
Exploiting USB Devices
with Arduino

THE LIFE OF GREG
Stroll into

work

Fire up HTTP
proxy

Sit in front of
a web browser

Click stuff Type stuff

Break stuff

Report

WHY AM I HERE?

WHY ARE YOU HERE?

»  Crypto, forensics, SSL, or mobile phones not interesting?

»  Learn how to approach assessing USB devices

»  Learn about some protocol level / implementation issues

»  See devices get exploited

»  Finally trying to justify buying an Arduino

A USB PRIMER

»  A well established protocol (no oscilloscope required!)

»  With protocols (classes)

•  Inside of protocols

‒ We can go deeper

»  Great reference:
http://www.beyondlogic.org/usbnutshell/usb1.shtml

»  Tools exist to parse these protocols (even some free ones!)

»  What we are interested in is the application protocol

GO WITH WHAT YOU KNOW

»  No different than a web app

»  Break it down into familiar steps

•  Threat Modeling

•  Use Case Analysis

•  Stimulus / Response Testing

•  Exploitation

THREAT MODELING

»  Identify the components of the underlying architecture

»  Identify security relevant use cases

»  Identify explicit and implicit trust boundaries

USE CASE ANALYSIS

»  Identify the inputs and outputs of the enumerated use
cases

»  Identify the protocol and methods for these inputs

»  Identify how security relevant use cases are executed

STIMULUS / RESPONSE TESTING

»  Produce instrumentation to execute the identified use
cases

»  Perform testing of the identified use cases with
unexpected input to yield unexpected outputs

EXPLOITATION

»  Instrumentation of any identified vulnerabilities

»  Automation of this exploitation

»  Pwnin suckaz

THIS IS ALL REALLY BORING, WHERE IS
THE ARDUINO

… pwnin suckaz

THREAT MODELING THE SCREEN
KEEPER

»  Components
•  Wireless token

•  USB dongle

•  Host software

TYPICAL INSTALLATION AND USAGE

»  Installation (software & hardware)

»  Screen Locking

•  Walk out of range

•  Turn wireless token off

»  Screen Unlocking

•  Walk back in range

•  Turn on token

•  Enter override password

USE CASES AND TRUST BOUNDARIES
»  Pretty limited security relevant use cases

•  Device installation and registration
•  Host screen lock
•  Host screen unlock via token
•  Host screen unlock via password

»  Assumed trust boundaries
•  Host to USB receiver
•  USB receiver to wireless token

»  Assumed compromised components
•  Physical host computer
•  USB receiver

USE CASE ANALYSIS
»  How do I go about really testing and seeing what is going on?

»  You wouldn’t assess a web app without an HTTP proxy, so we need the
equivalent tools setup

»  USB traffic analyzer

•  Hardware

•  Software

•  Virtual Host

CONFIGURATION FOR VIRTUAL USB
ANALYZER
»  Set some VMWare configuration options:

•  monitor = "debug"

•  usb.analyzer.enable = TRUE

•  usb.analyzer.maxLine = 8192

•  mouse.vusb.enable = FALSE

»  Get USB traffic:

May	 15	 14:59:57.911:	 vmx|	 USBIO:	 GetDescriptor(string,	 2,	 langId=0x0409)	
May	 15	 14:59:57.911:	 vmx|	 USBIO:	 Down	 dev=1	 endpt=0	 datalen=255	 numPackets=0	 status=390052272	 1a54dbb0	
May	 15	 14:59:57.911:	 vmx|	 USBIO:	 	 000:	 80	 06	 02	 03	 09	 04	 ff	 00	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
May	 15	 14:59:57.912:	 vmx|	 USBIO:	 Up	 dev=1	 endpt=0	 datalen=38	 numPackets=0	 status=0	 0	
May	 15	 14:59:57.912:	 vmx|	 USBIO:	 	 000:	 80	 06	 02	 03	 09	 04	 ff	 00	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
May	 15	 14:59:57.912:	 vmx|	 USBIO:	 	 000:	 26	 03	 73	 00	 63	 00	 72	 00	 65	 00	 65	 00	 6e	 00	 20	 00	 &.s.c.r.e.e.n.	 .	
May	 15	 14:59:57.912:	 vmx|	 USBIO:	 	 010:	 6b	 00	 65	 00	 65	 00	 70	 00	 65	 00	 72	 00	 20	 00	 31	 00	 k.e.e.p.e.r.	 .1.	
May	 15	 14:59:57.912:	 vmx|	 USBIO:	 	 020:	 2e	 00	 30	 00	 41	 00	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ..0.A.	 	

