
2011
Intrepidus Group, Inc.

By David Schuetz
Senior Consultant

THE IOS MDM PROTOCOL
Abstract: Mobile Device Management (MDM) has become a hot topic as
organizations are pressured to bring iStuff into their organization. Mobile devices
are invading every level of corporate society, making the need to remotely manage
and control them increasingly urgent. Apple has provided some enterprise
management features, first via over-the-air configuration profiles, and beginning in
2010, full MDM support. Unfortunately, the exact features available through MDM,
as well as details of the protocol itself, have not been publicly released by Apple.

This paper describes how Apple’s MDM system works. It details the method by
which an MDM server initiates a connection to a managed device, how the device
enrolls with the server, and the various commands available to the system. Full
parameters are provided for each command, as well as details for specialized
responses from the device. Finally, source code is provided for a very simple MDM
server, that will permit basic experimentation with the MDM protocol using actual
iOS devices.

Introduction

The use of iOS devices, such as the iPhone, iPad or iPod, can present a serious risk to an
organization. These devices are powerful computers with high storage capacity and can
potentially exfiltrate data beyond corporate control and release it, deliberately or
accidentally, to unauthorized third parties. Many protections available for iOS focus on the
device itself, such as the use of passcodes to prevent a 3rd party from accessing the data
on the device. However, managing such “iStuff” presents a serious challenge to the large
enterprise, and has historically been a complicated and cumbersome process.

The easiest way to configure a device is through the iOS Settings application. Of course, this
requires direct physical access to the device, which becomes increasingly impractical as the
installed base of iOS devices grows.

To ease this, Apple created the iPhone Configuration Utility (IPCU), which directly installs
custom .mobileconfig files over USB. An extension to this capability allows Over the Air
(OTA) configuration -- letting the end user click on a link to fetch and install new profiles.

But even the OTA configuration method has its drawbacks, not least the requirement of end-
user interaction. Then, in 2010, Apple introduced Mobile Device Management (MDM)
services for iOS, a solution to the problem of iOS MDM, targeted at the enterprise. This
system features remote installation of profiles, querying of device settings, and certain
remote controls: lock, unlock, and remote wipe of a device.

Unfortunately, documentation of the underlying protocol has never been freely available.
Obviously, third parties selling MDM servers were provided access to the documentation by
Apple, but it’s not been available for researchers or smaller development shops. This
hampers risk analysis for enterprises making use of MDM. In order to aid such risk
assessments, and to enable and encourage future research, this project was born.

The goal is not to create a simple, turn-key, stand-alone MDM server, nor to probe the
protocol for weaknesses or hidden features, but simply to document as much of the protocol
as possible. It is hoped that future researchers may build upon this documentation to better
understand the security of MDM, and in particular, of various implementations of MDM
servers and clients.

Disclaimer

This work was performed without use of any Apple confidential material subject to Non-
Disclosure Agreements. At the time of writing, OS X 10.7 (Lion) and iOS 5 were both
available in Developer Preview, but neither system was utilized in the deciphering of the
MDM protocol. Lion’s contribution to this research was limited to the acquisition of an Apple
Push Notification Service (APNS) certificate, while iOS 5 hasn’t even been downloaded, let
alone installed on any devices. All work was performed on OS X 10.6 (Snow Leopard), and
tested with multiple iOS devices (running a mix iOS 4.2.1, 4.3, and 4.3.1).

The iOS MDM Protocol August 3, 2011

Background

Basic user configuration changes are made in the Settings application. Many of these
settings are stored as Property List (.plist) files on the device, in /var/mobile/Library/
ConfigurationProfiles, along with profiles installed by IPCU or MDM. For example, the file
UserSettings.plist may contain the following:

In this case, we can see (for example) that installing applications is permitted by the local
user. If the user were to enter Settings, and navigate to General -> Restrictions to turn off
the App Store, then the value for “allowAppInstallation” would be changed to “false.”

These configuration files are not normally visible to the end user, but can be accessed on a
jailbroken device. Understanding how these are formatted and interpreted by the operating
system is useful to decoding how MDM works as a whole.

<plist version="1.0">
<dict>
 <key>assignedObject</key>
 <dict/>
 <key>restrictedBool</key>
 <dict>
 <key>allowAccountModification</key>
 <dict>
 <key>value</key>
 <true/>
 </dict>
 <key>allowAddingGameCenterFriends</key>
 <dict>
 <key>value</key>
 <true/>
 </dict>
 <key>allowAppInstallation</key>
 <dict>
 <key>value</key>
 <true/>
 </dict>
 <key>allowAppRemoval</key>
 <dict>
 <key>value</key>
 <true/>
 </dict>

[...remainder not shown...]

The iOS MDM Protocol August 3, 2011

If the user, or their IT Admin Staff, installs a new profile via IPCU that restricts certain
items, that profile is also stored in this same folder, but in a different .plist file. An excerpt
from a profile might include the following:

So now, the device has two profiles -- the locally-created one (UserSettings.plist) which
permits the App Store, and one (installed by IPCU) which disables it. In such a situation, it’s
been observed that the more restrictive setting “wins”: in this case, the App Store would be
disabled. The merged settings are cached in ProfileTruth.plist, and additional files in
the PublicInfo subdirectory.

