
Attacking .Net at Runtime
By

Jonathan McCoy

Abstract
This paper will introduce a high level attack
that can control a live .NET program. This
attack is a payload to be deployed after
opening a backdoor inside of a target .NET
application. Also basic information on
delivery methods is included.
This paper has a C# implementation of this
attack: DotNetSpike

Introduction
This attack can navigate and control a live
program by using the rules of the Runtime
system to control other .NET applications.
Some rules can be bent, other can be broken.
Once access to another program’s Runtime
is gained almost absolute control is at hand.
Most every aspect from Objects to Events
can be accessed, and most of the time
modified. This allows for simple attacks like
changing an Object’s values or calling
functionality; and more complex attacks like
introducing or changing the basic logic of
the target can be done with ease.
With this level of control the target can be
forced to divulge protected information,
carry out different functionality and send
corrupted signals. This attack will also allow
for accessing the code base and Object
structure live. This platform can allow an
attack to be developed and implemented in a
matter of minutes or hours.
Once inside of the target program the
necessary references can be established, and
the full power of .NET can be used. After
you have all the “keys” it can be a matter of
changing one variable or introducing one
line of code to subvert a program's logic.

Access Live .NET Program
The first step is to establish a connection
inside of your target’s Runtime; this is done
in a number of ways. This can range from
compromising the .NET Framework1 to
exploiting a glitch in a specific application.
Each method of accessing another
application’s Runtime has a different impact
on stability, foot print and security alerts.
Also the method you pick will change what
references you get to start with and what if
any constraints you would have.
The method of access used in this paper is
injection by the Windows OS. This method
is platform dependent as well as highly
detectable by Anti-Virus programs, and
starts with no references. However, this
method has a fast development cycle.
The security constraints come into play at
this point. Is the target a weak program
running on your system? Can it be attacked,
dissected and restarted a million times? Or
perhaps it is a heavily secured program on a
server some ware that you only get one
chance to compromise and have to make up
the attack as you go. Depending on the
environment and the goal you would select
the delivery method that best fit.
No matter what you chose as an entry
method the end effect is to create a way of
gaining access to your targets Objects,
Appdomain and code base. All this so the
logic and values in a program can be
accessed or manipulated.
This paper has a demo implementation of
injection into a .NET application: Injector
this is a C# program, with C++ unit, that
will inject .NET application running on
Microsoft Windows compatible with both 32
bit and 64 bit.

1 .NET Framework Rootkits By Erez Metul - at

http://www.applicationsecurity.co.il/english/NE
TFrameworkRootkits/tabid/161/Default.aspx

http://www.applicationsecurity.co.il/english/NETFrameworkRootkits/tabid/161/Default.aspx
http://www.applicationsecurity.co.il/english/NETFrameworkRootkits/tabid/161/Default.aspx

Controlling the Runtime
After you are inside of your target’s
Runtime it is necessary to get a reference to
your target Object(s). This is the weakest
part of the attack as you have none of the
keys, but luckily you also have no doors. So
how do you get to an Object if you don’t
have any references? Luckily most programs
have a GUI and the OS can retrieve a
reference to this Object. In addition looking
for other types of Objects like global
variables can be an easy source of
references.
After establishing a reference to an Object
inside of the target's Runtime it can be
leveraged to gain more references to other
Objects. Depending on the layout of your
target application and the manner of entry, it
will take more or less work to get references
and implement the necessary changes. As
each Object is traversed the code for each
function can be easily accessed. This along
with clean readable code naming can make
for an intuitive attack.
Say you wish to attack the GUI on a target
program. Start out by asking the Windows
OS about your target's GUI window handles
(using an on screen location or PID) and use
that information to build a Reference to the
GUI Object. This GUI Object will be inside
of your target’s Runtime, and as such can
now be accessed and controlled. Once this
reference is created it can be used to find
references to other Objects. Iterating over all
the Form's child controls and their Event's
can gain a far number of references. Perhaps
you find a key Object of the application such
as a timer or SQL connection that can be
leveraged to affect the system.
Anything from changing a variable to
invoking functionality can be implemented
at this point. Objects can with some skill and
effort be replaced live. This allows the
attackers to change the core logic granting a
god mode of sorts.

What is an Object at Runtime

Objects can be asked what Type they are,
and what they implement. This in turn gives
a Class list, on complex Objects this can be
a few levels of inheritance and interfaces.
Once you know what Class an Object can be
referenced as, the Class can be queried as to
what functions it implements and what
variables it contains. With this information,
it is possible to access constructors, Events,
variables, and properties. This allows an
Object to be manipulated and controlled.

GUI
The Graphical User Interface(GUI) also
known as a Form is a key part of most
programs, and is an easy entry point for this
attack. Using the Windows OS to get a
reference to the GUI Objects will get you a
good foothold into the heart of the program.
After establishing a reference to the main
GUI, a reference to each child control is
easily accessed, and in turn will lead to most
of the core Objects in the program.
A good place to start looking for references
is in variables or Event lists. Take a Button
on the main Form, assuming good N-Tier
design, the Button will have a Click Event
connected to some business logic deep in the
program.
Your target could be the GUI it self, perhaps
you need to access to a Check Box or wish
to override the functionality of a Text Box.
This is done with ease as the GUI Controls
are Objects subject to the same modification
and influences as any other Object.
However, the GUI imposes an extra
constraint of thread safety. Anytime you
modify a GUI Control you must do it from a
parent thread. To satisfy this you can move
your execution point inside of a parent
thread or call Invoke on a parent Object.