ANSWERING IMPORTANT QUESTIONS:
DEVICE INSTALLATION / REGISTRATION
»  Can a USB receiver be swapped out from a locked screen and replaced with

another USB receiver and in-range token?

•  Nope, each wireless token seems registered or linked per USB dongle

»  How is a USB receiver registered with the host computer?

•  A per-device identifier is stored within the Windows registry:

ANSWERING IMPORTANT QUESTIONS:
DEVICE INSTALLATION / REGISTRATION
»  What information is sent from the USB receiver when inserted into the host

computer?

Field Value Meaning
bLength 18 Valid Length
bDescriptorType 1 DEVICE
bcdUSB 0x0200 Spec Version
bMaxPacketSize0 32 Max EP0 Packet Size
idVendor 0x1915 Nordic Semiconductor ASA
idProject 0x001F Unknown
bcdDevice 0x0100 Device Release Number
iManufacturer 1 Index to Manufacturer String (Not known)
iProduct 2 Index to Product String “screen keeper 1.0A”
iSerialNumber 3 Index to Serial Number String “4A33EF8E83”
bNumConfigurations 1 Number of Possible Configurations

ANSWERING IMPORTANT QUESTIONS:
HOST SCREEN LOCK
»  What USB traffic is sent when the wireless device is out of range or turned off to

indicate that the screen should be locked?

•  None, lack of traffic == lock screen

»  Does the host remain locked when the physical USB device is removed?

•  Yes, oh well, would have been a lolz finding

»  Can the host be unlocked after the physical USB receiver has been removed and
reinserted?

•  Yes, this means that an attack can compromise the USB receiver and the
software will still allow the receiver to unlock the host

ANSWERING IMPORTANT QUESTIONS:
HOST SCREEN UNLOCK VIA TOKEN

»  What USB traffic is sent when the wireless device
is in range?

ANSWERING IMPORTANT QUESTIONS:
HOST SCREEN UNLOCK VIA TOKEN

»  Wait… what were those 24 bytes of data???

Bytes
34 00 41 00 33 00 33 00 33 00 45 00 46 00
38 00 45 00 38 00 33 00 30 00 31 00

Unicode Text
4 A 3 3 E F 8
E 8 3 0 1

Field Value Meaning
iSerialNumber 3 Index to Serial Number

String “4A33EF8E83”

ANSWERING IMPORTANT QUESTIONS:
HOST SCREEN UNLOCK VIA TOKEN

»  Wait… what was the secret sauce used to unlock
the host?

The serial number...

from...

the USB descriptor.

IN SUMMARY

»  Host does not care if USB receiver has been
removed or replaced

»  Host decides to lock based on lack of USB traffic

»  Host decides to unlock based on USB traffic sent
by receiver

»  Host authenticates and unlocks host based on USB
serial number

STIMULUS / RESPONSE TESTING

»  We know what we want to do:

•  unplug victim USB token

•  read USB serial number from it

•  play unlock message containing this serial

•  profit

»  How do we go about doing this?

STIMULUS / RESPONSE TESTING
»  Reading serial number

•  a

•  $ system_profiler SPUSBDataType | grep -
A 10 keeper | grep Serial | cut -f 2 -d
':’

‒  4A33EF8E83
•  We are real USB hackers now…

SETTING UP TEST ENVIRONMENT

»  Arduino Uno

»  ATmega8U2

»  Can use firmware developed using the open source LUFA
(Lightweight USB Framework for AVR) library

»  Firmware can be built using and AVR GNU compiler suite

»  Firmware can be flashed using dfu-programmer after
super secret Arduino handshake

CREATING A CUSTOM FIRMWARE
»  Start with Arduino distributed source
»  Descriptors.c

•  Defines the device descriptors used when
enumerating the device

•  We will modify these to enumerate to the values of
the Screen Keeper device

»  Arduino-usbserial.c
•  The actual main() loop of the firmware
•  This will need to send the device serial ID to the

host

EVIL DESCRIPTORS.C

»  Since we are a HID device, base off of provided
LUFA HID device demo

»  Setup descriptors to match device
»  Modify HID Report to match (24-bytes)
»  Extend descriptor table to include the serial number