[.....]

<plist version="1.0">
<dict>
 <key>InstallDate</key>
 <date>2011-07-05T17:49:37Z</date>
 <key>MCProfileIsRemovalStub</key>
 <true/>
 <key>PayloadContent</key>
 <array>
 <dict>
 <key>PayloadDescription</key>
 <string>Configures device restrictions.</string>
 <key>PayloadDisplayName</key>
 <string>Restrictions</string>
[.....]
 <key>allowAddingGameCenterFriends</key>
 <true/>
 <key>allowAppInstallation</key>
 <false/>

[...remainder not shown...]

The iOS MDM Protocol August 3, 2011

MDM Protocol Overview

Thus far, all the configuration profiles discussed were installed manually -- either through
the device’s Settings application or via locally-initiated USB or wireless download of a
profile. A key feature of MDM is that it allows administrators to push profiles to the device
without any manual intervention.

Basics
The MDM service essentially consists of three elements:

1. The device being managed (iPhones, iPads, iPod Touches)

2. The server doing the management (various MDM servers)

3. A method by which the server wakes up the device (APNS)

Enrollment
MDM servers support over-the-air (OTA) enrollment, as documented in Apple’s “Over-the-Air
Profile Delivery and Configuration” developer guide1. The OTA enrollment can implement
various challenge and response systems, both to authenticate the user and to ensure that
only desired devices are enrolled in the system. However, the OTA system relies on a Simple
Certificate Enrollment Protocol (SCEP) server, and is beyond the scope of this research.

Enrollment is also possible through a profile created by the iPhone Configuration Utility.
The user specifies the network address of the MDM server, provides some additional
information, and installs the profile directly on the device to be managed.

During enrollment, the device provides unique identifying information to that server, which
is used by the server to send messages through the Apple Push Notification Service. Long
term connections from server to client, or client to server, do not exist with the design of
MDM -- only the connection to APNS. This long-term APNS connection is part of the Push
Notifications framework supporting multiple iOS applications, not just MDM.

After enrollment, each interaction between client devices and the MDM server consists of
four elements [see also diagram on the next page]:

1. Server requests push notification through Apple

2. Apple pushes notification to device

3. Device connects to server

4. Server and client exchange commands and responses

The iOS MDM Protocol August 3, 2011

1 See Appendix C for referenced documents.

Push Notification
When the MDM server needs to communicate with a device, it queues up the desired
command, then sends a very simple push notification message through APNS. No
information other than an identifying token is present in this message. Upon receipt of the
notification, the device contacts the server,
which then provides the queued command
to the client. Upon completion of the
command, the client responds with an
appropriate acknowledgment, and the
connection between client and server is
closed.

Client / Server Interaction
The device interacts with the server by
connecting to a designated URL and
exchanging XML formatted data, in the
form of an Apple Property List (.plist) file.
The first message a client sends upon
connecting to the server is a simple
“Status: Idle” notification, indicating that
the device is ready to receive commands
from the MDM server.

Upon receipt of this message, the server
sends whatever command may be waiting
for that device. This command is also
presented as an XML formatted .plist file,
and in most cases is only a simple command (with perhaps some associated arguments).

The device acts upon the command, and may then respond with another .plist, providing
either a simple acknowledgement of the command, an error message, or a detailed
response (in the case of device inventories and similar commands).

Creating a Simple MDM Server

A very basic MDM server can be created in fewer than five pages of Python, using only basic
libraries. This section will describe such a server in detail, and full source code will be
provided in Appendix B.

Requirements
APNS: The most important requirement is acquisition of an APNS push certificate. In the
past, such a certificate was only available to members of the Apple Enterprise Developer
program (with annual fees of $300). However, with the delivery of Lion, basic MDM services
are bundled with Lion Server, available for only $49.99.

The iOS MDM Protocol August 3, 2011

Python: This demonstration server was built on OS X 10.6 (Snow Leopard), using Python
version 2.6. Libraries used include web.py, pprint, plistlib, and APNSWrapper. Some of
these are standard libraries, others are readily available on the net. The APNSWrapper
library itself depends on the commonly-installed OpenSSL package.

Network Connectivity: To send push notifications, the server needs to communicate with
Apple’s APNS server: This requires outbound TCP connectivity to gateway.push.apple.com
on port 2195. The devices being managed likewise need connectivity to APNS, via outbound
TCP port 5223. Finally, the device needs to be able to contact the MDM server itself on
whatever port is defined in the MDM enrollment profile.

Caveats and Disclaimers
Again, the intended use of this tool is not to replace actual MDM server products. It is
intended to allow for further research into the MDM system, and potential vulnerabilities, in
order to better understand the risks it may present, or be used to mitigate, in an enterprise.
It does not make use of many features which are arguably required for a production service.
Some limitations:

• No transport layer security: all transactions occur over HTTP, though MDM and the
utilized web.py framework both support SSL

• No authentication: though a client identity certificate is created, it is not used, nor are
any of the server commands signed

• Only manages one device at a time

• Enrollment is accomplished through IPCU-installed profiles, however, because there’s
no authentication, it’s trivial to recreate this profile

• Any new device can therefore enroll with the server and “kick out” the device currently
being tested

Setting up APNS
First, an Apple Push certificate must be acquired. This is what allows the MDM server to
communicate with the client, and without it (and the appropriate certificate, provided by
Apple) the MDM service will not work. At this time, the easiest way to get an APNS
certificate is to purchase OS X Lion Server, though obviously this requires Mac hardware.
Within the Server application, the administrator can request and install push notification
certificates directly from Apple. Once installed, the certificate can easily be extracted from
the keychain.

