
Abstract
A reverse engineer trying to understand a protected binary is faced with avoiding
detection by anti-debugging protections. Advanced protection systems may even load
specialized drivers that can re-flash firmware and change the privileges of running
applications, significantly increasing the penalty of detection. Hades is a Windows
kernel driver designed to aid reverse engineering endeavors. It avoids detection by
employing intelligent instrumentation via instruction rerouting in both user and kernel
space. This technique allows a reverse engineer to easily debug and profile binaries
without fear of invoking protection penalties.

Introduction

Hades is a tool for dynamic application analysis. It has function hooking capabilities
similar to those of Microsoft Detours and WinAPIOverride (WAO), and it can also
function as a debugger. It was developed to allow analysis of various malware binaries
that were able to detect Detours and WAO. Both of these tools operate by injecting a
DLL into a target binary; the DLL places hooks in specific sets of functions and logs
information when those functions are called. The malware I was examining could detect
that unauthorized DLLs were being loaded into the current process space. To avoid
detection, I created an instrumentation tool based on instruction rerouting (to avoid most
debugger detection techniques) that runs from the kernel rather than using DLL injection
(which avoids DLL detection). It was then relatively straightforward to extend the tool’s
functionality to allow debugging of hooked executables.

Basic Operation
 First, a target executable is identified for instrumentation. The Hades driver registers
a callback function using PsSetLoadImageNotifyRoutine to detect when the target
executable is loaded. When the target is loaded, but before it begins executing, Hades
sets up a system call hook that will allow control to pass from the target to the Hades
driver. First, a system call is hooked (any will do). Then a trampoline to a shared area
of memory (described in section Transition from user to kernel space) is created.
Finally, an instruction rerouting hook (a JMP to the trampoline code) is installed in the
process at a user-specified virtual address and target execution is resumed.

Once the instruction pointer hits our rerouting hook, control is passed to the
trampoline, which invokes an interrupt that will send execution to our hooked system
call, where the Hades driver takes control. The driver will save the context (registers,
stack, etc.) and display it, change any registers specified by the user, execute the
original function bytes, and return control to the process at a point just after the rerouted
instruction (virtual address + <JMP size>).

Transition from user to kernel space

Transitioning from user space to kernel space is achieved by trampolining through the
system call dispatcher, which has memory accessible to both kernel and user code. The
trampoline is installed in the SharedUserData memory area, which Windows uses as an
efficient way to provide processes with certain frequently requested information. Hades

uses this area as a scratch space and to host its code for transitioning to the kernel from
user space. The trampoline code is installed at offset 0x800 within the SharedUserData
area (at address 0x7FFE000 from user space) to place it past Windows function pointers
(which are the intended use of this area).

The trampoline is made up of two parts: a hook-specific set of instructions that save
the processor state and identify the hooked function, and a generic handler that calls
the Hades’ hooked system call. Breaking up the trampoline in this way allows us to have
multiple function rerouting routines installed in the targeted binary.

Figure 1: Trampoline

As Fig. 1 shows, the first part of the trampoline code saves the processor context
(pushad, pushfd), saves an identifier (where we came from), and then jumps to the
generic code in “MyHandler.” The code at MyHandler first moves 0x61 into EAX to
identify the system call that should be invoked (it will be the one hooked by Hades). The
stack pointer is saved into EDX, giving Hades a pointer to the user process stack. When
SYSENTER executes, control is passed to the Windows Kernel and the hooked system
call will be executed. At that point, Hades has full control and can be used for
debugging, profiling, etc.

Profiler

As a profiler, Hades provides unique capabilities not found in other tools. Unlike most
profilers, it can hook internal application functions without requiring source code or
debugging symbols. It does not inject a DLL into the target process space like Detours or
WAO, making it harder to detect.

Figure 2: Hades output

Debugger
A slight modification can be made to the Hades driver to turn it into a debugger.

Currently it is limited to just one breakpoint. One operational difference between
debugging and profiling is that in debugging mode we restore the application bytes that
had been used for Hades’s JMP hook after the breakpoint is handled. In essence, Hades
only supports a one-time breakpoint. It would not be difficult to add functionality to make
the breakpoint persistent.

Effectiveness
Hades has several advantages over existing debuggers. Traditional Ring-3 debuggers

such as OllyDbg and IDA Pro need to register with the OS to begin debugging a user
application; this is easily detectable. Kernel-level debuggers avoid registration-based
debugger checks but still use other standard debugging features such as INT 3’s and
hardware debug registers. They may also require the system to boot in debug-mode or
require a second PC to control the system being debugged. Hades does not use
standard OS debugging features, and it does not require any special system preparation.

Conclusion

We have found that reverse engineering advanced malware and software protections
is often painfully inefficient with commonly available analysis tools. Hades uses non-
standard debugging techniques such as instruction rerouting to avoid most detection
techniques. Its ability to smoothly transition between user and kernel mode allows it to
give the reverse engineer a comprehensive view of both the user- and kernel-mode
code that is executed while a target process executes. We have made the source code
to Hades available in the hopes that others may find it useful in their own projects.