•  Table contains a reference to a string to use for this
•  It’s a Unicode string
•  Add it to the enumeration function -

CALLBACK_USB_GetDescriptor

Field Value Meaning
iSerialNumber 3 Index to Serial Number

String “4A33EF8E83”

EVIL ARDUINO-SCREENKEEPER.C
•  Modify main function to remove all unnecessary code

•  Modify the main loop to send the HID Report message to the host

for (;;) {

Endpoint_Write_PStream_LE(

 SERIAL_NUMBER+”01”,

 SERIAL_NUMBER_LEN+4,

 NO_STREAM_CALLBACK

);

...

DEMO

A NEW VERSION APPEARS

NEW DEVICE DESCRIPTOR
Field Value Meaning
bLength 18 Valid Length
bDescriptorType 1 DEVICE
bcdUSB 0x0200 Spec Version
bMaxPacketSize0 32 Max EP0 Packet Size
idVendor 0x1915 Nordic Semiconductor ASA

idProject 0x001F Unknown
bcdDevice 0x0100 Device Release Number
iManufacturer 1 Index to Manufacturer String “SEMI-LINK”

iProduct 2 Index to Product String “screen keeper 1.1A”

bNumConfigurations 1 Number of Possible Configurations

iSerialNumber 3 Index to Serial Number String “Screen Lock”

SO WHAT’S THE DIFFERENCE REALLY?

»  How is the device now registered?

•  Still uses a serial number

•  Registered after first message received (from HID
report), not from device descriptor

•  Registration locked until reset within the software

»  Serial number is no longer sent unless the USB dongle
unless token is in range

»  Other ways can we get this?

MITIGATED?
»  Well how can we get the key now?

•  Wait for someone to leave their computer
•  Grab their USB dongle
•  Go to a meeting with them
•  Record serial number sent in HID report
•  Leave meeting early
•  See earlier slides

»  That’s all too “Mission Impossible” for me
»  Please give me a real vulnerability
»  Brute force? (kind of real I guess…)

BRUTE FORCE ANALYSIS

»  Looking at Key Space

»  Possible keys = Number of possible symbols ^ Length

Interpretation Possible
Symbols

Length Possible Keys

Full HID Report 255 24 Huge
Printable Unicode
String

94 12 Huge

Hex String 16 12 Maybe possible for brute
force?

ENTROPY ANALYSIS

»  We have 16^12 possible keys, but are all 12 actually
unpredictable?

»  Some sample keys (limited sample size)

»  Now only 16^7

8 D B E E D 5
3 E F 8 E 8 3
7 A 8 E C 1 1
4 A 3 6 1 F 4

4 A 3
4 A 3
4 B 3
4 B 0

0 1
0 1
0 1
0 1

BRUTE FORCE CONCLUSION
»  We can whittle down to 7 hex digits
»  16 ^ 7 = 268,435,456 = 268 million
»  On average we would have to search ~134 million keys
»  Rate

•  HID report was sent every 0.032 seconds
»  Conclusion

•  We can send 31.25 messages / second
•  134M / 31.25 = 4,288,000 seconds
•  49.6 days

MITIGATED!?!

»  Cracked open the USB dongle

CHIPSET

»  Nordic Semi nRF24LU1+ chip

•  http://www.nordicsemi.com/eng/Products/2.4GHz-RF/
nRF24LU1P-OTP

»  Uses OTP memory, programmable over SPI

»  OTP memory also contains a 5-byte pseudo random Chip
ID

»  We could maybe read from SPI if the SPI readback hasn’t
been disabled (RDISMB)

SO WHAT COULD BE DONE BETTER?

»  Boils down to an issue with trust boundaries and the
storage of the secret

»  The secret needs to be only on the token and host
software, only components not considered compromised

»  Both the token and the host need to authenticate to each
other

A BETTER IMPLEMENTATION?

»  Took a look at another device in the previous few weeks

•  Same idea, but with a generic wireless receiver

•  Multiple tokens to the same receiver

‒ Sounds like a better solution, generic USB device

‒ Secret sauce must be on wireless token!

»  How do we identify what this secret sauce is?

