Owning the Routing Table

New OSPF Attacks

Alex Kirshon1, Dima Gonikman1, Dr. Gabi Nakibly1,2

1 Technion, CS department
2 National EW Research and Simulation Center
Rafael – Advanced Defense Systems Ltd.
Introductions

» Network security researcher
 • National Electronic Warfare Research & Simulation Center (part of Rafael – Advanced Defense Systems Ltd.).
 • High-end research and consulting services to organizations aiming to defend their information assets.

» Adjunct researcher and lecturer
 • The Technion (Israel Institute of Technology)
Overview

» We present newly found vulnerabilities in the OSPF protocol.
 • The most popular intra-AS routing protocol

» Allowing to remotely own a router’s routing table without having to own the router itself.

» Why is this so desirable?
 • Traffic diversion
 • Routing loops
 • Network cuts
 • and much, much more…
Why is this so desirable?

» Gaining control over the routing table enables an attacker to do tricks such as:
 - Routing loops
 - Traffic diversion
 - towards longer routes or black holes
 - or through an attacker-controlled router
 - Network cuts
 - And much much more

» All this can be used to:
 - DoS the entire network (or parts thereof).
 - Eavesdropping on arbitrary traffic flows
 - which otherwise the attacker had no access to
Who is vulnerable?

» Potentially all commercial routers are vulnerable!

» The vulnerabilities were found in the spec of the OSPF protocol [RFC 2328].

» The attacks have been verified against Cisco IOS 15.0(1)M.

• IOS’s latest stable release
How the new attacks differ from known ones?

» Control over the routing tables is achieved by
 » falsifying or modifying routing advertisements of other routers in the AS
 » routers which the attacker may not control

» Known attacks:
 • Trigger “fight-back” by the router whose advertisement was modified
 • non-persistent effect

» The new attacks:
 • Evade “fight-back”
 • Persistent and stealthy
Agenda

» OSPF primer
» OSPF security strengths
» Known OSPF attacks
» The new found vulnerabilities and attacks
Internet Routing – The Big Picture

Inter-AS routing – BGP
Intra-AS routing – OSPF, RIP, IS-IS
OSPF Primer

» Every router periodically advertises its link state (i.e. “who are my neighbors?”).
 • This is called Link State Advertisement (LSA).
» The LSAs are flooded throughout the network hop-by-hop.
» Every router receives the LSAs of all other routers
 • Allowing it to build the topology map of the AS.
» A router processes every LSA addressed to it
 • via multicast or unicast.
How OSPF works?
LSA Flooding

» An LSA is re-advertised every 30 minutes.

» Each LSA has a higher sequence number then its predecessor
 » An LSA with a higher seq. number always runs over one with a lower seq. number.
Discovering Neighbors

» To discover their neighbors the routers use the Hello protocol.

» After mutual discovery an adjacency may be set up between them.
 » By synchronizing their LSA databases.

» Once the adjacency is set up each router may include its peer in its LSA.
R2 decides to set up an adjacency with R1.

Setting Up Adjacencies

- **Router discovery**
- **Master/Slave negotiation**
- **R1 is chosen to be the master**
- **Exchange of DB descriptions**
- **LSA DB synchronization**

Message Exchange

- **Hello**
 - Hello, neighbor=\(<R2 \text{ID} < R1 \text{ID}\),
 - DB Desc., I, MS, Seq.=y
 - DBD, I, MS, Seq.=x
 - DBD, Seq.=x
 - DBD, MS, Seq.=x+1
 - DBD, Seq.=x+1
 - LS Request, \(<LSID>\)
 - LS Update, \(<LSID>\)
 - \(\ldots\)
OSPF Security Strengths

» Per-link HMAC (MD5) authentication
 » Every link has its own shared secret

» Every LSA is flooded throughout the AS

» The “fight back” mechanism

» One LSA holds only a small part of topology information

» Links must be advertised by both ends
 • Bidirectional requirement
The Attacker

» Location: inside the AS
 • Controls a single legitimate router in an arbitrary location
 • Knows the MD5 shared secrets on the attached links
 ○ The first attack assumes that this secret is the same for all links;
 ○ The second attack does not assume this.

» Goal: Control the routing tables of other routers in the AS.
Known Attacks

» Falsifying self LSAs

- Falsify cost to an existing neighbor
 - very limited

- Advertise links to networks outside the AS
 - Can not influence routing to networks within the AS.

- Advertise links to stub networks
 - One-track tool. Can only be used to attract traffic.

- Advertise links to transit networks or existing routers
 - Does not influence the routing tables due to the bidirectional requirement
Known Attacks (cont.)

» **Falsifying other routers’ LSAs**
 - Known examples: Seq++, MaxSeq,…
 - Triggers immediate fight back
 - A non-persistent attack
 - Not very stealthy

» **Impersonating a phantom router**
 - Overwhelming the DB LSA with garbage LSAs
 - Does not have an affect on the routing table
 - due to the bidirectional requirement;
 - No real router advertises a link to the phantom.
Known Attacks (cont.)

» The only known attack that evades “fight-back”:

• Periodic Injection
 ○ Vulnerability: a router can not flood an LSA more than once per MinLSInterval (5 sec. by default)
 □ According to the spec a false LSA is flooded by the victim and only then a fight-back in sent.
 ○ The false LSA is repeatedly advertised at a high rate
 ○ The victim can not advertise its “fight-back” LSA

• This is a very high-maintenance attack
 ○ No hit-and-run
 ○ Not stealthy
Known Attacks – Summary

» It is the common conception that even if the attacker is an insider having the MD5 secret it can not persistently falsify the LSA of a router it does not control.

• Hence, OSPF attacks can not significantly poison the routing tables of other routers.