Open the Keychain Access program, and locate the APNS certificate. In my case, it was
named “APSP:<uuid>”, where uuid looks like a long random string of hex digits (and, in fact,
is essentially just that). Highlight the certificate, and export it to a .p12 file (for example,

In other words: This tool is for research purposes only.
Donʼt even think about exposing it to the open Internet, or
using it to actively manage devices with important data!

The iOS MDM Protocol August 3, 2011

PushCert.p12). The program will prompt
for a password to protect the private key.

Next, open a Terminal window, navigate
to the folder where the certificate was
saved, and convert the file to .pem
format: For example, using openssl
pkcs12 -in PushCert.p12 -out
PushCert.pem. The password used when
exporting the key from Keychain will be
needed to open the .p12 file, and a new
password will be required to protect
the .pem file.

Since this .pem is encrypted, the tool will
prompt for the passphrase each time you
attempt to send a push notification. To
avoid this, first create a copy of the key
with no passphrase: openssl rsa -in

PushCert.pem -out PlainKey.pem. Then
in a text editor, replace the encrypted
RSA Private Key section in PushCert.pem
with the contents of PlainKey.pem. Once
this is complete, the script will be able to
access the certificate and key to send
notifications without using a passphrase.
Of course, be sure that this file is well
protected from disclosure, or others will
be able to forge your push notifications.
(It’s probably also a good idea to acquire
a push certificate strictly for testing
purposes, and not to use any production
credentials with this tool).

MDM Enrollment Profile
The next step is to create a profile in the iPhone Configuration Utility2 (IPCU) that will
instruct the device to connect to the MDM server. Within IPCU, create a new profile, and
select the MDM payload. In the Server field, enter the URL for the server (for example,
http://192.168.1.1/server. This will be the main URL that devices use to poll the server
for MDM commands. Optionally, a different URL can be entered in the Check In field (for
initial connection to the MDM server). The example server should be able to support Check
In over the server URL, but in testing this was separated to http://192.168.1.1/checkin.

The iOS MDM Protocol August 3, 2011

2 Currently available at http://www.apple.com/support/iphone/enterprise/

http://www.apple.com/support/iphone/enterprise/
http://www.apple.com/support/iphone/enterprise/

The Topic field needs to contain the User ID listed in the Subject Name section of the APNS
push certificate. Finally, an identity certificate for the device needs to be generated, installed
via the IPCU Certificates payload, and selected here. This can be a simple certificate
generated using the Keychain Access “Certificate Assistant,” but keep in mind that it may
need to be signed by a trusted entity. If not, then the Certificate Authority (CA) used to sign
the identity may need to be installed on the device in order for the device to recognize it.
(Though, as mentioned before, this certificate isn’t even used by the test server).

Once all is finished, save the configuration, and it’s ready to be copied via USB (or over-the-
air methods) to the iOS device being used for the server testing.

The Enrollment Exchange
As the MDM profile is being installed, the device will attempt to connect to the MDM server.
It first sends a basic “Authenticate” request to the Check In URL, providing the device’s
Universal Device Identifier (UDID) and the Push Notification topic.

This exchange provides the server with an opportunity to accept or deny the enrollment
request, based on the Topic and (more likely) the UDID.

To proceed, the server can respond with a blank plist:

After receiving this response, the client sends the server a “TokenUpdate” request,
containing three key pieces of identifying information:

• PushMagic - a unique token the MDM server sends with each push request

• Token - a unique token that identifies the device to the APNS service, and

PUT: /checkin
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>MessageType</key>
 <string>Authenticate</string>
 <key>Topic</key>
 <string>com.example.mdm.pushcert</string>
 <key>UDID</key>
 <string> [redacted] </string>
</dict>
</plist>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
</dict>
</plist>

The iOS MDM Protocol August 3, 2011

• UnlockToken - an escrow key used to clear the passcode on the device.

All three tokens have been redacted in the following listing. The PushMagic token is a
hexadecimal string, likely a simple random UUID (in UUID format). The Token is a 32-byte
binary value, presented as Base64 encoded text, and UnlockToken is a much longer binary
string (closer to 2 kilobytes), also encoded in Base64.

Again, the server doesn’t need to provide any response beyond a simple blank plist. Once
this is complete, the server retains copies of the tokens, and the device is now fully
enrolled.

Sending Push Notifications
When the MDM server needs to contact a device, it sends the device a notification via APNS.
This uses a special format of the push notification, where the top-level “aps {}” list is
replaced by a single “mdm” value. Unfortunately, the default APNSWrapper library doesn’t
support this alternate form, and produces messages with both keys. Fortunately, current
versions of iOS (at least from 4.2.1 onwards) don’t seem to care, though they do log an
error on the console.