THREAT MODELING
»  Components

•  Generic receiver
•  Wireless token

»  Installation
•  User plugs in USB receiver
•  User uses software to register tokens identified in range or

enters token serial number printed on back
•  Token is now associated with a system user account
•  Can configure things like signal strength at which to lock

the host

USE CASES

»  Device registration

»  Unlock

»  Lock

USE CASE ANALYSIS

»  Application protocol more complicated than
before

»  Registers as a generic USB device, doesn’t utilize
the HID device class

»  No serial number-ish things in the initial
registration of the USB dongle

ANALYSIS OF PROTOCOL MESSAGES

»  Device lock

•  When the device is locked, messages are sent

•  Every 0.03 seconds heartbeat messages are sent with
no data

•  Every 2 seconds, a version string is also sent

2A	 56	 65	 72	 20	 4C	 53	 32	 2E	 30	 36	
*	 V	 e	 r	 L	 S	 2	 .	 0	 6	

ANALYSIS OF PROTOCOL MESSAGES
»  Device unlock

•  Like the Screen Keeper, the transmission of new USB messages
signal that the token is in range

•  So what do these look like?

Time	 M[0]	 M[1]	 M[2]	 M[3]	 M[4]	 M[5]	 M[6]	 M[7]	 M[8]	 M[9]	

116.45	 32	 28	 00	 FD	 FA	 40	 00	 04	 F8	 CF	
116.46	 32	 29	 00	 FD	 FA	 41	 00	 04	 F8	 CF	
117.44	 32	 2A	 00	 FE	 FC	 42	 00	 04	 F8	 CF	
117.44	 32	 2B	 00	 FE	 FB	 43	 00	 04	 F8	 CF	
118.43	 32	 2C	 00	 FE	 FB	 44	 00	 04	 F8	 CF	
118.43	 32	 2D	 00	 FE	 FB	 45	 00	 04	 F8	 CF	
119.42	 32	 2E	 00	 FE	 FC	 46	 00	 04	 F8	 CF	

32	 M[1]+1	 00	 ??	 ??	 M[5]+1	 00	 04	 F8	 CF	

ANALYSIS OF PROTOCOL MESSAGES

»  Message Fields
•  M[0] = Message Type
‒ 32 – Token in range
‒ F2 – No token in range, just keeps heartbeat

•  M[1] = USB Counter
‒ Increments +1 every message
‒ Rolls over to 00 at FF
‒ Starts at 00 when USB receiver re-plugged

MESSAGE ANALYSIS

•  M[2] = 00
•  M[3 - 4] ???
•  M[5] = Token Counter
‒ Per token
‒ Counts from 40 – 4F
‒ Rolls over to 40
‒ Different values when on/off token events occur

•  M[6] = 00

MESSAGE ANALYSIS – M[7-9]
•  3-byte identifier

•  Unique and static per token

•  From Serial Number on token / seen in configuration UI:

•  Hrmmmmm

•  Well this could be bad, but we still have 2 unknown bytes M[3-4]

Token ID M[7] M[8] M[9]
325626 04 F7 FA
325839 04 F8 CF
331431 05 0E A7

MESSAGE ANALYSIS – M[3-4]
•  Seems to vary randomly in each message

•  But remember we can view the token signal strength in the UI!

•  What happens to this value when I walk away and back to my desk?

30000

35000

40000

45000

50000

55000

60000

65000

1 11 21 31 41 51 61 71 81 91 101 111

M
[3

-4
]

MESSAGE ANALYSIS SUMMARY

•  To unlock a machine, the only secret
information is the M[7-9] (token ID)

•  Is this really secret?

‒ Its printed on the back of the token

‒ Prior to registration of a token, we could get
a list of all tokens in range

•  This secret is broadcast to anyone in range!

A NEW PLAN OF ATTACK

•  Sniff for tokens in range

•  Wait for user to leave

•  Plug in malicious device that replays USB registration
(nothing unique) and replay messages with the last 3
bytes set as the sniffed ID

•  Tested this in practice (not using Arduino, but USB
traffic generator)

SO WHAT SHOULD IT DO

»  Boils down to client-side control of the secret bits,
disclosure of the password to anyone who cares

»  You must assume the USB device has been compromised

»  A secret needs to be established to authenticate between
the host and the wireless token

»  This secret needs to be secret to everything else, including
the USB device

QUESTIONS? / CONTACT

»  Greg Ose

»  greg@nullmethod.com

»  @gose1

