for memory exploitation, the attack to design of security policy and resource access

control will be another topic for document exploit researchers.

http://skypher.com/index.php/2010/11/17/bypassing-eaf/

In order to provide secure execution environment for clients and users, vendors are starting to

adopt sandbox technologies to their applications. The sandbox usually has complicated policy

and permission control to isolate access to each resource. There might be some logic design

flaws in applications.

Flash Sandbox Problem

We take a policy design flaw that we found in Flash as the example. There are 4 types of

properties in Flash Security.SandboxType: Security.REMOTE,Security.LOCAL_WITH_FILE,
Security.LOCAL_WITH_NETWORK, and Security.LOCAL_TRUSTED. The basic idea is if

you can access network, you can’t access local resource, vice versa. The flaw

is in its ‘url protocol’ design.

We embed a Flash object in an Office document. This flash object is allowed to access local files,

and not allowed to access internet. However there is a problem when handling the ‘mms’

protocol. When the flash object opens an mms link, IE will be launched, and then media player

will also be launched (by IE) as well. The media player will connect to the link.

Using this flaw, we could retrieve user information, and use mms protocol to send information

to internet. For example, we might steal user’s cookie, user’s saved password, etc. And we

could use this technique to probe user environment.

It is not allowed to directly identify a file existing or not. However, we may use

‘addEventListener’ to monitor the IOErrorEvent.IO_ERROR event if file doesn’t exist. And

Event.COMPLETE could help us to know the file loading action has been completed.

There is still a problem that we need to know where user’s home path is, for example, user’s

cookie or saved password. Actually there are many log files that show this information. In our

approach, we use setupapi.app.log. (Windows 7: ‘C:\Windows\inf\setupapi.app.log’, Windows

XP: ‘C:\WINDOWS\setupapi.log’)

var uname = "mms://x.x.x.x:1755/"+secret.contents+".asx";

var req = new URLRequest(uname);

navigateToURL(req,"_blank");

In case of IE6 or IE7, as you can see, the code launches IE and media player automatically. The

information would be transferred out. However, there will be a pop-up warning message

before opening media player when you are using IE8 and IE9. For this situation, we may use

some tricks to interact with users, for example we can create some animation with links. I think

most of users would still click ‘Yes’ to allow the connection.

3.4. Techniques to defeat behavior based protection and automatic analyzing

sandbox

In case of exploit is launched, traditional signature based malware protection is useless,

because the exploit or malware is usually 'customized'. Users can only rely on behavior based

protection. For example, the HIPS could block your connection to Internet, block file dropping

to system folders, and block access to sensitive registries. Therefore defeating HIPS will become

exploit writer's next major task.

Inline Hook Bypassing

Many HIPS use inline hook to intercept API and monitor behaviors. Most of them are using

Microsoft Detour library or Detour-like approach. Bypassing this kind of API hooking, we many

just skip a few begging bytes.

CreateProcessInternalW
Push 0x608
push offset stru_7C82D450
call __SEH_prolog
mov eax, dword_7C88B7B0
mov [ebp+var_1C], eax

Detours _ jmp functon

Bypass call
(Create the same value in stack)
Jmp 0x7C82D146+5

Address 0x7C82D146

API is hooked by
Detours

Calling an API

WMI and COM Objects

The HIPS usually does hook to observe malicious behaviors (No matter in ring0 or ring3). Once it

detects a suspicious behavior, it would check ‘who’ is doing this by identifying the process. If

the process is not in its legitimate (white) process list, it could block the action.

Try to imagine, if legitimate process could do things for us, the HIPS would become useless. Do

injection to those system (legitimate) processes? No, the injection could be blocked.

We noticed that Microsoft has already provided complete solutions – the WMI and many useful

COM objects. By leveraging the technologies, system process could do everything for us,

including connecting to Internet, access files/registries, and even installing a MSI file.

Not only defeating HIPS, the approach could also defeat automation analyzing sandbox system.

The malware ‘process’ actually does nothing directly. The sandbox could record nothing if the

sandbox only tracks malware process.

WMI / COM Shellcode

Writing shellcode to use WMI, we need to include some functions in ole32.dll: CoUninitialize(),

CoInitializeSecurity(), CoInitializeEx(), CoCreateInstance(), CoSetProxyBlanket().

Get instance via CLSID_WbemLocato(), and connect ROOT\\CIMV2. GetObject can get

‘Win32_Process’, and GetMethod can have ‘Create’. Then use ExecMethod to launch

notepad.exe.

4. Conclusion
We have discussed complete solutions to make a weapon of targeted attack with many new

techniques:

 How to find vulnerabilities: AVM fuzzing technique.

 How to defeat exploit mitigation technologies: new JIT spraying.

 How to make an exploit without memory hard work: attack policy flaw.

 How to defeat desktop protection and analyzing system: WMI and COM.

Malware

COM

NET

COM REG

COM

FILE

COM Process

We believe attackers are working hard on these topics. We wish security vendors could address

these problems to come out solutions ahead of attackers.

Probe victim's
environment
and collect

information.
(embed swf in

office)

Use New JIT
techniques with
browser, PDF,

Office
vulnerabilities.

Use COM
technique to
bypass HIPS

Future APT
attack?

Reference
Office is Still Yummy
Ming-chieh Pan and Sungting Tsai,
2010.

http://exploitspace.blogspot.com/2011/06/our-
presentation-in-syscan-10-singapore.html

as3compile.exe http://www.swftools.org/

Adobe Virtual Machine 2 (AVM2) http://www.adobe.com/devnet/actionscript/articles/avm
2overview.pdf

INTERPRETER EXPLOITATION:
POINTER INFERENCE AND JIT
SPRAYING

http://www.semantiscope.com/research/BHDC2010/BHD
C-2010-Paper.pdf

Writing JIT-Spray Shellcode for fun
and profit

http://dsecrg.com/files/pub/pdf/Writing%20JIT-
Spray%20Shellcode%20for%20fun%20and%20profit.pdf

Enhanced Mitigation Experience
Toolkit v2.1

http://www.microsoft.com/download/en/details.aspx?id=
1677

swfretool https://github.com/sporst/SWFREtools

MS11-050 IE
mshtml!CObjectElement.
Use After Free

http://d0cs4vage.blogspot.com/2011/06/insecticides-
dont-kill-bugs-patch.html

Win32_Process Class

http://msdn.microsoft.com/en-
us/library/aa394372(v=VS.85).aspx

Bypassing Export address table
Address Filter (EAF)

http://skypher.com/index.php/2010/11/17/bypassing-
eaf/

Heap Feng Shui in JavaScript https://www.blackhat.com/presentations/bh-europe-
07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf

