
Hacking Google Chrome OS
Taking Down the Browser from the Inside

Kyle Osborn, Application Security Specialist, WhiteHat Security
Matt Johansen, Application Security Team Lead, WhiteHat Security

August 2011

Introduction
Google Chrome has been called one of the most secure browsers. In fact, Google offered a
$20,000 bounty on any research that leads to an attacker escaping the sandbox that Chrome
provides.

”Sandboxing helps prevent malware from installing itself on your computer or using what
happens in one browser tab to affect what happens in another. “ - Google Chrome and Browser
Security - http:// www.google.com/chrome/intl/en/more/security.html

Google has emphasized a move away from Desktops to the Cloud, using their Chromium
Browser in a Desktop format, under the Google Chrome OS. For users, this means: little to no
hard drive usage, low CPU specs, overall cheaper hardware, and the security that the cloud
provides.

Why a Web Hacker can Ignore the Sandbox
Googleʼs drive to move away from the desktop, and into the cloud results in desktop
applications being replaced with HTML5 & JavaScript rich extensions. These new “desktop
programs” seem to be more secure, because they do not have the classic vulnerabilities that
desktop applications end services have--buffer/stack/heap overflows/underflows, format string
attacks,plus many more. Since exploitation no longer leads to shell, the real dangers and
implications of any exploit seem to be mitigated.

Unfortunately, this is not true. HTML and Javascript applications (Chrome Extensions) are now
vulnerable to standard HTML and Javascript attacks. The most serious, in this situation, is
Cross Site Scripting. By utilizing an XSS vulnerability in an extension, an attacker can pivot from
that extension, and take advantage of the permissions given to it to attack and gain access to
user information loaded in other tabs.

Chrome Extension APIs
Chrome Extensions are based on the same rules that websites are, like the Same Origin Policy
(SOP). These extensions operate in a chrome-extension://<extensionID>/popup.html context.
However, because this technically violates the Same Origin Policy, how do rich applications
interact with web-based applications? How does an RSS feed reader access feeds from
multiple websites, which should violate the SOP, but do not?
Google solved this problem by introducing extension APIs, which allow developers to choose
what extensions have access to. These extensions are known as the ʻchrome.* APIsʼ

Extensions/Permissions in bold are potentially dangerous or vulnerable to attack.

http://www.google.com/chrome/intl/en/more/security.html
http://www.google.com/chrome/intl/en/more/security.html

manifest.json
When developing extensions, the file manifest.json is denoted as the file that contains all the
meta-information of the application. This includes title, version, resources, APIs it has access to,
and permissions. The file is a JSON data array that includes all this information. There is next to
no security information about what a developer should and should not add when creating this
file.

XSS inside an extension, now what?
Once a Cross Site Scripting vector has been identified in an application, an attacker can take
advantage of the extension APIs and permissions the developer has given them to access other
websites regardless of any sandbox protections.

Examples
1) Execute javascript in all available tabs (with permissions from ʻmatch patternʼ)

	 chrome.windows.getAll({"populate": true}, function (windows) {
	 	 for (count in windows) {
 		 	 chrome.tabs.getAllInWindow(windows[count]['id'], function (tabs) {
 	 	 	 	 for (tabIndex in tabs) {
 	 	 	 	 chrome.tabs.executeScript(tabs[tabIndex]['id'],
	 	 	 	 	 	 {code: "alert(document.domain)"});

2) If ʻmatch patternʼ is ʻ*://*/*ʼ (common mistake by developers)

test = new XMLHttpRequest();
	 test.open('get', 'http://mail.google.com/mail/')
	 test.send()
	 test.onreadystatechange = function () {
 	 	 if (test.readyState == 4 && test.status == 200) {
	 	 	 alert(test.responseText) // alert text of gmail
	 	 }
	 }

Conclusion
Next-generation operating systems, like Google Chrome, are raising new security issues. Now,
we are seeing the evolution of the software security model into the browser extension trust
model. Google Chrome OS raises security issues that apply across the board to cloud
applications. How do you evaluate security on an application that you do not own? Google is
working with extension developers to encourage them to be cognizant of security during the
development process. For enterprises, the lesson here is to beware of extensions the users of
Chrome OS machines are using and to realize that even though sensitive information isnʼt
stored on the hard drive does not make it safe.

About WhiteHat Security, Inc.
Founded in 2001 and headquartered in Santa Clara, California, WhiteHat Security provides end-
to-end solutions for Web security. The company’s cloud technology platform and leading
security engineers turn verified security intelligence into actionable insights for customers.
Through a combination of core products and strategic partnerships, WhiteHat Security provides
complete Web security at a scale unmatched in the industry. WhiteHat Sentinel, the company’s
flagship product line, currently manages more than 4,000 websites - including sites in the most
regulated industries as well as top e-commerce, finance and healthcare companies.

To improve your organization’s Web security, sign up for a custom, no-cost 30 day security
evaluation by WhiteHat Sentinel SecurityCheck at www.WhiteHatSec.com

http://mail.google.com/mail/'
http://mail.google.com/mail/'
https://www.whitehatsec.com/
https://www.whitehatsec.com/