PUT: /checkin
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>MessageType</key>
 <string>TokenUpdate</string>
 <key>PushMagic</key>
 <string> [redacted uuid string] </string>
 <key>Token</key>
 <data> [32 byte string, base64 encoded, redacted] </data>
 </data>
 <key>Topic</key>
 <string>com.example.mdm.pushcert</string>
 <key>UDID</key>
 <string> [redacted] </string>
 <key>UnlockToken</key>
 <data>
 [long binary string encoded in base64, redacted]
 </data>
</dict>
</plist>

The iOS MDM Protocol August 3, 2011

The push notification needs both the device’s APNS Token, and the mdm PushMagic token.
Sending the notification, using APNSWrapper, is straightforward:

The resultant APNS notification’s payload will look approximately like this:

Once sent to the APNS server, the notification should be quickly relayed to the device
(provided it’s currently connected to APNS), and the device will then contact the MDM server
for further instructions.

Device Response to Push
After receiving the push notification, the client contacts the server to receive instructions.
From here forward, it uses the “Server” URL (instead of the “Check In” URL used during
enrollment), but everything remains sent over HTTP PUT. First, the device sends a simple
“Status: Idle” message:

The server then responds with whatever command has been queued up for the device. In all
cases, the command response includes a “CommandUUID” field that should include a unique
random UUID. This allows the server to match commands sent with responses received from
the client, but is not necessary (and may currently be left blank).

Most commands are simply the command name, but a few require additional parameters.
Details are provided in the command list in Appendix B. For a quick example, we’ll look at
two commands: DeviceLock and ClearPasscode.

 wrapper = APNSNotificationWrapper('PushCert.pem', False)
 message = APNSNotification()
 message.token(my_DeviceToken)
 message.appendProperty(APNSProperty('mdm', my_PushMagic))
 wrapper.append(message)
 wrapper.notify()

{"aps":{},"mdm":"996ac527-9993-4a0a-8528-60b2b3c2f52b"}

PUT: /server
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Status</key>
 <string>Idle</string>
 <key>UDID</key>
 <string> [redacted] </string>
</dict>
</plist>

The iOS MDM Protocol August 3, 2011

Device Lock
The DeviceLock command requires no parameters, and is simply the following:

When this is provided to the device, as the response to the Status: Idle command, the
device immediately locks. The response from the device is the standard acknowledgement
message:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Command</key>
 <dict>
 <key>RequestType</key>
 <string>DeviceLock</string>
 </dict>
 <key>CommandUUID</key>
 <string></string>
</dict>
</plist>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>CommandUUID</key>
 <string></string>
 <key>Status</key>
 <string>Acknowledged</string>
 <key>UDID</key>
 <string> [redacted] </string>
</dict>
</plist>

The iOS MDM Protocol August 3, 2011

Clear Passcode
The ClearPasscode command requires the device’s UnlockToken (which was provided to
the server during the enrollment phase, in the UpdateToken message):

If the UnlockToken matches what was created during enrollment, then the device should
clear the passcode. It will remain locked, but no passcode will be required to unlock. If a
policy exists that requires a passcode, the user will be given a grace period to enter a new
passcode.

This warning will also appear if a new policy is installed that changes the passcode
requirements.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Command</key>
 <dict>
 <key>RequestType</key>
 <string>ClearPasscode</string>
 <key>UnlockToken</key>
 <data>
 [redacted]
 </data>
 </dict>
 <key>CommandUUID</key>
 <string></string>
</dict>
</plist>

The iOS MDM Protocol August 3, 2011

Using the Example Program

To use the example MDM test program, first follow the steps listed above in “Creating a
Simple MDM Server”. The default port will be 8080, so be sure to use that in the manual
MDM enrollment profile created in IPCU (or adjust accordingly).

In order to test installation and removal of profiles, create a basic Configuration Profile or
Provisioning Profi le in IPCU and save them as “test.mobileconfig” and
“test.mobileprovision” in the same directory as the server. Once created, the UUID for
the Provisioning Profile will need to be updated within the source, or demonstrating removal
of the test Provisioning Profile will not be possible.

Once running, simply open a browser to the server’s port (such as http://localhost:
8080). A very simple interface should appear:

First, you’ll need to enroll the test device with the server. Connect the device via USB and
use IPCU to install the manual MDM configuration profile. The device should immediately
connect to the server, issue the Authenticate and TokenUpdate commands, and complete
installation. Nothing will be displayed in the browser, but the terminal in which the server
process runs should show logs of the traffic reaching the server.

Once the device has been enrolled, the USB connection can be removed -- all further
communication will occur over the air.

Select a command to send from the drop down. Click “Send,” and the command data will be
displayed in the window as a JSON-formatted string. At this time, the server will send the
push notification to the device through Apple’s APNS system.

Within a few seconds, the device should connect to the server. The first thing it will do is
submit a “Status: Idle” message, which tells the server the device is ready to accept a
command. The server will reply with the command selected, and within a few seconds, the
device should provide the response to the command via another HTTP PUT.

Once the response has been received, click “Refresh” in the lower half of the browser
window to display the result, which again has been formatted in JSON for easy
interpretation.

The iOS MDM Protocol August 3, 2011

Shown below is the command, and response, for a SecurityInfo command.