Events
Events are a key aspect of the logic flow to
most programs today as well as a probable
link to functionality and references. Events
are an Object and as such can be controlled.
The basic idea of the Event is to execute a
list of function calls. This can be used to
gain a reference to an Object. For instance,
you could find a timer that is the heart beat
for the programs with a number of Objects
connected directly to the Timer’s Elapsed
Event. Each entry in the Event list is a
connection to a function that could lead to a
reference.
A fair amount of key logic is connected to
Events, such as, on a Button, Text Box , or
Timer. This logic will (most of the time) be
on key Objects. This can be used as a
shortcut to get to the logic and Object you
would like to control. Events can also be a
good place to find references.

Accessing Source Code
The raw structure is maintained in IL, for
example x passed into FOO(int varIN) is
0002 : ldarg.0
0003 : ldfld int App.Form1::x
0008 : call instance System.Void App.Form1::foo()
Assuming that the code is well written and
not obfuscated we can move between
Objects in an application with confidence. If
we can see well-named variables and
functionality it is no harder then working on
someone else's code. If we do not have well-
named Objects it can slow the process down,
but with a good understanding of the basic
functionality it would most likely only take
a few(10-60) minutes to reconstruct a small
peace of strongly obfuscated logic(code).
Dynamic function can be created and
destroyed at Runtime, giving a nice path for
incorporation of new logic. This logic can
also be unloaded in an attempt to hide the
foot print of this attack.

As for the language the target program is
written in, it makes little difference to this
attack. Because it should be expected that
the code will be obfuscated and thus cannot
be reversed (fully) to any wrapper language.
So IL should be chosen as the primary
language for long term work in this area.

Legitimate uses
This level of control over other applications
has some powerful legitimate uses as well.
This can be used to extend a program or
implement a system wide upgrade.
With this it is possible to extend or reuse
another application in new and different
ways. It is also possible to combine other
applications to form a new system, taking
them far beyond the original purposes.

Conclusion: Going in Blind
If you are going up against an unknown
program at Runtime you have to work in it's
world, but you can bring your tools. If you
have compromised the OS or Framework it
will tip the balance of power in your favor,
if the target has other programs or security
setup to protect itself, the attack will be that
much harder. Once a suitable way into the
target is found the tactics of this attack
should work the same.
Running the attack a few times to see the
flow of the program can give insight into the
target's design and infrastructure. Also if
possible dissecting the target can reveal a
fair amount and help in developing the
attack. This dissection would be at non-
Runtime and can be useful or necessary, but
is not an area of focus for this paper.
The real strength of this attack is in how fast
and easy it is to adapt and control a running
program. The tools used are in the core of
.NET, and for the most part, are in every
version and as such should apply to any app.

Tools and rules of the Runtime:
Objects are derived from and instantiated by
classes, and must be referenced by a chain
of execution. This links every Object
together in a predictable way.
A Class has a list of variables and functions
that can be accessed (both public & private).
This can be used to learn about an Object
and it's connects, or to control and
manipulate it.
The code is in IL (most of the time) and can
be examined, but cannot be edited (this rule
can be broken). The code is solid but the
logic can be manipulated. This will allow
the behavior of the program to be controlled
as the attacker wishes.
A reference is needed in order to access an
Object (this rule can be bent). It is easy to
get around inside of a program to find the
references you need, as most everything is
connected. Additionally some references can
be created from information.
Reflection is a complex topic, so in short,
allows for information to be gathered about
an Object. The long version would be, it is
the part of .NET that allows for
introspection of Objects, where do they
come from, what are they made of, how can
they be accessed, and what they will do.
This is a key tool to understand for this
attack but in order to cover this would take a
paper in itself. If you would like to find out
more about reflection and how it works at
the code leave check out my paper:
Reflection's Hidden Power

Background & Basics of .NET
The .NET framework is an open standard
implemented on a number of different
platforms2. .NET has the largest developer
community ever, with a cross platform
portability never before seen; surpassing the
last generation of languages such as C++
and JAVA.
.NET run's on Intermediate Language(IL)
code, this can be thought of as a meta
language. Most people code in a wrapper
language such as C#, VB.Net, MC++..........
and more are crated each year. The wrapper
language allows programmers to wonk on a
platform resembling the language they are
accustom to.
IL is the code that runs inside of .NET, it is
code generated from compilation and
processing of a wrapper language. IL is a
base set of commands that strongly
resembles assembly code. Every command
in a wrapper language is converted into it’s
component IL command(s). This is in turn
converted at some later point on a users'
computer to machine code for a specific
hardware set.
.NET is a framework consisting of a
Common Language Infrastructure(CLI) that
houses the Common Language
Runtime(CLR). The CLR is a virtual
machine at the heart of .NET; it is
commonly known as the .NET Runtime or
just the Runtime. The Runtime is what most
people think of as the core of .NET as it
manages the Just-in-Time(JIT) compiler,
threads, IO, garbage collector and more. The
Runtime is predominantly what the attack in
this paper is exploiting.

2 .NET is supported on - Linux, FreeBSD,
OpenBSD, NetBSD, Microsoft Windows, Solaris,
OS X, ARM, MIPS, IPhone, Nokia, Blackberry,
Windows Mobile, Web and more.

References and Influences

James Devlin
www.codingthewheel.com

Sorin Serban

www.sorin.serbans.net/blog/

Erez Metula
paper: .NET reverse engineering

& .NET Framework Rootkits

Thanks to

L~~~~ A~~~~~~
Thank you for the mentorship and training in

forensics

D~~~~~ D~~~~~~
Thank you for the help on research and

vulnerability analysis

A~~~~~~ K~~~~~~
Thank you for the advanced IT support

A~~~~~ (Redacted)
Thank you for the IT support; specifically

networking and hardware