» The new attacks we shall now present shatter this misconception.
The New Attacks

» Attack #1 – Remote False Adjacency
 • Make another router include a non-existing link in its LSA
 • Assume MD5 shared secrets are the same for all links

» Attack #2 – Disguised LSA
 • Falsify the entire LSA of another router
 • Does NOT assume anything about MD5 shared secrets
Attack #1 – Remote False Adjacency

» The vulnerability

• A master router can successfully complete the adjacency setup without actually seeing the messages sent by the slave router [RFC 2328 Sec. 10.8].

» The attack

• A victim router is made to believe there is a new (actually, phantom) router on its LAN.

• An adjacency is set up remotely between it and the phantom router.

• This affects the LSA of the victim router without actually controlling it.
Assumptions

» The attacker knows the shared secret of the remote LAN.
 • In most cases this is the same shared secret for all LANs in the AS.

» The attacker knows the configuration parameters of the remote LAN
 • e.g., HelloInterval, RouterDeadInterval,…
 • In most cases these are the same parameters for all LANs in the AS.
The Attack Sequence

- In all attacker-originated packets:
 - IP source = <spoofed phantom IP address>

The victim
1) adds the new neighbor to the list,
2) decides to set up adjacency and
3) starts the DB exchange process

The phantom is chosen to be the master (since he has a larger ID).

The attacker keeps sending DBDs which are empty (with no LSAs).

Since the phantom’s DBDs were empty, the victim must enter the 'Full' state -> adjacency is setup!
The impact

- The victim advertises a link to the phantom!
- Bidirectional requirement is fulfilled.
- Phantom LSAs affect the routing tables.

Any false subnet (e.g. 74.125.0.0/16)
The Impact

» The DR advertises a link to the phantom router.
 • The attacker has managed to affect the LSA of the victim.
 • The link between the phantom and the LAN is now bidirectional.
 ○ This is the crux of the attack!

» The attacker advertises arbitrary LSA on behalf of the phantom router.

» All routers will consider the LSA of the phantom while calculating their routing tables.
 • This is why the attack is powerful.
Potential use case

» The attacker can black hole traffic from all over the AS to a specific subnet.
Another Potential Use Case

» A strategic “location” of the phantom can black hole most of the traffic in the AS.

» For example, connect the phantom to two remote LANs.
 • The phantom appears to be a very desirable shortcut…
Caveats

» The adjacency must be maintained by sending an Hello message every RouterDeadInterval.
 • 40 seconds, by default

» The victim floods LSAs to the phantom and expects Acks.
 • According to the OSPF spec the victim will endlessly retransmit the LSAs over and over.
 ○ Nonetheless, a Cisco router gives up after 125 seconds and then tears down the adjacency.
Attack #2 – Disguised LSA

» The vulnerability

• Two different instances of an LSA are considered identical if they have the same [RFC 2328 Sec. 13.1]:
 ○ Sequence number
 ○ Checksum
 ○ Age (+/- 15 minutes)

• The actual payload of the LSA is not considered!

» The attack

• Advertise a false LSA having the same values for these three fields as a valid LSA.
 ○ The benefit: no fight back is triggered since the victim views the false LSA as a duplicate of the LSA it just advertised.
Attack #2 – Disguised LSA (cont.)

The attack (cont.)

- But, there is a problem: all other routers in the AS will also consider the false LSA as a duplicate
 - therefore, they will not install it in their LSA DB.

- Solution: Disguise the LSA to the next valid instance of the LSA
 - While at the same time trigger the victim to originate this next valid instance
 - The trigger is done using the fight-back mechanism
Attack #2 – Disguised LSA

Illustration

The final outcome: R1 and R2 now possess two different copies of R1 LSA!!!!

1. Spoofed LSA of R1 ("Trigger" LSA)
2. Disguised LSA of R1 having the same Seq, CS and Age as the future fight back LSA of R1.
3. Fight back; a valid LSA of R1
4. The disguised packet is re-flooded

R1 rejects the LSA as a duplicate of the one it just advertised.
R2 rejects the fight-back LSA as a duplicate of the disguised LSA.
How the disguised LSA can be crafted?

» Age: this is the easiest one.
 • The disguised LSA will be advertised within 15 minutes of the valid (fight back) LSA.

» Sequence: the value is always incremented by one.
 • The disguised LSA will have the sequence of the trigger LSA plus 1.

» Checksum: this is the hardest feat, but not that hard.
 • The content of the next valid LSA is deterministic and predictable, hence the checksum is also predictable.
 • A dummy Link entry is added to the payload of the LSA.
 • The value of this entry is calculated such that the entire LSA will have the desired checksum.
 ○ This can be done since a checksum is a 16-bit result of a linear calculation on the LSA octets.
Potential Use case

» The attacker floods consecutively the trigger and then the disguised LSA.

• No need to know the MD5 key of the victim.
The Impact

» An effective tool to persistently falsify an LSA of a router not controlled by the attacker.

» All/most of the routers in the routing domain have a false LSA of the victim router.

» Can be repeated for different victim routers to fully control the topology viewed by the routers in the AS and consequently their routing tables.

 • This allows to create routing loops, network cuts, traffic diversion, etc.
Validation of the Attacks

» Both attacks are based on analysis of the OSPF specification [RFC 2328].

» The attacks are successful against Cisco IOS 15.0(1)M.
 • On a 7200-series router.

» The Scapy attack scripts are included in the disc.
Conclusions

» Up until now the common conception was that even if the attacker is an insider it can not persistently falsify the LSA of a router it does not control.

• The new attacks shatter this misconception.

• Using these attacks one can control the entire routing domain from a single router.
Questions?

gabin@rafael.co.il
Feedback

» Please complete the Speaker Feedback Surveys.
» This will help speakers to improve and for Black Hat to make better decisions regarding content and presenters for future events.