Conclusion

Overall, Apple’s MDM protocol is reasonably straightforward, and not difficult to implement.
Appendix A outlines as much of the protocol as has been deciphered to date, while Appendix
B provides the source code to the MDM test server described in this paper.

Though this documentation is reasonably complete, there are some known shortcomings:

• An exhaustive documentation of error conditions and responses, both from the server
and from the client, has not been undertaken

• Additional controls may be present in the protocol, but exist as optional parameters,
and so have not been discovered (nor documented)

• Setup interactions with the APNS server, including the derivation of the Device Token,
have not been investigated

• A detailed investigation of SSL-secured MDM interactions, including the potential for
signed commands and responses, has not yet commenced

Despite these shortcomings, it is hoped that this effort may inspire further research into the
security and reliability of iOS Mobile Device Management, leading to a better understanding
of the risks iOS devices may present to large enterprises, and, ultimately, to more secure
systems and networks.

The iOS MDM Protocol August 3, 2011

Appendix A - Command Listing

Control Commands
• Device Lock
• Erase Device
• Clear Passcode

Device Queries

• Security Information
• Installed Application List
• Device Information
• Certificate List
• Profile List
• Provisioning Profile List
• Restrictions List!

Device
Configuration

• Install Profile
• Remove Profile
• Install Provisioning Profile
• Remove Provisioning Profile

Device to Server
Commands

• Authenticate
• Token Update

Overall Format
All commands are sent as Apple Property List (.plist) files. Each includes a top-level key
called “CommandUUID”, containing a UUID string to uniquely identify the command instance,
and a top-level key “Command”, which is a dict containing additional information.

Each command is listed below with a short description, and the required parameters.

<plist version="1.0">
<dict>
 <key>Command</key>
 <dict>
 <key>RequestType</key>
 <string>[command name]</string>
 [... additional parameters as needed ...]
 </dict>
 <key>CommandUUID</key>
 <string></string>
</dict>
</plist>

The iOS MDM Protocol August 3, 2011

Responses
The device responds to many commands with a simple acknowledgment:

The “Status” field may contain “Acknowledged”, “Error”, “CommandFormatError”, or
“NotNow” (see below for details on the error fields).

Where commands elicit a more extended response (such as for DeviceInformation
queries), details of those responses are given below. Typically, these commands add a top-
level field (such as InstalledApplicationList) which has as its value the extended data,
stored as a string, dict, or array of other elements. For example:

<plist version="1.0">
<dict>
 <key>CommandUUID</key>
 <string></string>
 <key>Status</key>
 <string>Acknowledged</string>
 <key>UDID</key>
 <string>[device UUID]</string>
</dict>
</plist>

<plist version="1.0">
<dict>
 <key>CommandUUID</key>
 <string></string>
 <key>SecurityInfo</key>
 <dict>
 <key>HardwareEncryptionCaps</key>
 <integer>3</integer>
 <key>PasscodeCompliant</key>
 <true/>
 <key>PasscodeCompliantWithProfiles</key>
 <true/>
 <key>PasscodePresent</key>
 <false/>
 </dict>
 <key>Status</key>
 <string>Acknowledged</string>
 <key>UDID</key>
 <string>[device UUID]</string>
</dict>
</plist>

The iOS MDM Protocol August 3, 2011

Error Messages
The general format for an error message is the same as the acknowledgement, with
“Status” changed to “Error” and an additional array of dicts added as “ErrorChain”:

ErrorCode (integer) A unique identifying error code

ErrorDomain (string) Category of error

LocalizedDescription (string) Error message, translated to a
localized language

USEnglishDescription (string) Standardized version of error
message

A special error message is “NotNow”, which is seen when a command cannot be requested
because the device is locked with a passcode (such as requesting Security Information or
installing a profile). When that occurs, the device will attempt to re-connect with the MDM
server as soon as the device is unlocked, in order to retry the command.

A command sent with invalid or missing parameters returns the “CommandFormatError”
status.

Device Lock

Immediately locks the device. If a passcode is present, that passcode will be required to
unlock the device.

RequestType DeviceLock

Erase Device
Immediately wipes the device memory and resets it to a “clean from factory” state.
Requires connection to iTunes to restore from backup or configure as new.

RequestType EraseDevice

Clear Passcode
If a passcode is present on the device, this command will clear that passcode. If a passcode
is required by other configuration controls, the user will be given a grace period in which to
set a new passcode.

RequestType ClearPasscode

UnlockToken (data) UnlockToken data, base-64 encoded

The iOS MDM Protocol August 3, 2011

Security Information
Lists specified security-related settings for the device, including hardware encryption
capabilities, and whether a passcode is present (and if so, whether it is compliant with
configuration). If the passcode is present, the device must be unlocked for this command to
execute.

RequestType SecurityInfo

Queries (array of strings):
“HardwareEncryptionCaps”, “PasscodePresent”,
“PasscodeCompliant”,
“PasscodeCompliantWithProfiles”

The response is based on the general acknowledgement response, with an additional
dictionary named “SecurityInfo”:

HardwareEncryptionCaps integer

PasscodePresent boolean

PasscodeCompliant boolean

PasscodeCompliantWithProfiles boolean

Installed Application List
Lists all the applications currently installed on the device. Includes the overall persistent
storage used by the application, expressed in bytes, along with the application’s name,
version, and bundle identifier. Does not list applications installed via jailbreaking methods.

RequestType InstalledApplicationList

Additional response information, in key “InstalledApplicationList”, is an array of dict
items:

BundleSize integer

DynamicSize integer

Identifier string

Name string

Version string

The iOS MDM Protocol August 3, 2011

Device Information
Retrieves specified general information about the device, including MAC addresses, IMEI,
phone number, software version, model name and number, serial number.

RequestType DeviceInformation

Queries (array of strings):
"AvailableDeviceCapacity", "BluetoothMAC",
"BuildVersion", "CarrierSettingsVersion",
"CurrentCarrierNetwork", "CurrentMCC",
"CurrentMNC", "DataRoamingEnabled",
"DeviceCapacity", "DeviceName", "ICCID",
"IMEI", "IsRoaming", "Model", "ModelName",
"ModemFirmwareVersion", "OSVersion",
"PhoneNumber", "Product", "ProductName",
"SIMCarrierNetwork", "SIMMCC", "SIMMNC",
"SerialNumber", "UDID", "WiFiMAC", "UDID"

The response is a dict named “QueryResponses” including the above-listed items as keys.
Responses that would be null (for example, the PhoneNumber field from an iPod Touch) are
simply omitted. AvailableDeviceCapacity and DeviceCapacity are real number fields,
while DataRomingEnabled and IsRoaming are boolean values. All the rest are returned as
strings.

Certificate list
Lists all certificates currently installed on the device.

RequestType CertificateList

The response includes a “CertificateList” array of dict values:

CommonName string

Data base-64 cert
information

IsIdentity boolean

The iOS MDM Protocol August 3, 2011

Profile List
Lists configuration profiles installed on the device. Includes Common name, whether a
remove passcode is required, whether removal is disallowed, unique identifiers, and other
similar information.

RequestType ProfileList

The response key “ProfileList” contains an array of dict items:

HasRemovalPasscode boolean

IsEncrypted boolean

PayloadDisplayName string

PayloadIdentifier string

PayloadRemovalDisallowed boolean

PayloadUUID string

PayloadVersion integer

SignerCertificates array of data items, each
with base-64 cert info

PayloadContent array of dicts, each with
PayloadDisplayName,
PayloadIdentifier,
PayloadType, and
PayloadVersion keys.

Provisioning Profile List
Lists provisioning profiles installed on the device (similar to the Profile list).

RequestType ProvisioningProfileList

The response includes a “ProvisioningProfileList” key, which contains an array of dict
values:

ExpiryDate date

Name string

UUID string

The iOS MDM Protocol August 3, 2011

Restrictions List
Lists restrictions currently in effect on the device. For example, lists disabled applications,
whether backup encryption is forced on, etc.

RequestType RestrictionsList

The response includes “GlobalRestrictions”, which is a dict containing detailed list of
restrictions, most presented as boolean values. The exact content and structure depends on
the restrictions in place on the device.

Install Profile
Given a base-64 encoding of a .mobileconfig profile (as created by the IPCU or other
tools), installs the profile on the device.

RequestType InstallProfile

Payload (data) IPCU .mobileconfig file, base-64 encoded

Remove Profile
Given a payload identifier (which is typically shown as a reverse-DNS identifier such as
“com.example.cfg.restrictions”), removes the profile from the device.

RequestType RemoveProfile

Identifier (string) Profile identifier

Install Provisioning Profile
Given a base-64 encoding of a .mobileprovision profile (as created by the IPCU or other
tools), installs the profile on the device.

RequestType InstallProvisioningProfile

Payload (data) IPCU .mobileprovision file, base-64
encoded

Remove Provisioning Profile
This command removes the provisioning profile from the device, given the profile’s UUID.

RequestType RemoveProvisioningProfile

UUID (string) Provisioning profile UUID

The iOS MDM Protocol August 3, 2011

Authenticate
This is a client command, sent by the client to initiate enrollment. Can be used by the server
to permit or deny enrollment based on the device’s UDID. NOTE - Does not follow same
format as server-to-client commands. Has no CommandUUID field nor the Command dict
structure -- all parameters are top-level items in the main property list dict.

MessageType Authenticate

Topic (string) Subject Name: User ID on APNS push
certificate used by server

UDID (string) Device UDID

Token Update
This is a client message, sent by the client during enrollment. Provides the server with
tokens used to contact device via APNS, as well as a key to unlock the device through the
Clear Passcode command. NOTE - Does not follow same format as server-to-client
commands. Has no CommandUUID field nor the Command dict structure -- all parameters are
top-level items in the main property list dict.

MessageType Token Update

PushMagic (string) UUID-like string

Token (data) 32-byte APNS device token, base-64
encoded

Topic (string) Subject Name: User ID on APNS push
certificate used by server

UDID (string) Device UDID

UnlockToken (data) Device unlock key, base-64 encoded

The iOS MDM Protocol August 3, 2011

Appendix B - Source Code

server.py

import web, os, pprint, json, uuid, sys
from plistlib import *
from APNSWrapper import *
from creds import *

#
Simple, basic, bare-bones example test server
Implements Apple's Mobile Device Management (MDM) protocol
Compatible with iOS 4.x devices
Not yet tested with iOS 5.0
#
David Schuetz, Senior Consultant, Intrepidus Group
#
Copyright 2011, Intrepidus Group
http://intrepidusgroup.com
#

###
Update this to match the UUID in the test provisioning profiles, in order
to demonstrate removal of the profile

my_test_provisioning_uuid = 'REPLACE-ME-WITH-REAL-UUIDSTRING'

###

last_result = ''
last_sent = ''

global mdm_commands

urls = (
 '/', 'root',
 '/queue', 'queue_cmd',
 '/checkin', 'do_mdm',
 '/server', 'do_mdm',
)

def setup_commands():
 global my_test_provisioning_uuid

 ret_list = dict()

 for cmd in ['DeviceLock', 'ProfileList', 'Restrictions',
 'CertificateList', 'InstalledApplicationList',
 'ProvisioningProfileList']:

 ret_list[cmd] = dict(Command = dict(RequestType = cmd))

 ret_list['SecurityInfo'] = dict(
 Command = dict(
 RequestType = 'SecurityInfo',
 Queries = [

The iOS MDM Protocol August 3, 2011

http://intrepidusgroup.com
http://intrepidusgroup.com

 'HardwareEncryptionCaps', 'PasscodePresent',
 'PasscodeCompliant', 'PasscodeCompliantWithProfiles',
]
)
)

 ret_list['DeviceInformation'] = dict(
 Command = dict(
 RequestType = 'DeviceInformation',
 Queries = [
 'AvailableDeviceCapacity', 'BluetoothMAC', 'BuildVersion',
 'CarrierSettingsVersion', 'CurrentCarrierNetwork',
 'CurrentMCC', 'CurrentMNC', 'DataRoamingEnabled',
 'DeviceCapacity', 'DeviceName', 'ICCID', 'IMEI', 'IsRoaming',
 'Model', 'ModelName', 'ModemFirmwareVersion', 'OSVersion',
 'PhoneNumber', 'Product', 'ProductName', 'SIMCarrierNetwork',
 'SIMMCC', 'SIMMNC', 'SerialNumber', 'UDID', 'WiFiMAC', 'UDID'
]
)
)

 ret_list['ClearPasscode'] = dict(
 Command = dict(
 RequestType = 'ClearPasscode',
 UnlockToken = Data(my_UnlockToken)
)
)

commented out, and command string changed, to avoid accidentally
erasing test devices.
#
ret_list['DONT_EraseDevice'] = dict(
Command = dict(
RequestType = 'DONT_EraseDevice',
)
)

 if 'test.mobileconfig' in os.listdir('.'):
 my_test_cfg_profile = open('test.mobileconfig', 'rb').read()
 pl = readPlistFromString(my_test_cfg_profile)
 ret_list['RemoveProfile'] = dict(
 Command = dict(
 RequestType = 'RemoveProfile',
 Identifier = pl['PayloadIdentifier']
)
)
 else:
 print "Can't find test.mobileconfig in current directory."
 sys.exit()

 ret_list['InstallProfile'] = dict(
 Command = dict(
 RequestType = 'InstallProfile',
 Payload = Data(my_test_cfg_profile)
)
)

The iOS MDM Protocol August 3, 2011

 if 'test.mobileprovision' in os.listdir('.'):
 my_test_prov_profile = open('test.mobileprovision', 'rb').read()
 else:
 print "Can't find test.mobileprovision in current directory."
 sys.exit()

 ret_list['InstallProvisioningProfile'] = dict(
 Command = dict(
 RequestType = 'InstallProvisioningProfile',
 ProvisioningProfile = Data(my_test_prov_profile)
)
)

 ret_list['RemoveProvisioningProfile'] = dict(
 Command = dict(
 RequestType = 'RemoveProvisioningProfile',
 # need an ASN.1 parser to snarf the UUID out of the signed profile
 UUID = my_test_provisioning_uuid
)
)

 return ret_list

class root:
 def GET(self):
 return home_page()

class queue_cmd:
 def GET(self):
 global current_command, last_sent
 global my_DeviceToken, my_PushMagic
 i = web.input()
 cmd = i.command

 cmd_data = mdm_commands[cmd]
 cmd_data['CommandUUID'] = str(uuid.uuid4())
 current_command = cmd_data
 last_sent = pprint.pformat(current_command)

 wrapper = APNSNotificationWrapper('PlainCert.pem', False)
 message = APNSNotification()
 message.token(my_DeviceToken)
 message.appendProperty(APNSProperty('mdm', my_PushMagic))
 wrapper.append(message)
 wrapper.notify()

 return home_page()

class do_mdm:
 global last_result

 def PUT(self):
 global current_command, last_result
 i = web.data()
 pl = readPlistFromString(i)

 if pl.get('Status') == 'Idle':

The iOS MDM Protocol August 3, 2011

 rd = current_command

 elif pl.get('MessageType') == 'TokenUpdate':
 rd = do_TokenUpdate(pl)

 elif pl.get('Status') == 'Acknowledged':
 rd = dict()

 else:
 rd = dict()

 out = writePlistToString(rd)

 if pl.get('UDID'):
 pl['UDID'] = '--redacted--'
 q = pl.get('QueryResponses')
 if q:
 redact_list = ('UDID', 'BluetoothMAC', 'SerialNumber', 'WiFiMAC',
 'IMEI', 'ICCID', 'SerialNumber')
 for resp in redact_list:
 if q.get(resp):
 pl['QueryResponses'][resp] = '--redacted--'

 last_result = pprint.pformat(pl)
 return out

def home_page():
 global mdm_commands, last_result, last_sent, current_command

 drop_list = ''
 for key in mdm_commands:
 if current_command['Command']['RequestType'] == key:
 selected = 'selected'
 else:
 selected = ''
 drop_list += '<option value="%s" %s>%s</option>\n'%(key,selected,key)

 out = """
<html><head><title>MDM Test Console</title></head><body>
<form method="GET" action="/queue">
 <select name="command">
 <option value=''>Select command</option>
%s
 </select>
 <input type=submit value="Send"/>
</form>
<hr/>
Last command sent
<pre>%s</pre>
<hr/>
Last result (Refresh)
<pre>%s</pre>
</body></html>
""" % (drop_list, last_sent, last_result)

 return out

The iOS MDM Protocol August 3, 2011

def do_TokenUpdate(pl):
 global my_PushMagic, my_DeviceToken, my_UnlockToken, mdm_commands

 my_PushMagic = pl['PushMagic']
 my_DeviceToken = pl['Token'].data
 my_UnlockToken = pl['UnlockToken'].data

 mdm_commands['ClearPasscode'] = dict(
 Command = dict(
 RequestType = 'ClearPasscode',
 UnlockToken = Data(my_UnlockToken)
)
)

 out = """
these will be filled in by the server when a device enrolls

my_PushMagic = '%s'
my_DeviceToken = %s
my_UnlockToken = %s
""" % (my_PushMagic, repr(my_DeviceToken), repr(my_UnlockToken))

 print out

 fd = open('creds.py', 'w')
 fd.write(out)
 fd.close()

 print "Device enrolled!\n"

 return dict()

mdm_commands = setup_commands()
current_command = mdm_commands['DeviceLock']

if __name__ == "__main__":
 app = web.application(urls, globals())
 app.run()

creds.py
these will be filled in by the server when a device enrolls

my_PushMagic = ''
my_DeviceToken = ''
my_UnlockToken = ''

The iOS MDM Protocol August 3, 2011

Appendix C - References

iPhone in Business: Over-the-Air Enrollment and Configuration: http://images.apple.com/
iphone/business/docs/iPhone_OTA_Enrollment_Configuration.pdf

Over-the-Air Profile Delivery and Configuration: http://developer.apple.com/library/ios/
documenta t i on/Ne twork ing In te rne t /Concep tua l / i PhoneOTACon f i gu ra t i on/
iPhoneOTAConfiguration.pdf

Local and Push Notification Programming Guide: http://developer.apple.com/library/ios/
documen ta t i on /Ne two rk i ng In t e rne t /Concep tua l /Remo teNo t i f i c a t i on sPG/
RemoteNotificationsPG.pdf

Troubleshooting Push Notifications: http://developer.apple.com/library/ios/#technotes/
tn2265/_index.html

APNS library for Python: http://code.google.com/p/apns-python-wrapper/

Apple iOS Enterprise Support, including the iPhone Configuration Utility for OS X and
Windows: http://www.apple.com/support/iphone/enterprise/

The iOS MDM Protocol August 3, 2011

http://images.apple.com/iphone/business/docs/iPhone_OTA_Enrollment_Configuration.pdf
http://images.apple.com/iphone/business/docs/iPhone_OTA_Enrollment_Configuration.pdf
http://images.apple.com/iphone/business/docs/iPhone_OTA_Enrollment_Configuration.pdf
http://images.apple.com/iphone/business/docs/iPhone_OTA_Enrollment_Configuration.pdf
http://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/iPhoneOTAConfiguration/iPhoneOTAConfiguration.pdf
http://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/iPhoneOTAConfiguration/iPhoneOTAConfiguration.pdf
http://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/iPhoneOTAConfiguration/iPhoneOTAConfiguration.pdf
http://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/iPhoneOTAConfiguration/iPhoneOTAConfiguration.pdf
http://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/iPhoneOTAConfiguration/iPhoneOTAConfiguration.pdf
http://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/iPhoneOTAConfiguration/iPhoneOTAConfiguration.pdf
http://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/RemoteNotificationsPG.pdf
http://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/RemoteNotificationsPG.pdf
http://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/RemoteNotificationsPG.pdf
http://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/RemoteNotificationsPG.pdf
http://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/RemoteNotificationsPG.pdf
http://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/RemoteNotificationsPG.pdf
http://developer.apple.com/library/ios/#technotes/tn2265/_index.html
http://developer.apple.com/library/ios/#technotes/tn2265/_index.html
http://developer.apple.com/library/ios/#technotes/tn2265/_index.html
http://developer.apple.com/library/ios/#technotes/tn2265/_index.html
http://code.google.com/p/apns-python-wrapper/
http://code.google.com/p/apns-python-wrapper/
http://www.apple.com/support/iphone/enterprise/
http://www.apple.com/support/iphone/enterprise/

